\r\n\t1. Geopolymers chemistry topic describes the chemical reaction models and chemical kinetic of the geopolymerization which occurs after mixing the aluminosilicate raw materials with an alkaline solution.
\r\n\t2. Advanced characterization of geopolymers topic includes innovative technologies applied on geopolymers characterization at the nanoscale level, meant to explain the bond between the reacted and nonreacted particles from the composition.
\r\n\t3. Sustainability with geopolymers topic should provide clear information about the characteristics and applications of the geopolymers which use as raw materials industrial waste. Moreover, environmental impact studies which offer a clear view of the effects produced by geopolymers manufacturing, compared to conventional materials, is included.
\r\n\t4. Geopolymers as functional materials topic will present key aspects in developing geopolymers with tailored properties that increase further the heavy metals adsorption capacity, offering outstanding opportunities for energy-efficient separations and process intensification, in terms of saving energy, reducing capital costs, minimizing environmental impact and maximizing the raw materials exploitation.
\r\n\t5. Reinforced structures topic describe the effects produced by the introduction, in the geopolymers matrix, of different types of reinforcing elements.
The search for new inorganic materials with open frameworks formed by tetrahedra and octahedra sharing corners or edges; delimiting cages (1D), interlayer spaces (2D), or tunnels (3D); or communicating by the intermediate of windows where cations are located is an interesting field with intense activity including several disciplines: solid-state chemistry, physics, mechanics, etc. Synthesis and physicochemical studies of metallophosphate compounds are the driving force behind the recent technological development, and studies are progressing through the exchange of points of view between specialists concerned.
\nMetallophosphates have a promising field for various applications: electrical, electrochemical, magnetic, and catalytic processes [1, 2, 3, 4, 5, 6, 7]. Nevertheless, the introduction of monovalent ions into metallophosphates can lead to materials with interesting properties. This orientation was initiated from the discovery of the ionic conduction properties of NASICON Na3Zr2Si2PO12 (σ300°C = 0.2 S cm−1 and Ea = 0.29 eV) in 1976 [5] followed by olivine series studies of general formula LiMPO4 (M = Co2+, Fe2+, Mn2+) usable in the manufacture of cathodes of rechargeable lithium-ion batteries [7]. These materials have a remarkable structural richness: olivine structure [7], zeolitic structure [8], alluaudite structure [9], melilite structure [10], etc. In relation to their structures, these materials have many physicochemical properties: ionic conduction [10], ion exchange [6, 7], etc. In this context, several researcher groups have tried to explore CoO-P2O5 and A2O-CoO-P2O5 systems (A: monovalent metals). This chapter is dedicated to treated physicochemical and structural studies of monovalent cation cobalt phosphates (Li, Na, K, and Ag).
\nThe most common synthesis method is the solid-state reaction method. Nevertheless, to minimize the energy consumption and to improve quality of the developed materials (particle size, purity, homogeneity, etc.), other techniques such as hydrothermal method are adopted. In this method, the crystalline products are synthesized at low temperature, generally 150–250°C, and under high pressure.
\nSolid-state reaction route is the most adopted method to prepare single crystals or polycrystalline materials. The essential steps are:
Mixing and grinding solid reagents and placing the mixture in a container (usually porcelain, alumina, or platinum crucibles).
Calcination: a first heat treatment at 573–673 K for a few hours to remove the volatile compounds (NH3, H2O, CO2, etc.).
Grinding another time the remaining mixture to homogenize and reduce the size of the particles which will increase the contact area between the grains.
Second heat treatment by gradually increasing the temperature to a so-called “pasty” state of the mixture (partially melted mixture). Maintain this temperature for a few days, and then slowly lower it to room temperature.
The hydrothermal or solvothermal method consists of preparing an aqueous solution containing the reagents dissolved totally or partially. The aqueous solution is transferred either into a Teflon autoclave, both enclosed in metal autoclave.
\nThe preparation in the autoclave is brought to a temperature between 373 and 573 K maintained for a few days in order to obtain single crystals. The maximum temperature is imposed by the resistance of the material constituting the Teflon.
\nNote: In this chapter, structures have been determined using X-ray diffraction (on single crystal or on powder). Electrical measurements are carried out using often complex impedance spectroscopy.
\nIn this chapter, the structural studies of the studied materials were carried out by X-ray diffraction on single crystals or in some cases X-ray powder diffraction.
\nElectrical measurements are often performed using the complex impedance spectroscopy technique.
\nIn the literature, there are more than 80 allotropic forms of cobalt phosphates in which cobalt takes different oxidation degrees, sometimes in the same compound. Some cobalt phosphates have distinguishable physical properties in relation to their structures. In this chapter, cobalt monophosphate CoPO4 will be reported.
\nCoPO4 [1] material, like FePO4 structure, is usable in the manufacture of Li-ion batteries. In fact, the lithium extraction from LiCoPO4 material leads to CoPO4 compound. The delithiated sample was prepared by electrochemical Li extraction in galvanostatic mode at a C/5-rate from LiCoPO4. The latter shows considerable stability during several cycles of charge-discharge of the battery. In fact, CoPO4 crystallized in the orthorhombic with Pnma space group. The structure is formed by (CoO6)n chains connected with PO4 tetrahedra to form layers in the ab plane. The connection between layers formed a 3D framework showing several types of tunnels according to [001] and [010] directions (Figure 1). In this structure type, the cobalt ion has an oxidation degree of +III.
\nProjection of CoPO4 structure along the (a) c axis and (b) b axis.
There are more than 40 monovalent cation cobalt phosphates. The monovalent metal cobalt phosphates will be classified according to the oxygen/phosphor molar ratio.
\nThis family is known as orthophosphate or also monophosphate; it is characterized by its high stability compared to other phosphates. In the structure, (PO4)3− tetrahedra are isolated from each other.
\nThe most famous material is lithium cobalt monophosphate LiCoPO4 (Figure 2) [1]. It crystallizes in the orthorhombic system, Pnma space group. It belongs to the olivine family of general formula LiMPO4 (M = Fe, Ni, Co, and Mn). Xiang Huang et al. [11] have proposed hydrothermal synthesis method of this monophosphate which shows performance in terms of reaction yield and product homogeneity versus dry route. The phospho-olivine series is used in the manufacture of cathodes in Li-ion batteries [12]. LiCoPO4-CoPO4 system shows high stability during several charge-discharge cycles of the battery at room temperature (Figure 3). The olivine structure can be described as a compact hexagonal stack of A-B-A-B-A-type oxygen layers. The A = Na or Co cations occupy half of the octahedral sites AO6 and the B = P cations 1/8 of the available tetrahedral P sites of PO4 tetrahedra.
\nProjection of LiCoPO4 structure along [010] direction.
Lithium insertion/extraction in the olivine structure CoPO4/LiCoPO4.
On the other hand, when lithium is substituted by sodium in different synthesis conditions, the monophosphate NaCoPO4 may present in four allotropic forms [13, 14]. Figure 4 groups the polymorphisms in sodium cobalt monophosphate. All sodium materials show open anionic frameworks containing tunnels which contain sodium cations. On the other hand, the structure of the P21/n form where cobalt is only tetracoordinated is related to zeolite ABW (LiAlSiO4.H2O) [14]. In NaCoPO4 (P21/c space group subgroup of Pnma), Stucky et al. [13] report that the structure is also a distortion of the ABW zeolite structure but that it is a little more complex since the cobalt environment is trigonal bipyramidal. Indeed, the main characteristic of ABW zeolites is their spatial structures which contain pores and channels that can absorb or reject various solids, liquids, or gases. The applications of zeolites are numerous: food supplement for animals, additives for detergents, molecular filters, water treatment, catalysis, etc.
\nAllotropic forms of NaCoPO4: (a) Pnma, (b) P21/c, (c) P65, and (d) P21/n space groups.
The α-NaCoPO4 (P21/n space group) with maricite type is formed by octahedral chains CoO6 sharing edge and parallel to the a axis. They are interconnected via the PO4 tetrahedra, which creates large cavities where Na+ cations are located [13].
\nWhile the phase of the hexagonal system ᵦ-NaCoPO4 is stuffed tridymite type which is a high temperature variety of quartz SiO2. These compounds have a lower symmetry than tridymite due to the order of cations within the channels.
\nThe silver cobalt monophosphate AgCoPO4 [15] has another structure type with a twofold oxygen coordination for silver atoms and a fivefold coordination for cobalt atoms. Indeed, the silver compound crystallizes in the triclinic system, space group P-1. A projection of the structure of this phase is shown in Figure 5.
\nProjection of AgCoPO4 structure along [010] direction.
Another monophosphate is classified as Na-ionic conductor: NaCo4(PO4)3 [16] with activation energy Ea = 0.89 eV and σ = 10−6 S cm−1. Indeed, cationic sites, located in wide-sectioned channels (Figure 7a), are partially occupied by Na+ ions and relatively agitated which may explain the sodium mobility in the anionic framework. This compound crystallizes in the monoclinic system, space group P21/n. The isoformula potassium material KCo4(PO4)3 [17] crystallizes, in a different structure, the orthorhombic system, space group Pnnm. The structure projection along the [001] direction is shown in Figure 6(b).
\nProjections of (a) NaCo4(PO4)3 and (b) KCo4(PO4)3 structures.
The sodium cobalt monophosphate Na4Co7(PO4)6 [18] is synthesized by the dry route. This compound is a member of a family of phases including Na4Ni7(PO4)6 [19] and K4Ni7(PO4)6 [20]. Previous studies have shown that the material Na4Ni7(PO4)6 is classified as fast ionic conductor. Several studies relating to the substitution of phosphate by arsenate have led to Na4Co7(AsO4)6 (Ea = 1.00 eV) [21], Na4Co5.63Al0.96(AsO4)6 (Ea = 0.53 eV) [22, 23, 24], Na4Li0.62Co5.67Al0.71(AsO4)6 [25], and Ag4Co7(AsO4)6 (Ea =0.61 eV) [26].
