Abstract
Emulated by an algorithm, certain physical phenomena have useful properties for image transformation. For example, image denoising can be achieved by propagating the image through the heat diffusion equation. Different stages of the temporal evolution represent a multiscale embedding of the image. Stimulated by the photonic time stretch, a realtime data acquisition technology, the Phase Stretch Transform (PST) emulates 2D propagation through a medium with group velocity dispersion, followed by coherent (phase) detection. The algorithm performs exceptionally well as an edge and texture extractor, in particular in visually impaired images. Here, we introduce a decomposition method that is metaphorically analogous to birefringent diffractive propagation. This decomposition method, which we term as Phase-stretch Adaptive Gradient-field Extractor (PAGE) embeds the original image into a set of feature maps that selects semantic information at different scale, orientation, and spatial frequency. We demonstrate applications of this algorithm in edge detection and extraction of semantic information from medical images, electron microscopy images of semiconductor circuits, optical characters and finger print images. The code for this algorithm is available here (https://github.com/JalaliLabUCLA).
Keywords
- computational imaging
- physics-inspired algorithms
- phase stretch transform
- feature engineering
- Gabor filter
- digital image processing
1. Introduction
Physical phenomena described by partial differential equations (PDE) have inspired a new field in computational imaging and computer vision [1]. Such physics-inspired algorithms based on PDEs have been successful for image smoothening and restoration. Image restoration can be viewed as obtaining the solution to evolution equations by minimizing an energy function. The most popular PDE technique for image smoothening treats the original image as the initial state of a diffusion process and extracts filtered versions from its evolution at different times. This embeds the original image into a family of simpler images at a hierarchical scale. Such a scale-space representation is useful for extracting semantically important information [2]. Physics based algorithms not only outperform their conventional counterparts, but also have enabled new applications. Usage of these algorithms range from feature detection in digital images [3, 4, 5], to 3D modeling of objects from 2D images [6, 7], to optical character recognition [8] as well as for restoring audio quality [9].
Phase Stretch Transform (PST) is a physics inspired algorithm that emulates 2D propagation through a medium with group velocity dispersion, followed by coherent (phase) detection [10, 11]. The algorithm performs exceptionally well as edge and texture extractor, in particular in visually impaired images [12]. This transform has an inherent equalization ability that supports wide dynamic range of operation for feature detection [12, 13, 14]. It also exhibits superior properties over conventional derivative operators, particularly in terms of feature enhancement in noisy low contrast images. These properties have been exploited to develop image processing tools for clinical needs such as a decision support system for radiologists to diagnose pneumothorax [15, 16], for resolution enhancement in brain MRI images [17], single molecule imaging [18], and image segmentation [19].
PST emulates the physics of photonic time stretch [20], a real time measurement technology that has enabled observation as well as detection of ultrafast, non-repetitive events like optical rogue waves [21], optical fiber soliton explosions [22] and birth of mode locking in laser [23]. Further, by combining photonic time stretch technology with machine learning algorithms, a world record accuracy has been achieved for classification of cancer cells in blood stream [24, 25].
The photonic time stretch employs group-velocity dispersion (GVD) in an optical fiber to slow down an analog signal in time by propagating a modulated optical pulse through the time stretch system which is governed by the following equation:
where,
In the above equations,
PST utilizes the GVD dispersion to convert a real image to a complex quantity such that the spatial phase after the
In this chapter, we introduce Phase-stretch Adaptive Gradient-field Extractor (PAGE), a new physics inspired feature engineering algorithm that computes a feature set comprising of edges at different spatial frequencies, at different orientations, and at different scales. These filters metaphorically emulate the physics of birefringent (orientation-dependent) diffractive propagation through a physical medium with a specific diffractive property. In such a medium, the dielectric constant of the medium and hence, its refractive index is a function of spatial frequency and the polarization in the transverse plane. To understand this metaphoric analogy, we consider an optical pulse with two linearly orthogonal polarizations,
As the propagation constant
By controlling the value of
Further, we address the dual problem of spatial resolution and dynamic range limitations in an imaging system. In an ideal imaging system, the numerical aperture and the wavelength of an optical set up are the only factors that determine the spatial resolution offered by the modality. But under non-ideal conditions, the number of photons collected from a specimen control its dynamic range (the ratio between the largest and the smallest value of a variable quantity) which in turn also limits the spatial resolution. This leads to the fundamental dual-problem of spatial resolution and dynamic range limitations in an imaging modality [26].
Certain approaches to improve the resolution of the imaging system include use of wide-field fluorescence microscopy [27, 28] which offers better resolution than confocal fluorescence microscopy [29], multiple fluorophores [30, 31]. Also, various image processing techniques such as multi-scale analysis using wavelets [32, 33] have been proposed for improving the resolution while retaining important visual information post the image acquisition. We show later in the chapter that we are able to alleviate this dual-problem by incorporating, in our algorithm, a local adaptive contrast enhancement operator, also known as Tone Mapping Operator (TMO) which leads to excellent dynamic range.
Other steps of the proposed decomposition method are discussed at length in the next section. The organization of the chapter is as follows. In Section 2, we describe the details of the proposed decomposition method. Experimental results and conclusions are presented in Sections 3 and 4, respectively.
2. Mathematical framework
Different steps of our proposed decomposition method Phase-stretch Gradient-field Extractor (PAGE) for feature engineering are shown in Figure 1. The first step is to apply an adaptive tone mapping operator (TMO) to enhance the local contrast. Next, we reduce the noise by applying a smoothening kernel in frequency domain (this operation can also be done in spatial domain). We then apply a spectral phase kernel that emulates the birefringence and frequency channelized diffractive propagation. The final step of PAGE is to apply thresholding and morphological operations on the generated feature vectors in spatial domain to produce the final output. The PAGE output embeds the original image into a set of feature maps that select semantic information at different scale, orientation, and spatial frequency. We show in Figure 2 how PAGE embeds semantic information at different orientations for an X-ray image of a flower.