\nA projection of the structure of Na4Co7(PO4)6 according to [100] is given in Figure 7. The anionic framework has both a tetrahedral (CoO4 and PO4) and octahedral (CoO6) environment as well as hexagonal tunnels where the sodium ions lodge.
\nProjection of Na4Co7(PO4)6 structure along the a axis.
Short-chain polyphosphates also named n-polyphosphates are characterized by short chains of PO43− tetrahedra sharing corners. The general formulas of the phosphate anion are given by [PnO3n+1](n+2)− with n > 1. Oligophosphates for which n = 2, 3, 4, and 5 are known until now. These compounds are infrequent for n ≥ 4.
\nThe other type corresponds to polyphosphates with long chains. When n tends to infinity, their phosphate anions take the formula [PO3]nn−, thus forming infinite chains of PO4 tetrahedra. If the tetrahedron chain closes on itself to form rings, the corresponding phosphates are called cyclophosphates. The general formula of the cyclic anion is [PnO3n]n− with n = 3, 4, 5, 6, 8, 10, and 12.
\nIn this part, a variety of monovalent ion cobalt polyphosphates found in the literature will be mentioned.
\nThe formula of the phosphate anion is P2O74−, known as diphosphate (or pyrophosphate). The group P2O7 consists of two PO4 tetrahedra sharing a single corner.
\nConcerning diphosphates of formulation A2CoP2O7 (A: Na or K), the sodium compound is presented in three allotropic forms: triclinic (Figure 8a), monoclinic (Figure 8b), and quadratic (Figure 8c) [8, 10].
\nProjections of polymorphs of Na2CoP2O7: (a) triclinic, (b) monoclinic, and (c) tetragonal.
In the last form, cobalt atoms have purely tetrahedral environment, and the anionic framework is formed by layers formed by [CoP2O7]2− groups. The Na+ and/or K+ cations are located in the interlayer space. Sanz et al. [10] postponed the study of the ionic conductivity of the quadratic form to sodium; their study reveals that it is a fast ionic conductor. Marzouki et al. [27] proposed a modeling of alkaline cation conduction paths in these structures (Figure 9). The conductivity in this type of material is bi-dimensional.
\nBond valence site energy-simulated pathways of Na+ ions within the K0.86Na1.14CoP2O7 structure (Na brown and K gray and the layer at z = 0).
The silver cobalt diphosphates include Ag3.68Co2(P2O7)2 [28] and (Ag0.58Na1.42)2Co2(P2O7)2 [29]. They crystallize in the triclinic system, space group P-1. Projection of the mixed Na/Ag metals is presented in Figure 10. The cobalt, in this case, is purely octahedral. In the anionic framework, the cohesion between two symmetrical units Co(2)P2O11 is provided by Co(1)O6 octahedra to form the Co4P4O28 unit. According to the three spatial directions, the junction between two Co4P4O28 units is provided by two P2O7 diphosphates forming 3D anionic framework.
\nProjection of (Ag0.58Na1.42)2Co2 (P2O7)2 structure along the a axis.
Silver transport pathways in Ag3.68Co2(P2O7)2 are simulated using BVSE calculations. The BVSE simulation shows that the material should be moderate 3D ionic conductor with activation energy value of 1.7 eV. The result is described in Figure 11.
\n3D silver transport pathways in Ag3.68Co2(P2O7)2 with bond valence mismatch of |ΔV(Ag)| = 1.3 u.v (i.e., ~1.7 eV).
The particularity of lithium cobalt diphosphates is the non-stoichiometry in composition. The formulas found in the bibliography are Li5.88Co5.06(P2O7)4 [30] where cobalt and lithium share the same crystallographic sites and Li4.03Co1.97(P2O7)2 [31] where a fraction of cobalt oxidation degree is +III. The projections of their structures are shown in Figures 12 and 13.
\nProjection of Li5.88Co5.06(P2O7)4 structure along b direction.
Projection of Li4.03Co1.97(P2O7)2 structure along a direction.
Single monovalent cation cobalt triphosphate is found in the literature. Its formula is LiCo2P3O10 [32]. This material crystallizes in the monoclinic system, space group P21/m. In the anionic framework, the P3O10 groups ensure cohesion between the infinite chains formed by Co2O10 dimers which are linked together by edge sharing. Figure 14 shows a projection of the structure in the direction [100]. The NaCo2As3O10 triarsenate [33], isostructural with LiCo2P3O10 triphosphate, shows interesting electrical properties (Ea = 0.48 eV; σ300°C = 1.2 × 10−5 S cm−1).
\nProjection of LiCo2P3O10 structure along a direction.
The first phase seen in the bibliography is tetraphosphate K2Co(PO3)4 [34]. This material is synthesized by the dry route; it crystallizes in the monoclinic system, with non-centrosymmetric space group “Cc.” Cobalt has the oxidation state (+II) and is octacoordinated. Phosphate anions of formulation [PO3]nn− (n tends to infinity) thus develop into long chains of PO4 tetrahedra linked together by CoO6 octahedra to form a 3D framework (Figure 15).
\nProjection of K2Co(PO3)4 structure along the c axis.
As for the lithium compound [35] with LiCo2P3O9 formula (Figure 16), this material is at a higher symmetry: orthorhombic system, space group P212121. The Co2O11 dimers, in this case, are formed by two vertex-linked CoO6 octahedra. They ensure the cohesion between the nn-infinite tetrahedral (PO3) chains to lead to a three-dimensional framework.
\nProjection of LiCo2P3O9 structure along the a axis.
Some materials may have more than one type of phosphate group. The material Na4Co3(PO4)2P2O7 [36] has both PO4 isolated tetrahedra and P2O7 diphosphate groups. This mono-diphosphate crystallizes in the orthorhombic system, space group Pn21a. Projections of the three-dimensional framework of this material (Figure 17) show that PO4 monophosphates are bound to CoO6 octahedra, on the one hand by edge sharing and on the other hand by sharing vertices, while diphosphates join four CoO10 units by pooling vertices.
\nProjections of Na4Co3(PO4)2P2O7 structure in (a) a, (b) b, and (c) c directions.
Ionic conductors have been intensively researched since the discovery of properties of ionic superconductors [37] whose conductivity is sufficiently high to consider applications as solid electrolytes in batteries [38, 39] in storage devices of energy and sensors [40]. On the other hand, materials with low ionic conductivity remain interesting to elucidate certain mechanisms of cation transport. In these materials, the charge carriers are cations.
\nThe open framework is an essential factor that governs the mobility of cations within a crystal lattice [6, 41, 42]. Among these structures, there are:
Three-dimensional frameworks with windows or channels: this type of material has an ionic conduction influenced by the size of the bottlenecks separating two adjacent available sites. The existence of wide-sectioned channels between the cationic sites promotes the passage of cations. According to Hong, for fast ionic conduction, the minimum sections of the windows must be greater than or equal to twice the sum of the radii of the cation and the nearest anion [40].
Layered structures: in this case, mobile ions move in parallel planes, located in the interlayer space. The conduction in this case is probably two-dimensional [27].
Structures with isolated tetrahedral groups: these structures consist of tetrahedral groups (SiO43−, PO43−, etc.) connected to each other solely by alkaline ions. These independent tetrahedra facilitate the movement of cations [43, 44, 45].
Other factors than the open framework can also promote ionic mobility [40]:
Site occupation: the partial occupations of the ionic sites (occupancy rate lower than 1) favor the displacement of the mobile ion from one site to another energetically equivalent.
Coordination polyhedra: the cation environment can play an important role in its mobility. Indeed, mobile ions can cross rectangular faces more easily than triangular faces.
Ion size: to promote conduction, congestion must be minimized, so the use of small cations is recommended, to facilitate their movement.
Structural defects: substitution or doping of one or more elements with other(s) having different degrees of oxidation is responsible for the creation of cationic vacancies at the origin of conduction properties in certain materials.
Taking into account the structural factors influencing the conductivity mentioned above, several studies have been devoted to improving the electrical properties of such materials by acting on other factors. This is the case of the total or partial substitution of the mobile species such as in NASICON Na1+xZr2−xMgx/2(PO4)3 (0 < x ≤ 2) [46] and in SKELETON phosphates (3D) A3M2(PO4)3: A = Li, Na, Ag, K, and M = Cr, Fe [47]. The doping of materials by one or more chemical elements can also promote the mobility of cations like the oxides La1.2Sr1.8Mn2−xTxO7 with T = Fe, Co, Cr [48].
\nOn the other hand, work on a series of materials is being processed in order to show the effect of microstructure optimization (grain size) on conductivity [49]. Moreover, it has been demonstrated in previous studies, such as for LAMOX ceramics (La2−xRxMo2−yWyO9 with R = Nd, Gd, Y) [50, 51] and for β-Xenophyllite-type Na4Co7(AsO4)6 [21] and Ag4Co7(AsO4)6 [26], that the electrical properties are related to the relative density of sample (100 porosity), which requires a rigorous control of the microstructure.
\nIn this chapter, synthesis methods of cobalt phosphates and metallo-cobalt phosphates in the crystalline form have been described: single crystals and/or polycrystalline powders. The structural studies of the studied compounds show structural diversity with open anionic frameworks showing tunnels (3D) and inter-sheet space (2D). However, it shows that the electrical property is related to the structural characteristics of the material. In order to correlate structure and physical properties especially electrical properties of metallo-cobalt phosphates, structural factors influencing the ionic conductivity have been treated. Based on the structural characteristics, the electrical properties of the crystalline materials can be modeled theoretically, especially in the case of purely ionic conductors. In fact, it is possible to determine the value of the activation energy which corresponds to the minimum energy that must be supplied to an ion to move from one site to another site in the crystal lattice. In addition, these modelizations are based on the structural data of the crystal. Since the measurements are often performed on ceramics, it is also necessary to take into account the effect of the relative density of the ceramic: effect of the microstructure.
\nThe respiratory system consists of a series of organs responsible for performing a set of physical and chemical processes that aim to absorb the air oxygen (O2), essential for the oxidative phenomena that occur in the tissues, and the elimination of products resulting from these same oxidative phenomena, especially carbon dioxide (CO2) [1]. The airways begin in the nares or external nasal openings and end at the level of the terminal bronchi, already within the lungs. These airways include an upper respiratory tract (nasal cavity, paranasal sinuses, nasopharynx, and larynx) and a lower respiratory tract (trachea and lung). This classification will be used to describe the respiratory disorders in this paper.
The development of effective health plans and the optimization of the use of drugs require an accurate diagnosis that assures that the treatment is addressed against the cause responsible for the pathological process. In this sense, diagnostic imaging is a useful tool based on noninvasive techniques that provide images for the correct diagnosis of the different disorders. Although there are a wide variety of diagnostic imaging techniques appropriate for the diagnosis of respiratory disorders, this article focusses only on infrared thermography and computed tomography. Others such as radiography or ultrasound are not described here because there is an extensive series of published papers on these techniques.
Infrared thermography is an innovative noninvasive tool that allows the remote measurement of the surface temperature of an animal. A thermal imaging camera captures and records the measurement and creates a color thermal image, where each color corresponds to a specified temperature [2]. A computer program, associated with the camera, allows measuring the temperature of each point in the image and thus compares the different areas. There are different patterns of colors that can be chosen; in our case we will use the pattern that associates cold temperatures with blue, turning to green, yellow, orange, red, and white as the temperature of the area rises. Colors are not directly associated with the degrees of temperature; simply, the coldest area of the image is related to the blue color and the hottest area to the white color, whatever those temperatures are.
These properties make it especially useful for diagnosing upper respiratory tract diseases, where the internal temperature of the affected structures in the nasal cavities and sinuses comes to modify the surface temperature of the face. The generated image allows comparison of the left and right side of the animal, detecting which side is affected and if it produces changes in the ventilation of the nostrils. In winter, the cold air that the sheep breathes cools down the nostrils, and the diagnosis of the different disorders that hinder the passage of air is straightforward; however, with external high temperatures, closer to body temperature, it is more difficult to detect these changes. Nevertheless, the immediacy and the current low prices of the thermal cameras make the use of thermography suitable as one of the first tests to be carried out to diagnose upper respiratory tract diseases in sheep.
Computed tomography, also known as CT scanner, is also based on the variable absorption of X-rays by different tissues. However, CT provides a different form of imaging known as cross-sectional imaging. Therefore, this system provides images that are similar to anatomical sections of the structure of the animal studied. Different computer programs associated with the scanner allow obtaining axial, sagittal, and coronal sections. Also, it is possible to make color three-dimensional reconstructions of the studied area and to be able to introduce or remove different densities, which is equivalent to being able to observe different structures. In the case of the respiratory system, these programs allow us to eliminate all the structures and only leave the image of the surface of the airways, which is equivalent to having the negative image of the respiratory tree. Currently, CT scanner is only used with research purposes or for complex diagnosis in sheep; however, it is very valuable to understand the different respiratory diseases and their pathogenesis and evolution.
This article shows comparative images obtained by CT scan and thermography with those taken later at the necropsies of the animals. More than 80 respiratory clinical cases affecting adult sheep received at the Ruminant Clinical Service of the Veterinary Faculty of Zaragoza (SCRUM) have been studied using CT scan and thermography as imaging diagnostic tools. Subsequently, a postmortem examination was performed in all the cases. The final diagnosis was supported by histopathological, microbiological, and biomolecular analyses of the respiratory system of the studied animals.
To capture the images shown in this article, the used devices were the following:
Thermographic camera: FLIR E63900, T198547. Images were performed at the Ruminant Clinical Service of the Veterinary Faculty of Zaragoza, Spain.
Computed axial tomography: General Electric Healthcare. The CT scan model is: CT Brivo 325, General Electric. Images were performed at the Centro Clinico Veterinario of Zaragoza, Spain. The RadiAnt DICOM Viewer 4.6.9 program was used to analyze the images.
The upper airways provide an intricate space for filtration, tempering, and humidification of inspired air. There are a whole series of structures that can be affected by different pathological disorders. Dorsal, ventral, and medium turbinates and ethmoidal labyrinth are easily examined through thermography, this being of great relevance because there are several diseases that settle in these structures hindering or obstructing the passage of air.
Before starting with the description of the diseases that affect the upper respiratory tract, thermography and CT scan of these structures in a healthy animal will be shown. Therefore, the comparison between healthy and affected animals can be more easily understood.
In Figure 1, a zenith view of the head of a healthy sheep can be observed with air passing through the nostrils, cold in winter (Figure 1a) and warm in summer (Figure 1b). Figure 2 shows a cross section of the head at the level of the second molar, where the internal structure of the ventral and dorsal turbinates can be seen both at necropsy (Figure 2a) and with tomographic images with and without an Airways filter (Figure 2b and c). In Figure 3a sagittal cut of the head avoiding the nasal septum with the structures of all turbinates can be seen (Figure 3a–c). The spatial placement of the different airways within the bone structure of the skull is appreciated.
Zenith view of the head of a healthy ewe. (a) Picture of the ewe’s head and its thermographic image with symmetrical cooling of the nostrils with cold external temperature (cold colors = blue and green). (b) Ewe’s head picture and its thermography with symmetrical cooling of the nostrils with warm external temperature (warm colors = yellow and light green).
Nasal cavity of a healthy ewe. (a) Axial section of the head at the level of the second molar (dt dorsal turbinate, vt ventral turbinate, ns nasal septum). (b) CT axial view at maxillary sinus level (dt dorsal turbinate, vt ventral turbinate, ns nasal septum). (c) CT axial 3D view with airways filter. Surfaces view delimiting the air ducts or nasal meatus (cnm—common nasal meatus, dnm—dorsal nasal meatus, mnm—medium nasal meatus, vnm—ventral nasal meatus).
CT 3D sagittal views of a healthy ewe. (a) Sagittal cut of the head avoiding the nasal septum. The structures of all turbinates (dt dorsal turbinate, mt medium turbinate, vt ventral turbinate, and el ethmoidal labyrinth) are highlighted. (b) The same cut as 3a with airways filter to show the areas with air (blue). (c) Sagittal section with filter for airways (blue) and bone (green). The spatial placement of the different airways within the bone structure of the skull is appreciated.
Paranasal sinuses (maxillary, frontal, and lacrimal) and nasal septum have less diagnostic importance due to their low frequency of injury. Figure 4 shows an axial section of the head at the level of the ethmoidal turbinate where the lacrimal paranasal sinuses can be seen (Figure 4a and b). Sporadically, alterations of the pharynx and larynx are diagnosed.
Ethmoidal turbinate of a healthy ewe. (a) CT axial view of the head at ethmoidal turbinate level. (b) CT axial 3D view with airways filter. View of the aerial surfaces of the ethmoidal sinuses (es) and the paranasal lacrimal sinus (pls).
Below we will explain the different disorders that affect the upper respiratory tract in sheep and how imaging techniques can help in their diagnosis.
Chronic proliferative rhinitis (CPR) is an upper respiratory tract disease of sheep associated with Salmonella enterica subsp. diarizonae serovar 61:k:1,5,(7) (SED) which was described for the first time in the United States in 1992 [3] and, subsequently, in Spain [4, 5], again in the United States [6] and Switzerland [7]. In addition, it has also been diagnosed in the United Kingdom and Brazil (personal communications).
SED is a saprophytic microorganism in sheep; however, when this bacterium becomes intracellular, it produces an intense inflammatory reaction in the ventral turbinate, giving rise to the classical clinical signs of the disease [5]. This fatal prognosis disease causes loss of weight, no fever, snoring, seromucous nasal secretion, and nasal deformation. It can be unilateral or bilateral and regional lymph nodes are usually enlarged. Over time, these signs get worse, and, sometimes, it is possible to see inflammatory proliferative tissue at the nares [4, 5, 7]. Further, the inadequate flow of air in affected animals provides a better situation for opportunistic bacteria that lead to secondary pulmonary diseases that usually are responsible for the final death of the animals [5].
At postmortem examination, the ventral turbinates are presented swollen with a roughened surface (Figure 5a). The section of the turbinate shows a proliferative tissue that is usually composed of multiple small white or yellow polypoid structures covered by mucus, although, sometimes, only a thickening of the mucosa can be observed [4]. Occasionally, the dorsal and medium turbinates may also be affected [8].
Chronic proliferative rhinitis. (a) Sagittal cut of the head avoiding nasal septum. Enlarged ventral turbinate (vt) is appreciated. (b) Thermography of the right size of a CPR-affected sheep with a relevant increase in temperature in the swollen area.
Thermographic images of CPR cases detect high temperatures (white and red colors) in the nostril area corresponding to the swollen ventral turbinate, and the difficulty of ventilation of the nasal cavity can also be observed (Figure 5b).
Computed tomography enables to obtain a clear image of the damaged tissue and the different stages of development of the disease (Figure 6). It also shows the increase in size of swollen turbinates and the bone destruction in more advanced cases. Axial slides show uni- or bilateral lesions, while sagittal slides detect affected turbinates, generally the ventral and less frequently the dorsal (Figure 6a–d).
Chronic proliferative rhinitis. (a) CT axial view of the head with bilateral CPR, predominantly on the right side. Gray masses (*) are the swollen turbinates. (b) CT sagittal view of the head in right nasal turbinate. Ventral turbinate (vt) increased in size is appreciated. (c) CT axial 3D view with airways filter. Black spaces of the nasal cavity (+) are swollen, airless masses. (d) CT sagittal 3D view with airways filter. The large black surface (+) represents the swollen mass of CPR.
Enzootic nasal adenocarcinoma (ENA) is a contagious tumor of the ethmoid turbinate mucosa caused by a betaretrovirus known as enzootic nasal tumor virus 1 (ENTV-1), which only affects sheep [9]. Goats can also be affected by an enzootic nasal adenocarcinoma which is caused by an enzootic nasal tumor virus of goats (ENTV-2) [9, 10]. It is a contagious chronic disease of the upper airways that has been described in farms all over the world, except in New Zealand and Australia [9].
ENA prevalence in the affected flock is variable, ranging from 0.1 to 15% [9]. Preferentially, the virus affects young adults, and several cases are usually observed in the same flock. No genetic, breed, or sex predisposition has been observed [9, 11, 12, 13].