Figure 1.
Different steps of the phase-stretch gradient-field extractor (PAGE) algorithm. The pipeline starts with application of tone mapping in the spatial domain. This is followed by a smoothening and a spectral phase operation in the frequency domain. The spectral phase operation is the main component of the PAGE algorithm. The generated hyper-dimensional feature vector is thresholded and post-processed by morphological operations. PAGE embeds the original image into a set of feature maps that select semantic information at different scale, orientation, and spatial frequency.

Figure 2.
The phase-stretch gradient-field extractor (PAGE) feature map of an X-ray image. The original image is shown on the left (A). PAGE embeds the original image into a feature map that selects semantic information at different orientations as shown in (B). The orientation of the edges is encoded into various color values here.
The sequence of steps of our physics-inspired feature extraction method, PAGE, can be represented by the following equations. We first define the birefringent stretch operator
where
In the above equations,
The PAGE operator
where
In the next subsections, we discuss each of the above mentioned kernels in detail and demonstrate the operation of each step using simulation results.
2.1 Tone mapping operator (TMO)
A tone mapping operator (
We operate on the input image using a
2.2 Phase-stretch adaptive gradient-field extractor (PAGE) kernel
Phase-stretch adaptive gradient-field extractor (PAGE) filter banks are defined by the PAGE kernel
such that the frequency vector rotates along the origin with
We then define the PAGE kernel
where
There are two important things that should be noted here. First, we consider the modulus of our translated frequency variable
These filter banks can detect features at a particular frequency and/or in a particular direction. Therefore, by selecting a desired direction and/or frequency, a hyper-dimensional feature map can be constructed. We list all parameters in Table 1 that control different functionalities of our proposed decomposition method PAGE.
Notation | Variable |
---|---|
Spatial frequency | |
Steerable angle | |
Translated spatial frequency | |
Normal filter | |
Log normal filter | |
Strength of | |
Strength of | |
Mean of normal distribution for | |
Mean of log-normal distribution for | |
Sigma of normal distribution for | |
Sigma of log-normal distribution for | |
Sigma of Gaussian distribution for | |
Bi-level feature thresholding for morphological operations |
Table 1.
Different parameters of our physics-inspired feature decomposition method PAGE.
The values of these parameters for Figure 2 simulation result are:
Figure 3A–P show the generated phase profiles for

Figure 3.
Phase-stretch gradient-field extractor (PAGE) filter banks (A)–(P) phase filter banks as defined in
2.2.1 Directionality
In order to detect features in a particular direction spread over the all the frequency components in the spectrum, we construct the PAGE filter banks by using Eqs. (9)–(13) for

Figure 4.
Phase-stretch gradient field extractor (PAGE) directional filter banks (A)–(D) the directional filter banks of PAGE computed using the definition in
We first evaluate the performance of these kernel by qualitatively comparing the feature detection of PAGE with PST. The image under analysis is a gray-scale image of a rose. For a better visual understanding of our method, we first compute orthogonal directional responses as shown in Figure 5. We then show results of edge detection using PST and PAGE in Figure 6. The values for the parameters strength

Figure 5.
Phase-stretch gradient-field extractor (PAGE) directional filter banks response the original image is shown in (A). We design two directional PAGE filters here to detect vertical (

Figure 6.
Comparison of feature detection using phase stretch transform (PST) and phase-stretch gradient-field extractor (PAGE) the original image is shown in (A). The output edge image obtained using PST without the support of directional response is shown in (B). The edge map obtained using PAGE filter banks that support edge detection at all frequencies is shown in (C). Different color values are used to show the orientation of the edges.
2.2.2 Frequency selectivity
The PAGE filter banks can also be designed to detect edges at a particular frequency by controlling the spread of log normal distribution. To demonstrate this functionality, we show the features detected at low and high frequency using the rose image as an example in the Figure 7. As seen in the figure, the features detected at low frequency are smoother and at high frequency are sharper.