The most recognizable clinical sign of ENA is the unilateral serous nasal discharge that leads to a “washed nose” appearance, which is caused by the depilation of the area due to the continuous discharge. In advanced cases, the disease shows characteristic clinical signs such as snoring, coughing, and head shaking together with exophthalmos and softening and deformation of the skull bones (mainly frontal and maxillary) that can lead to the presentation of a skin fistula. Body condition is gradually lost, and animals eventually die due to bacterial complication of the tumor which ends with pneumonia or septicemia [9].
At necropsy, tumors are found in the nasal cavity arising from the ethmoidal mucosa and effacing the normal architecture of the ethmoidal conchae. Tumors are soft, gray, or reddish-white in color with a fine granular surface and covered with mucus (Figure 7a).
Enzootic nasal adenocarcinoma (ENA). (a) Postmortem findings of ENA with polyps (*) affecting the ethmoidal turbinate. (b) Thermography. Warmer area in the right side that matches the location of the tumor. (c) CT 3D view with soft tissue removal: skull with ENA and great bone rarefaction. The lithic process causing some holes in the nasal and lacrimal bones is shown.
In ENA cases, the thermography shows reddish or even white colors in the posterior segment of the nose, matching the hottest areas (white color) with the ethmoidal bone, where the ENA is located (Figure 7b). The nasal cavity presents also a red color because, due to the obstruction provoked by the tumor, air cooling the area cannot pass through the nose. In the case of fistulizing and pouring liquid through the hole, the wet area can present colder tones (green, yellow) due to the evaporation of this liquid.
The CT scan of ENA cases shows the destruction of the ethmoidal bone, the lithic curse of the nasal bone, and the soft tissues growing, sometimes with polyps in the distal part of the lesion (Figure 8), even before the nasal bone is destroyed and the face deformed (Figure 7c).
Enzootic nasal adenocarcinoma. CT axial and sagittal view of an ENA in the right side of the skull (red circles).
Oestrosis is a worldwide cavitary myiasis caused by the larvae of the fly Oestrus ovis (Linnaeus 1761, Diptera, Oestridae) that develops from the first- to the third-stage larvae, which are obligate parasites of the nasal and sinus cavities of sheep and goats [14, 15]. In areas with semiarid climatic conditions, as in the Mediterranean countries, oestrosis is the most important upper respiratory tract disease from a clinical and economic point of view [16].
Oestrosis is a collective disease with a high prevalence in which clinical signs have a seasonal variation, being more severe during hot and dry periods [15, 17]. The larvae produce chronic inflammatory rhinitis, and the affected animals present mucus, purulent, or even hemorrhagic nasal discharge [16, 18, 19]. Inspiratory dyspnea, frequent sneezing, head shaking, and emaciation are clinical signs that often accompany the mucopurulent nasal discharge [14, 15].
For the diagnosis of this disease, thermal images are not used unless the parasitation is very severe. CT images are only useful in the final stage of the larvae (L3). Tomographic pictures show the secretions, the swollen tissues of the turbinates, and even the segments of the larvae (Figure 9a–c), but its clinical use is not justified in this disease.
Oestrosis. (a) CT axial view of a sheep head affected by oestrosis. A larva cut crosswise between the ventral and dorsal turbinate is shown. Another small larva in the dorsal turbinate and mucus in the common nasal meatus is appreciated (red circle). (b) CT sagittal view with the presence of a crosswise cut larva in the cranial area of the ventral turbinate (red circle). (c) CT 3D view with airways filter. This technique shows the larvae-occupied areas and the mucus as black airless areas (white arrows).
As in other body areas, bacterial abscesses can be found inside the nasal cavity, causing distress and respiratory disorders [20, 21, 22]. These abscesses can even lead to facial deformation and fistulization (Figure 10a).
Intranasal abscess. (a) Postmortem findings of a circular abscess in nasal septum (red arrow) with a fistula draining into the common nasal meatus (blue arrow) are shown. (b) Thermography. A warmer area (whiter crossed zone) is seen in the projection of the abscess than in the surrounding tissues.
In thermographic images high temperatures (red and white colors) can be observed on the affected area (Figure 10b). Although the thermal camera will only provide useful images if the abscess is attached to the surface or if bone rarefaction has occurred. Nevertheless, CT delivers valuable images of abscess location, size, and content; likewise, the damage to the different surrounding tissues and the invasion to the nearby areas can be observed (Figure 11).
Intranasal abscess. (a) CT sagittal 3D view of a head with an intranasal abscess located in the nasal septum. An abscess full of air in the upper area and pus in the lower area is shown (red circle). (b) CT axial view of the same abscess (white arrow). (c) CT 3D view with airways filter. This technique shows a flat-bottomed bubble generated by emptying the part of the pus from the abscess through the fistula (white arrow).
Generally, primary sinusitis is caused by an upper respiratory tract infection of the paranasal sinuses, and secondary sinusitis is caused by a tooth root infection [23]; however, frontal sinusitis can be caused by an upper respiratory tract infection or by the breaking of a horn or an inappropriate dehorning [24, 25].
There is a close relationship of the maxillary posterior teeth to the maxillary sinus, so a periapical dental infection or the breaking of a tooth can cause a secondary infection of this sinus [26]. Also, inflammation and swelling in the nasal mucosa from a viral or bacterial infection could obstruct the nasomaxillary opening, blocking sinus drainage and predisposing to a sinusitis [23].
In sheep, there are a huge range of possible etiologies that can cause sinusitis: mycosis, such as those produced by Conidiobolus sp., as it has been described in sheep in Brazil and Uruguay causing necrotic sinusitis [27]; or due to the action of Oestrus ovis larvae [15, 28]; or by a wide variety of bacterial agents [23, 29].
The thermographic camera captures the focal heat that reaches the outside (Figure 12), since the sinuses are close to the surface of the animal’s face. Using CT scan, the modification of the different structures, dental problems, or horn disorders can be studied (Figure 13).
Maxillary sinusitis. (a) Bone rarefaction without fistulization (black arrow). (b) Thermography. Warmer area (white) compared to a normal point in the center of the image (white cross).
Maxillary sinusitis. (a) CT axial view with purulent material accumulation in palatine and maxillary sinus (*) which causes ventral turbinate and face deformation. No tooth pathology was found. (b) CT 3D view. Bone rarefaction without fistulization (white arrow).
The respiratory processes of the pharynx and larynx are scarcely diagnosed in sheep. Cases of pharyngeal abscess [22] or sarcocystis infestation in the larynx, causing laryngeal hemiplegia [30], have been reported but always as individual cases of very low prevalence. Further, laryngeal chondritis has been widely described in Texel and Southdown breeds in the UK and leads to breathing problems, with swelling and discharges in the larynx [31], but it has never been diagnosed in Spanish breeds.
Caseous lymphadenitis (CLA) is a common disease in sheep affecting lymph nodes. If Corynebacterium pseudotuberculosis, the etiological agent, infects the retropharyngeal or submandibular lymph nodes, these can press the pharynx and larynx producing deformation and respiratory distress [22].
Thermographic and tomographic images will not have a fixed pattern, depending on the affected structures. CT images contribute to clarify how the abscess is and in what structure the pressure causing respiratory distress is being produced (Figure 14).
Eight centimeter diameter larynx abscess caused by Corynebacterium pseudotuberculosis. (a) Postmortem findings show a large abscess in pharyngeal area. (b) CT 3D view. Spatial location of the abscess in relation to pharynx and larynx. (c) CT axial view. Compression of larynx cartilage (red circle). (d) CT sagittal view. Pressure on the larynx and contact with the veil of the palate (red circle).
The trachea is a non-collapsible and about 25 cm long tube formed by incomplete 48–60 cartilaginous rings in the sheep and the goat (Figure 15). In sheep, the cross-sectional outline of the trachea differs from one region to another. In the larynx region, the outline is round, but with a low dorsal crest, whereas the middle-third of the trachea is U-shaped, as in the goat.
CT 3D view with airways filter. Trachea of a healthy animal with a depression caused by a tracheotomy (white arrow) performed a few hours before the CT scan and a small trace of extravasated air (yellow arrow).
The lungs are the respiratory organs responsible for performing several functions; the gas exchange is the most important. They are also accountable for the elimination of foreign bodies carried by air through the mucociliary clearance and alveolar macrophages, and finally, the lungs also perform metabolic and endocrine functions, activating the inactive prohormones or protecting the organism from potentially toxic vasoactive substances [32]. Each lung occupies a pleural cavity (pleural sacs), and between them lays the mediastinum, a complex area that divides the thorax into two symmetrical halves [33]. In sheep, respiratory diseases are the main described disorders, producing high morbidity and mortality [34].
In a healthy sheep, the lungs take the shape of a half cone, with an apex at the upper part and an oblique base applied against the diaphragm (diaphragmatic face) (Figure 16a). Their lobulation does not exactly coincide with the large appreciable fissures in the pulmonary surface and follows the division of the trachea in the lobular bronchi. Both lungs have a cranial lobe (apical) and a caudal lobe (diaphragmatic), respectively, ventilated by a cranial and caudal bronchus. In addition, the right lung has a middle lobe and an accessory lobe, ventilated each with its corresponding bronchus. The right cranial bronchus in ruminants rises directly from the trachea, and the accessory lobe is mainly attached to the middle lobe rather than to the caudal lobe as in other mammals [35]. Dorsal and ventral CT 3D images with Airways filter and dorsal and ventral view of a silicon mold of the lung are shown in Figure 16b–e.
(a) Healthy lung. (b and d) Dorsal and ventral CT 3D images with airways filter. (c and e) Dorsal and ventral view of a silicon mold of the lung.
The main lower respiratory tract disorders will be detailed here below taking into account the tomographic support in its diagnosis.
In intensive and semi-intensive production systems, tracheal crushing (Figure 17a) is a common disorder [35]. It seems clearly influenced by age, and recent surveys associate these lesions with management patterns when feeding animals. It is supposed that the type of feeders used during the periods of confinement can result in a key point to avoid this injury [35]. Some works relate this disorder to a worsening of animal welfare [36]. In addition, it has also been observed that these animals that presented tracheal crushing had a greater predisposition to suffer lower respiratory tract diseases [37].
Tracheal crushing. (a) Necropsy shows the trachea with different flattened rings. (b) CT 3D view with bones and skin 3 filter. Tracheal lumen view with obvious deformations. (c) CT sagittal view. Severe deformation of tracheal rings (yellow line area). (d) CT axial view. Crushed tracheal ring with deformation in ventral area (white arrow).
CT images allow assessing the lumen of the trachea and locating the injured tracheal rings, visualizing the internal surface of this airway (Figure 17b–d).
Verminous pneumonia is caused by the mechanical and irritant action of parasitic nematodes, belonging to the order of Strongylida. Sheep is host to several lungworm nematode species of the families Dictyocaulidae (Trichostrongyloidea) and Protostrongylidae (Metastrongyloidea) that induce verminous pneumonia, also called dictyocaulosis and protostrongylidosis. Dictyocaulus filaria, a thin white trichostrongylid-like nematode up to 10 cm long, is the largest sheep lungworm and affects caudal and diaphragmatic lung lobes. The most common protostrongylid species found in sheep are Muellerius capillaris, Protostrongylus rufescens, Protostrongylus brevispiculum, Cystocaulus ocreatus, and Neostrongylus linearis [38], which produce nodular pneumonic areas in the dorsal part of the lung.
Although, in endemic areas, lambs may show cough and unthriftiness during the first grazing season, in adults, clinical signs of pneumonia or other respiratory symptoms have rarely been observed, being pathological findings identified only at necropsy. Thus, two different types of subpleural nodules can be found: the verminous nodules containing a single worm that may be calcified and the breeding nodules, ranging from less than 1 mm to several centimeters in diameter, non-calcified, and containing mature reproducing adults and larvae. These nodules can be macroscopically observed as hard, slightly prominent, and greenish-gray due to the infiltration of eosinophils [39] (Figure 18a).
Verminous pneumonia. (a) Pathological findings of a lung affected with verminous pneumonia, especially appreciated on the right side (yellow arrows). (b) CT sagittal view of the right lung with higher density whitish nodules in the dorsal area (yellow arrows). (c) CT 3D sagittal view of the right lung. The gaps in the dorsal area correspond to the consolidated areas of the lung (yellow arrows). (d) CT 3D sagittal view with airways filter. Black areas (yellow arrows) show the location of the nodules.
In the case of dictyocaulosis, computed tomography images show an increased thickness of the caudal and diaphragmatic areas of the lung, whereas in protostrongylidosis, nodular pneumonic areas located in the dorsal part of the lung can be observed (Figure 18b–d).
The lungs are continuously exposed to air that contains dust, bacteria, fungi, viruses, and various noxious agents [40, 41], favoring the development of different diseases, including abscesses. These abscesses are often caused following previous lung damage, secondary to other lung injuries, or may follow an embolic spread from another focus of infection [42].
Abscess is a necrotizing lesion characterized by a pus-filled cavity that is encapsulated by fibrous tissue [43] that can be located anywhere in the lung, such as pleura and lung parenchyma (Figure 19a), or even in regional lymph nodes, as mediastinal lymph nodes.
Lung abscess. (a) Postmortem findings with large-size abscesses in both lungs. (b) CT axial view with whitish abscesses on both sides of the mediastinum (*). (c) CT sagittal view of the right lung with a large-size abscess in caudal lobe contacting the diaphragm (red-dashed line). (d) CT 3D image where bronchial division is shown until it disappears into the abscess.
There are a great variety of bacteria that can cause lung abscesses, such as Corynebacterium pseudotuberculosis, Trueperella pyogenes, Staphylococcus aureus, Fusobacterium necrophorum, Mycobacterium tuberculosis, Streptococcus pyogenes, Escherichia coli, etc. [40, 44, 45].
Computed tomography provides a specific image of the abscesses, their location (Figure 19b and c), and injured tissues involved in the disease (Figure 19d) as well as non-air flow pulmonary parenchyma. Frequently, an enhanced area around the abscess and mineralization within the abscess due to caseous necrosis, especially in the case of C. pseudotuberculosis infection, can be observed.
As ovine respiratory complex (ORC) in lambs, in adults, ORC is a complex disease involving a range of host-pathogen-environment interactions, where host immunological and physiological mechanisms interact with multiple etiological agents including bacteria, plus environmental factors or stressors [46]. There are three clinical presentation forms of the disease: hyperacute or peracute, characterized by sudden deaths due to septicemia; acute and subacute forms, with the classical clinical signs of a pneumonic process, whose severity will vary depending on the degree of lung consolidation; and chronic pneumonia with mild or unapparent clinical signs and fibrous tissue increasing the severity of consolidation [46].
Several infectious agents have been associated with ORC: Mannheimia haemolytica, Pasteurella multocida, Bibersteinia trehalosi, and Mycoplasma sp., which usually are found mixed in the isolates with more than one bacteria species implicated [47]. Moreover, most of these bacteria exist as commensal organisms of the nasopharynx, tonsil, and lungs of healthy sheep and under certain circumstances are able to produce disease [48].
Computed tomography images reveal a good view of the injured areas. Collapsed lung areas are more opaque and whitish, while healthy tissue remains the typical gray color of a lung full of air. It is interesting to highlight that air usually remains inside the thickest bronchia even when they are surrounded by pneumonic tissue (Figure 20a and b) and that the affected tissue usually occupies the cranioventral parts of the lung (Figure 20c and d). With the computer programme associated with the CT scanner, it is possible to measure the affected area of the lung, and based on this measurement, the progression of the disease can be followed.
Ovine respiratory complex. (a) CT axial view. Consolidation (red-dashed line) on the ventral area is appreciated, but the air remains inside the thickest bronchia (black arrow). (b) CT 3D view with airways filter. It is appreciated how the air disappears in the affected lobes, but it is kept inside the main bronchi (white arrow). (c) CT sagittal view of the right lung with iodine contrast. The peripheral area next to the heart (h) is affected and no air is found (white). (d) CT 3D image with iodine contrast and bones and skin 3 filter. It is appreciated that the air (blue) does not reach the cranioventral thoracic area (*). (h): Heart in red with its vessels.
Gangrenous pneumonia is a pulmonary infection commonly caused by inhalation of foreign materials, which produce inflammation and necrosis of the lung parenchyma. This is the reason why this pneumonia is also known as foreign body pneumonia, aspiration pneumonia, or necrotizing pneumonia [46, 49]. The aspirated material is usually inspired into the anteroventral lobes of the lung where it produces a moderate to severe, peracute or subacute, necrotizing bronchopneumonia, depending on the composition of the inhaled material, the microorganisms involved, and the host response [46].
Aspiration of foreign material into the lung can be due to a range of causes such as rumen content during choking or when the animal is under general anesthesia, the presence of a megaesophagus, after an inappropriately oral administration of treatments, or even as a result of another respiratory disorder that hinders breathing [20, 46, 49, 50, 51, 52].
Foreign bodies carry environmental bacteria that, when they reach the lungs, produce pulmonary necrosis foci with an accumulation of a foul-smelling exudate that sometimes could also be present in the main bronchus and trachea (Figure 21a), which generates a bad smell of exhaled air that is a clear clinical sign of these diseases [46].
Gangrenous pneumonia. (a) Pathological findings of a necrotizing bronchopneumonia and enlargement of the mediastinal lymph node (*). (b) CT axial view. Caverns full of air and purulent or necrotic material, more abundant on the right lung, and typical concentric layers of caseous lymphadenitis in the mediastinal lymph node (*). (c) CT sagittal view of the right lung where the big caverns are shown. (d) CT 3D view with airways filter. Air in the dorsal area and inside the multiple caverns is appreciated, with no air in the consolidated ventral area.
Computed tomography images show necrotic tissue (dark or black) with diffused edges. In the injured area, necrotic content caves are present (Figure 21b and c), which can reach a large size, disappearing the lung structure as the size of the necrotic areas progresses (Figure 21d).
Pulmonary affection is the most severe and widespread disease form caused by small ruminant lentiviruses (SRLV) in sheep. Although lentiviral infection can produce different clinical presentations in sheep and goats, in this article, only pulmonary lentivirus infection will be discussed.
This disease, formerly referred to as Maedi-Visna disease, is widespread in most of the countries in the world [53, 54] and generally affects adult animals. The respiratory form appears in an insidious and prolonged way, and animals show dyspnea, an increased respiratory rate, weakness, and loss of weight. If the case is uncomplicated, no cough, nasal discharge, or fever is observed. Pathological findings show an increased-size lung, both in volume and weight, and a general grayish discoloration with a myriad of gray dots in the pleural surface (Figure 22a). Mediastinal lymph nodes are increased in size, surpassing the limit of the diaphragmatic lobes [55].
Pulmonary lentivirus infection. (a) Increased-size lung with a general grayish discoloration and a myriad of gray dots in pleural surface. (b) CT axial view. Homogeneous light gray pulmonary parenchyma. (c) CT sagittal view of the right lung with the same homogeneous light gray parenchyma. (d) CT 3D view with airways filter. Less air is seen throughout the lung, except in the cranial and caudal area.
The widespread interstitial pneumonia caused by Maedi-Visna virus (VMV) creates enormous in vivo diagnostic difficulties due to the absence of clear clinical signs and the only presence of diffuse dyspnea that can be very confusing. For this reason, imaging techniques will be very useful tools for diagnosing this disease.
Computed tomography scanner provides a detailed image of the lesion, highlighting the increased opacity in all the parenchyma associated with the interstitial pneumonia caused by VMV (Figure 22b and c). The Airways filter allows us to see a lung with little amount of air in a generalized way (Figure 22d).
Pulmonary lentivirus infection is the disease generally associated with chronic, progressive, and diffuse interstitial pneumonia, as it is confirmed by most of the cases found in our daily clinical work; however, there are other interstitial pneumonias affecting adult sheep, such as those caused by Mycoplasma sp. Although sometimes it is not possible to distinguish these two types of interstitial pneumonia macroscopically, the CT scan let us detect some cases that were not of a diffuse type but had a zonal pattern.