Figure 7.
Feature detection using phase-stretch gradient field extractor (PAGE) at low and high frequency: Features detected at low frequency are much smoother whereas for high frequency, the features are sharper. This demonstrates the frequency selectivity for feature detection using PAGE.
3. Discussion
3.1 Comparison to Gabor feature extractors
We demonstrate the effectiveness of our decomposition method by comparing the directional edge response obtained by applying Gabor filter banks to an optical character image. We design 24 Gabor directional filters and augment the response from each of the filters to generate the image in Figure 8B. As seen in Figure 8C, with PAGE we have a better spatial localization of the edge response. By spatial localization, we mean that inherently PAGE has a sharper edge response, as seen in the figure. This is because, unlike the Gabor filters whose bandwidth is determined by the sigma parameter of the filter, in PAGE, the bandwidth of the response is determined by the input image dimension. Therefore, there is better localization of edge with PAGE. The parameters values are strength

Figure 8.
Comparison to Gabor feature extractors: Features detected using Gabor do not have inherent spatial feature localization. With PAGE, the features are more sharper as the bandwidth of the response is determined by the input image dimension.
3.2 Comparison to derivative feature extractors
To demonstrate the superiority of our decomposition method, we compare the edge response obtained by applying derivative based operators to a test image shown in Figure 9A. The response to a derivative based operator is computed by using the edge function of Matlab software (canny) and is shown in Figure 9B. As seen in Figure 9C, PAGE outperforms derivative based operators by producing the orientation information and low contrast details. The parameters values are strength

Figure 9.
Comparison to derivative feature extractors: Features detected with derivative based edge operators calculate the directionality based on the horizontal and vertical gradients and do not provide information about the spatial frequency of the edges. PAGE provides both the orientation as well as the spatial frequency selectivity in the output response.
3.3 Simulation results
We apply our decomposition method to different types of images to show that the directional edge response obtained by PAGE can be used for various computer vision applications. For example, in Figure 10, we show application of PAGE to a Single Electron Microscope (SEM) image of an integrated circuit chip. As seen, the PAGE feature response is able to capture the edges corresponding to the chip layout (even the low contrast details). Based on the viewing angle (camera position), the layout edges should appropriately be rendered in the image as well as in the edge map. This can be used to identify any chip artifacts during the fabrication process. The parameters values for generating the feature map shown in Figure 10 are strength

Figure 10.
Fabrication artifact detection using phase-stretch gradient-field extractor (PAGE) on a single Electron microscope (SEM) image of integrated circuit chip. The original image is shown in (A). The output edge image obtained using PAGE filter banks that support edge detection at all frequencies is shown in (B). Different color values are used to show the orientation of the edges that correspond to the chip layout and can be used to detect fabrication artifacts.
We also apply PAGE to detect directional edge response to an image of a finger print as shown in Figure 11. Not only does PAGE detects a directional edge response, but also has an inherent equalization property to detect low contrast edges. The parameters values are strength

Figure 11.
Fingerprint feature map using phase-stretch gradient-field extractor (PAGE). The original image is shown in (A). The output edge image obtained using PAGE filter banks that support edge detection at all frequencies is shown in (B). As the edges of the fingerprint rotate, the response value changes (shown here with different color value).
Next, we show application of our decomposition method PAGE to extract edges of vessels from a retinal image in Figure 12. The distribution of vessels based on the orientation of the edges can be used as an important feature to detect any abnormalities in the eye structure. As seen, the PAGE feature response is able to capture both the low contrast details as well as information about the directionality of the vessel edges which is coded in form of the color value in RGB space. The parameters values are strength

Figure 12.
Vessel detection using phase-stretch gradient-field extractor (PAGE) on an image of a retina. The original image is shown in (A). The output edge image obtained using PAGE filter banks that support edge detection at all frequencies is shown in (B). Different color values are used to show the orientation of the edges. The low contrast vessels are not only detected using PAGE but also information on how the direction of the blood flow changes across the eye based on the vessel distribution is extracted.
4. Conclusions
In this chapter, a presentation is made on a new feature engineering method that takes inspiration from the physical phenomenon of birefringence in an optical system. The introduced method called Phase-stretch Adaptive Gradient-field Extractor (PAGE) controls the diffractive properties of the simulated medium as a function of spatial location and channelized frequency. This method when applied to 2D digital images extracts semantic information from the input image at different orientation, scale and frequency and embeds this information into a hyper-dimensional feature map. The computed response is compared to other directional filters such as Gabor to demonstrate superior performance of PAGE. Applications of the algorithm for edge detection and extraction of semantic information from medical images, electron microscopy images of semiconductor circuits, optical character and finger print images is also shown.
Acknowledgments
The authors would like to thank Dr. Ata Mahjoubfar for his helpful comments on this work during his post-doctoral studies in Jalali Lab at UCLA. This work was partially supported by the National Institutes of Health (NIH) Grant No. 5R21 GM107924-03 and the Office of Naval Research (ONR) Multi-disciplinary University Research Initiatives (MURI) program on Optical Computing.