The clinical case presented in this section is of a zonal pattern, and, once the histopathology and microbiology was carried out, it was associated with the presence of Mycoplasma ovipneumoniae. Externally, the lung presented an interstitial pneumonia with a bicolor pattern, with some areas more reddened than others (Figure 23a).
Interstitial pneumonia associated with Mycoplasma sp. (a) Increased-size bicolor nonhomogeneous lung. (b) CT axial view. Homogeneous light gray pulmonary parenchyma in the ventral area and darker in the dorsal area are observed. (c) CT sagittal view with a similar pattern to that shown in (b). (d) CT 3D view with airways filter. The completely lack of air in the dorsal area is shown.
CT scan showed lighter areas in its axial and sagittal section, located mainly in the ventral zone, and darker areas in the dorsal zone, with an intermediate area of combination of both (Figure 23b and c). CT 3D view with Airways filter showed an almost total lack of air in the dorsal area of the lung (Figure 23d).
Ovine pulmonary adenocarcinoma (OPA) is a contagious lung neoplasm of sheep caused by Jaagsiekte sheep retrovirus (JRSV). This disease has been reported in many of the sheep-rearing countries worldwide, being an important economic problem in the affected regions [56, 57, 58].
JSRV induces neoplastic transformation of alveolar and bronchiolar secretory epithelial cells of the distal respiratory tract, developing a tumor that can grow to occupy a significant portion of the lung [58, 59, 60].
OPA is considered as an “iceberg disease” because in OPA endemic-affected herds, the majority of animals of the flock are infected (up to 80%), but only a minority develops tumors during its productive life [58, 61, 62]. There are two pathologic forms of OPA currently recognized: classical and atypical [59].
The affected animals initially show less activity and delay in walking of the flock, followed by progressive respiratory distress, with an evidence of dyspnea and moist respiratory sounds, such as crackles and snoring, caused by the accumulation of fluid in the respiratory airways, which worsen with the increasing size of the lesions. In the final stages of the disease, variable amounts of frothy seromucous fluid are discharged from the nostrils when the sheep head is lowered [58, 59, 63]. At necropsy, neoplastic lesions are diffuse or nodular and gray or purple in color and have an increased consistency [58] (Figure 24a).
Ovine pulmonary adenocarcinoma. (a) Grayish cranioventral areas and satellite nodules of the tumor. (b) CT axial view. Grayish pulmonary parenchyma with white spots (metastasis) in the dorsal area and homogeneous clear white in the ventral area (main tumor) are shown. (c) CT sagittal view of the same lung with the same pattern as (b). (d) CT 3D view with airways filter. Air is appreciated in the back-caudal area, decreasing towards cranial and disappearing into the cranioventral area where main tumor mass is located. Multiple air rings can be seen surrounding the foci of metastasis.
Computed tomography scan delivers a clear image of the primary tumor and of the satellite nodules that are generated in the metastasis phase (Figure 24b and c). Serial scanners over time allow obtaining information on the evolution of the tumor or the possible regression after its experimental treatment.
The 3D view with Airways filter shows a total absence of air in the tumor mass and, dorsally, foci of different sizes (metastasis) also without air. These lesions are usually seen surrounded by a halo with more air than normal (Figure 24d).
Lung atelectasis can occur due to compression of lung tissue, absorption of alveolar air, or impaired pulmonary surfactant production or function [64]. Atelectasis by compression is what interests us from the point of view of imaging diagnosis, because with this technology, we can diagnose the cause of compression and the place where the pressures occur.
Compression atelectasis is secondary to increased pressure exerted on the lung causing the alveoli to collapse [64], and some disorders that can cause this compression atelectasis are tumors, such as mediastinal lymphosarcomas as described in horses [65] or mediastinal thymoma as described in goats [66]. The case here presented in Figure 25 is a large thymoma diagnosed in an adult ewe (Figure 25a). CT views show how the heart was displaced by the tumor to the back right side and atelectatic areas with less air near the dorsal costal wall (Figure 25b–d).
Compression atelectasis. (a) Large-size thymoma (*) causing lung atelectasis, especially in the right side (white arrow). (b) CT axial view. The heart has been displaced by the tumor to the back right side (h). Near the costal wall, atelectatic areas with less air can be seen (white arrows). (c) CT 3D sagittal view, right side. Thymoma (t and yellow line) and heart (h and red line) are shown. (d) CT 3D view with bones and skin 2 filter. Air is appreciated in the back-caudal area, behind the heart (yellow triangle).
Likewise, abscesses or pyogranulomas located in mediastinal lymph nodes or thoracic cavity, such as those of caseous lymphadenitis (CLA) caused by Corynebacterium pseudotuberculosis, can produce severe compression atelectasis (Figure 26a and b). The visceral form of CLA commonly causes lesions in the mediastinal lymph nodes and lung parenchyma, producing severe respiratory clinical signs [67]. In a study carried out in our service on 123 culled sheep, 32% of the animals had CLA lesions, of which 70% had the visceral form of the disease, with 80.9% having lesions in the thoracic cavity [46]. In Figure 26c and d, CT 3D views show the location and size of the affected lymph nodes and a small area of atelectasis without air. Lastly, compression atelectasis can be also caused by pleural abscesses, diaphragmatic hernias, megaesophagus, or even prolonged decubitus [51, 68].
Compression atelectasis. (a) Caseous lymphadenitis affecting mediastinal lymph node causing lung atelectasis in mediastinal and costal side (yellow arrows). (b) Lung atelectasis (a) in contact area with affected lymph nodes. (c) CT 3D view where the location and size of the affected lymph nodes can be seen (red circle). (d) CT coronal view, where it highlighted (white arrow) a small area of atelectasis without air.
CT scan is a very suitable tool to find the cause, the situation, and the size of compression; however, it is difficult to visualize the thin layer of atelectatic tissue that can be produced next to the pressing mass or in the projection on the rib area.
The health of a flock is based on a proper diagnosis of the main disorders that affect the farm. Imaging tools have improved the diagnostic process and are essential today.
Thermography has become a useful and inexpensive tool for approaching the diagnosis of upper respiratory tract diseases. However, the use of computed tomography is more expensive and specific, reserving for the detection of important herd problems that justify its expense. It is also necessary in the investigation and monitoring of processes or treatments that have not been proven. This tool helps in an interesting way to understand the pathogenesis and lesional location since we can study the different structures and the interrelation between them in the original position.
The diagnosis of respiratory disorders in ruminants has evolved significantly thanks to the application of different imaging diagnostic techniques, detecting some diseases that until recently were little known.
We would like to thank the collaboration of veterinarians and farmers who send their interesting clinical cases to the Ruminant Clinical Service of the Veterinary Hospital (SCRUM). In addition, we would like to acknowledge the use of Servicio General de Apoyo a la Investigación-SAI, Universidad de Zaragoza.
This study was supported by the Aragón Government and the European Social Fund (Construyendo Aragón 2016–2020).
The authors have nothing to disclose.
As a company committed to the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).
',metaTitle:"OAI-PMH",metaDescription:"As a firm believer in the wider dissemination of knowledge, IntechOpen supports the OAI Metadata Harvesting Protocol (OAI-PMH Version 2.0).",metaKeywords:null,canonicalURL:"/page/oai-pmh",contentRaw:'[{"type":"htmlEditorComponent","content":"The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\\n\\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\\n\\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\\n\\nREQUESTS
\\n\\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\\n\\nDATABASES
\\n\\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\\n\\nBASE - Bielefeld Academic Search Engine
\\n\\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\\n\\n\\n\\nA search engine for online catalogues of publications from all over the world.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting) is used to govern the collection of metadata descriptions and enables other archives to access our database. The Protocol has been developed by the Open Archives Initiative, based on ensuring interoperability standards in order to ease and promote broader and more efficient dissemination of information within the scientific community.
\n\nWe have adopted the Protocol to increase the number of readers of our publications. All our Works are more widely accessible, with resulting benefits for scholars, researchers, students, libraries, universities and other academic institutions. Through this method of exposing metadata, IntechOpen enables citation indexes, scientific search engines, scholarly databases, and scientific literature collections to gather metadata from our repository and make our publications available to a broader academic audience.
\n\nAs a Data Provider, metadata for published Chapters and Journal Articles are available via our interface at the base URL:http://www.intechopen.com/oai/?.
\n\nREQUESTS
\n\nYou can find out more about the Protocol by visiting the Open Archives website. For additional questions please contact us at info@intechopen.com.
\n\nDATABASES
\n\nDatabases, repositories and search engines that provide services based on metadata harvested using the OAI metadata harvesting protocol include:
\n\nBASE - Bielefeld Academic Search Engine
\n\nOne of the world's most powerful search engines, used primarily for academic Open Access web resources.
\n\n\n\nA search engine for online catalogues of publications from all over the world.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5699},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15652}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"6'[0]"},books:[{type:"book",id:"7901",title:"Advances in Germ Cell Biology – New Technologies, Applications and Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"4adab31469b82dd5a99eec04dbbe09f2",slug:null,bookSignature:"Ph.D. Sonia Oliveira and Prof. Maria De Lourdes Pereira",coverURL:"https://cdn.intechopen.com/books/images_new/7901.jpg",editedByType:null,editors:[{id:"323848",title:"Ph.D.",name:"Sonia",surname:"Oliveira",slug:"sonia-oliveira",fullName:"Sonia Oliveira"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7921",title:"Optogenetics",subtitle:null,isOpenForSubmission:!0,hash:"3ae7e24d8f03ff3932bceee4b8d3e727",slug:null,bookSignature:"Dr. Thomas Heinbockel",coverURL:"https://cdn.intechopen.com/books/images_new/7921.jpg",editedByType:null,editors:[{id:"70569",title:"Dr.",name:"Thomas",surname:"Heinbockel",slug:"thomas-heinbockel",fullName:"Thomas Heinbockel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8575",title:"Animal Regeneration",subtitle:null,isOpenForSubmission:!0,hash:"689b9f46c48cd54a2874b8da7386549d",slug:null,bookSignature:"Dr. Hussein Abdelhay Essayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/8575.jpg",editedByType:null,editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9008",title:"Vitamin K - Recent Advances, New Perspectives and Applications for Human Health",subtitle:null,isOpenForSubmission:!0,hash:"8b43add5389ba85743e0a9491e4b9943",slug:null,bookSignature:"Prof. Hiroyuki Kagechika and Dr. Hitoshi Shirakawa",coverURL:"https://cdn.intechopen.com/books/images_new/9008.jpg",editedByType:null,editors:[{id:"180528",title:"Prof.",name:"Hiroyuki",surname:"Kagechika",slug:"hiroyuki-kagechika",fullName:"Hiroyuki Kagechika"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9655",title:"Bioluminescence",subtitle:null,isOpenForSubmission:!0,hash:"26b9e7dade717a5ffdc2dbcfaa1ea43d",slug:null,bookSignature:"Dr. Hirobumi Suzuki and Dr. Katsunori Ogoh",coverURL:"https://cdn.intechopen.com/books/images_new/9655.jpg",editedByType:null,editors:[{id:"185746",title:"Dr.",name:"Hirobumi",surname:"Suzuki",slug:"hirobumi-suzuki",fullName:"Hirobumi Suzuki"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9659",title:"Fibroblasts - Advances in Cancer, Autoimmunity and Inflammation",subtitle:null,isOpenForSubmission:!0,hash:"926fa6446f6befbd363fc74971a56de2",slug:null,bookSignature:"Ph.D. Mojca Frank Bertoncelj and Ms. Katja Lakota",coverURL:"https://cdn.intechopen.com/books/images_new/9659.jpg",editedByType:null,editors:[{id:"328755",title:"Ph.D.",name:"Mojca",surname:"Frank Bertoncelj",slug:"mojca-frank-bertoncelj",fullName:"Mojca Frank Bertoncelj"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9836",title:"KRAS Gene",subtitle:null,isOpenForSubmission:!0,hash:"4fc73beb0e4416a20cc70c8163fe436f",slug:null,bookSignature:"Dr. Pinar Erkekoglu",coverURL:"https://cdn.intechopen.com/books/images_new/9836.jpg",editedByType:null,editors:[{id:"109978",title:"Prof.",name:"Pinar",surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pinar Erkekoglu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10213",title:"Secretomics",subtitle:null,isOpenForSubmission:!0,hash:"8f787d92ba862a2c43867b2e62d15c31",slug:null,bookSignature:"Dr. Luiza Rusu",coverURL:"https://cdn.intechopen.com/books/images_new/10213.jpg",editedByType:null,editors:[{id:"210679",title:"Dr.",name:"Luiza",surname:"Rusu",slug:"luiza-rusu",fullName:"Luiza Rusu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10219",title:"Fundamentals of Glycosylation",subtitle:null,isOpenForSubmission:!0,hash:"f1f82214d3d5460d3b52c4d8e87e3858",slug:null,bookSignature:"Dr. Alok Raghav and Dr. Jamal Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10219.jpg",editedByType:null,editors:[{id:"334465",title:"Dr.",name:"Alok",surname:"Raghav",slug:"alok-raghav",fullName:"Alok Raghav"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10235",title:"Tyrosine",subtitle:null,isOpenForSubmission:!0,hash:"4c53ce7a1ad1e17c15b608ca3f9ee911",slug:null,bookSignature:"Dr. Ken-Ichi Sato",coverURL:"https://cdn.intechopen.com/books/images_new/10235.jpg",editedByType:null,editors:[{id:"104122",title:"Dr.",name:"Ken-Ichi",surname:"Sato",slug:"ken-ichi-sato",fullName:"Ken-Ichi Sato"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10242",title:"Endotoxin Analysis",subtitle:null,isOpenForSubmission:!0,hash:"eb9043444d4ac2204178668cf3246342",slug:null,bookSignature:"Dr. Yanhuai (Richard) Ding",coverURL:"https://cdn.intechopen.com/books/images_new/10242.jpg",editedByType:null,editors:[{id:"340171",title:"Dr.",name:"Yanhuai (Richard)",surname:"Ding",slug:"yanhuai-(richard)-ding",fullName:"Yanhuai (Richard) Ding"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:15},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:6},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:4},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:57},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:5},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:24},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5145},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"307",title:"Agroecology",slug:"agroecology",parent:{title:"Agronomy",slug:"agronomy"},numberOfBooks:7,numberOfAuthorsAndEditors:180,numberOfWosCitations:16,numberOfCrossrefCitations:44,numberOfDimensionsCitations:93,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"agroecology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"10134",title:"Organic Agriculture",subtitle:null,isOpenForSubmission:!1,hash:"a9866f9df52191cc505b27fb2abdc687",slug:"organic-agriculture",bookSignature:"Shaon Kumar Das",coverURL:"https://cdn.intechopen.com/books/images_new/10134.jpg",editedByType:"Edited by",editors:[{id:"182210",title:"Dr.",name:"Shaon Kumar",middleName:null,surname:"Das",slug:"shaon-kumar-das",fullName:"Shaon Kumar Das"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9345",title:"Sustainable Crop Production",subtitle:null,isOpenForSubmission:!1,hash:"5135c48a58f18229b288f2c690257bcb",slug:"sustainable-crop-production",bookSignature:"Mirza Hasanuzzaman, Marcelo Carvalho Minhoto Teixeira Filho, Masayuki Fujita and Thiago Assis Rodrigues Nogueira",coverURL:"https://cdn.intechopen.com/books/images_new/9345.jpg",editedByType:"Edited by",editors:[{id:"76477",title:"Dr.",name:"Mirza",middleName:null,surname:"Hasanuzzaman",slug:"mirza-hasanuzzaman",fullName:"Mirza Hasanuzzaman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6952",title:"Irrigation in Agroecosystems",subtitle:null,isOpenForSubmission:!1,hash:"1afe3f365612ea9b4f35942c69792f63",slug:"irrigation-in-agroecosystems",bookSignature:"Gabrijel Ondrašek",coverURL:"https://cdn.intechopen.com/books/images_new/6952.jpg",editedByType:"Edited by",editors:[{id:"46939",title:"Prof.",name:"Gabrijel",middleName:null,surname:"Ondrasek",slug:"gabrijel-ondrasek",fullName:"Gabrijel Ondrasek"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6560",title:"Plant Competition in Cropping Systems",subtitle:null,isOpenForSubmission:!1,hash:"664e0a97f4494932f6c0461f9a6e7bd6",slug:"plant-competition-in-cropping-systems",bookSignature:"Daniel Dunea",coverURL:"https://cdn.intechopen.com/books/images_new/6560.jpg",editedByType:"Edited by",editors:[{id:"180202",title:"Associate Prof.",name:"Daniel",middleName:null,surname:"Dunea",slug:"daniel-dunea",fullName:"Daniel Dunea"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6485",title:"Sustainability of Agroecosystems",subtitle:null,isOpenForSubmission:!1,hash:"4ed7b8c6bce44bfaddb83c0365793742",slug:"sustainability-of-agroecosystems",bookSignature:"Alexandre Bosco de Oliveira",coverURL:"https://cdn.intechopen.com/books/images_new/6485.jpg",editedByType:"Edited by",editors:[{id:"77880",title:"Dr.",name:"Alexandre",middleName:"Bosco",surname:"De Oliveira",slug:"alexandre-de-oliveira",fullName:"Alexandre De Oliveira"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6301",title:"Vegetation",subtitle:null,isOpenForSubmission:!1,hash:"5c1b7f22f2f926f8d59ea56f2fe84c6f",slug:"vegetation",bookSignature:"Allan Sebata",coverURL:"https://cdn.intechopen.com/books/images_new/6301.jpg",editedByType:"Edited by",editors:[{id:"143409",title:"Dr.",name:"Allan",middleName:null,surname:"Sebata",slug:"allan-sebata",fullName:"Allan Sebata"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4566",title:"Agroecology",subtitle:null,isOpenForSubmission:!1,hash:"9e35a4ff7bee4ab82eab2c6b3f441789",slug:"agroecology",bookSignature:"Vytautas Pilipavičius",coverURL:"https://cdn.intechopen.com/books/images_new/4566.jpg",editedByType:"Edited by",editors:[{id:"169359",title:"Dr.",name:"Vytautas",middleName:null,surname:"Pilipavicius",slug:"vytautas-pilipavicius",fullName:"Vytautas Pilipavicius"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:7,mostCitedChapters:[{id:"67546",doi:"10.5772/intechopen.86339",title:"Application Potentials of Plant Growth Promoting Rhizobacteria and Fungi as an Alternative to Conventional Weed Control Methods",slug:"application-potentials-of-plant-growth-promoting-rhizobacteria-and-fungi-as-an-alternative-to-conven",totalDownloads:482,totalCrossrefCites:3,totalDimensionsCites:13,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Adnan Mustafa, Muhammad Naveed, Qudsia Saeed, Muhammad Nadeem Ashraf, Azhar Hussain, Tanveer Abbas, Muhammad Kamran, Nan-Sun and Xu Minggang",authors:[{id:"276041",title:"Dr.",name:"Azhar",middleName:null,surname:"Hussain",slug:"azhar-hussain",fullName:"Azhar Hussain"},{id:"299110",title:"Ph.D.",name:"Adnan",middleName:null,surname:"Mustafa",slug:"adnan-mustafa",fullName:"Adnan Mustafa"},{id:"300582",title:"Dr.",name:"Muhammad",middleName:null,surname:"Naveed",slug:"muhammad-naveed",fullName:"Muhammad Naveed"},{id:"300583",title:"Ms.",name:"Qudsia",middleName:null,surname:"Saeed",slug:"qudsia-saeed",fullName:"Qudsia Saeed"},{id:"300584",title:"Dr.",name:"Tanveer",middleName:null,surname:"Abbas",slug:"tanveer-abbas",fullName:"Tanveer Abbas"},{id:"300585",title:"Mr.",name:"Muhammad",middleName:null,surname:"Nadeem Ashraf",slug:"muhammad-nadeem-ashraf",fullName:"Muhammad Nadeem Ashraf"},{id:"300586",title:"Prof.",name:"Xu",middleName:null,surname:"Minggang",slug:"xu-minggang",fullName:"Xu Minggang"},{id:"301223",title:"Mr.",name:"Muhammad",middleName:null,surname:"Kamran",slug:"muhammad-kamran",fullName:"Muhammad Kamran"}]},{id:"48142",doi:"10.5772/59933",title:"Wastes in Building Materials Industry",slug:"wastes-in-building-materials-industry",totalDownloads:2937,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"agroecology",title:"Agroecology",fullTitle:"Agroecology"},signatures:"Marinela Barbuta, Roxana Dana Bucur, Sorin Mihai Cimpeanu, Gigel Paraschiv and Daniel Bucur",authors:[{id:"50794",title:"Prof.",name:"Daniel",middleName:"G",surname:"Bucur",slug:"daniel-bucur",fullName:"Daniel Bucur"}]},{id:"48116",doi:"10.5772/59984",title:"Seeds of Change — Plant Genetic Resources and People’s Livelihoods",slug:"seeds-of-change-plant-genetic-resources-and-people-s-livelihoods",totalDownloads:1565,totalCrossrefCites:2,totalDimensionsCites:7,book:{slug:"agroecology",title:"Agroecology",fullTitle:"Agroecology"},signatures:"Thomas Hilger, Iris Lewandowski, Bastian Winkler, Barbara\nRamsperger, Paulo Kageyama and Carlos Colombo",authors:[{id:"172552",title:"Dr.",name:"Thomas",middleName:null,surname:"Hilger",slug:"thomas-hilger",fullName:"Thomas Hilger"}]}],mostDownloadedChaptersLast30Days:[{id:"68927",title:"Nano-Fertilizers for Sustainable Crop Production under Changing Climate: A Global Perspective",slug:"nano-fertilizers-for-sustainable-crop-production-under-changing-climate-a-global-perspective",totalDownloads:866,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Muhammad Aamir Iqbal",authors:[{id:"249866",title:"Dr.",name:"Muhammad Aamir",middleName:null,surname:"Iqbal",slug:"muhammad-aamir-iqbal",fullName:"Muhammad Aamir Iqbal"}]},{id:"72075",title:"Application and Mechanisms of Plant Growth Promoting Fungi (PGPF) for Phytostimulation",slug:"application-and-mechanisms-of-plant-growth-promoting-fungi-pgpf-for-phytostimulation",totalDownloads:284,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"organic-agriculture",title:"Organic Agriculture",fullTitle:"Organic Agriculture"},signatures:"Md. Motaher Hossain and Farjana Sultana",authors:[{id:"318381",title:"Dr.",name:"Md. Motaher",middleName:null,surname:"Hossain",slug:"md.-motaher-hossain",fullName:"Md. Motaher Hossain"},{id:"318383",title:"Dr.",name:"Farjana",middleName:null,surname:"Sultana",slug:"farjana-sultana",fullName:"Farjana Sultana"}]},{id:"64340",title:"Deficit Irrigation in Mediterranean Fruit Trees and Grapevines: Water Stress Indicators and Crop Responses",slug:"deficit-irrigation-in-mediterranean-fruit-trees-and-grapevines-water-stress-indicators-and-crop-resp",totalDownloads:778,totalCrossrefCites:4,totalDimensionsCites:5,book:{slug:"irrigation-in-agroecosystems",title:"Irrigation in Agroecosystems",fullTitle:"Irrigation in Agroecosystems"},signatures:"Anabela Fernandes-Silva, Manuel Oliveira, Teresa A. Paço and Isabel\nFerreira",authors:[{id:"81075",title:"Prof.",name:"Anabela",middleName:"Afonso",surname:"Fernandes-Silva",slug:"anabela-fernandes-silva",fullName:"Anabela Fernandes-Silva"},{id:"181227",title:"Dr.",name:"Manuel",middleName:"T.",surname:"Oliveira",slug:"manuel-oliveira",fullName:"Manuel Oliveira"},{id:"245447",title:"Prof.",name:"Teresa",middleName:null,surname:"Paço",slug:"teresa-paco",fullName:"Teresa Paço"},{id:"245449",title:"Prof.",name:"Isabel",middleName:null,surname:"Ferreira",slug:"isabel-ferreira",fullName:"Isabel Ferreira"}]},{id:"71592",title:"Vermicomposting: An Effective Option for Recycling Organic Wastes",slug:"vermicomposting-an-effective-option-for-recycling-organic-wastes",totalDownloads:433,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"organic-agriculture",title:"Organic Agriculture",fullTitle:"Organic Agriculture"},signatures:"Tamanreet Kaur",authors:[{id:"317164",title:"Dr.",name:"Tamanreet",middleName:null,surname:"Kaur",slug:"tamanreet-kaur",fullName:"Tamanreet Kaur"}]},{id:"61957",title:"Competitive Ability of Rice Cultivars in the Era of Weed Resistance",slug:"competitive-ability-of-rice-cultivars-in-the-era-of-weed-resistance",totalDownloads:623,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"plant-competition-in-cropping-systems",title:"Plant Competition in Cropping Systems",fullTitle:"Plant Competition in Cropping Systems"},signatures:"Fábio Schreiber, Ananda Scherner, André Andres, Germani\nConcenço and Francisco Goulart",authors:[{id:"160203",title:"Dr.",name:"André",middleName:null,surname:"Andres",slug:"andre-andres",fullName:"André Andres"},{id:"191276",title:"Dr.",name:"Germani",middleName:null,surname:"Concenço",slug:"germani-concenco",fullName:"Germani Concenço"},{id:"200031",title:"Dr.",name:"Fábio",middleName:null,surname:"Schreiber",slug:"fabio-schreiber",fullName:"Fábio Schreiber"},{id:"214193",title:"Dr.",name:"Ananda",middleName:null,surname:"Scherner",slug:"ananda-scherner",fullName:"Ananda Scherner"},{id:"247906",title:"Mr.",name:"Francisco",middleName:null,surname:"Goulart",slug:"francisco-goulart",fullName:"Francisco Goulart"}]},{id:"63235",title:"Enhancing Productivity in Rice-Based Cropping Systems",slug:"enhancing-productivity-in-rice-based-cropping-systems",totalDownloads:787,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"plant-competition-in-cropping-systems",title:"Plant Competition in Cropping Systems",fullTitle:"Plant Competition in Cropping Systems"},signatures:"Uppu Sai Sravan and Koti Venkata Ramana Murthy",authors:[{id:"238178",title:"Ph.D. Student",name:"Sai",middleName:null,surname:"Sravan",slug:"sai-sravan",fullName:"Sai Sravan"}]},{id:"68945",title:"Effect of Abiotic Stress on Crops",slug:"effect-of-abiotic-stress-on-crops",totalDownloads:384,totalCrossrefCites:2,totalDimensionsCites:3,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Summy Yadav, Payal Modi, Akanksha Dave, Akdasbanu Vijapura, Disha Patel and Mohini Patel",authors:[{id:"186963",title:"Dr.",name:"Summy",middleName:null,surname:"Yadav",slug:"summy-yadav",fullName:"Summy Yadav"},{id:"308004",title:"Ms.",name:"Payal",middleName:null,surname:"Modi",slug:"payal-modi",fullName:"Payal Modi"},{id:"308005",title:"Ms.",name:"Akanksha",middleName:null,surname:"Dave",slug:"akanksha-dave",fullName:"Akanksha Dave"},{id:"308006",title:"Ms.",name:"Akdasbanu",middleName:null,surname:"Vijapara",slug:"akdasbanu-vijapara",fullName:"Akdasbanu Vijapara"},{id:"308007",title:"Ms.",name:"Disha",middleName:null,surname:"Patel",slug:"disha-patel",fullName:"Disha Patel"},{id:"308008",title:"Ms.",name:"Mohini",middleName:null,surname:"Patel",slug:"mohini-patel",fullName:"Mohini Patel"}]},{id:"48142",title:"Wastes in Building Materials Industry",slug:"wastes-in-building-materials-industry",totalDownloads:2937,totalCrossrefCites:8,totalDimensionsCites:11,book:{slug:"agroecology",title:"Agroecology",fullTitle:"Agroecology"},signatures:"Marinela Barbuta, Roxana Dana Bucur, Sorin Mihai Cimpeanu, Gigel Paraschiv and Daniel Bucur",authors:[{id:"50794",title:"Prof.",name:"Daniel",middleName:"G",surname:"Bucur",slug:"daniel-bucur",fullName:"Daniel Bucur"}]},{id:"68683",title:"Soil Management in Sustainable Agriculture",slug:"soil-management-in-sustainable-agriculture",totalDownloads:626,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Koç Mehmet Tuğrul",authors:[{id:"295458",title:"Dr.",name:"K. Mehmet",middleName:null,surname:"Tuğrul",slug:"k.-mehmet-tugrul",fullName:"K. Mehmet Tuğrul"}]},{id:"70575",title:"Review on the Role of Salicylic Acid in Plants",slug:"review-on-the-role-of-salicylic-acid-in-plants",totalDownloads:353,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"sustainable-crop-production",title:"Sustainable Crop Production",fullTitle:"Sustainable Crop Production"},signatures:"Ali S. Hassoon and Inas Abdulsattar Abduljabbar",authors:[{id:"306567",title:"M.Sc.",name:"Ali",middleName:"Saleh",surname:"Hassoon",slug:"ali-hassoon",fullName:"Ali Hassoon"},{id:"322296",title:"Dr.",name:"Inas Abdulsattar",middleName:null,surname:"Abduljabbar",slug:"inas-abdulsattar-abduljabbar",fullName:"Inas Abdulsattar Abduljabbar"}]}],onlineFirstChaptersFilter:{topicSlug:"agroecology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/cobalt-compounds-and-applications/cobalt-phosphates-and-applications",hash:"",query:{},params:{book:"cobalt-compounds-and-applications",chapter:"cobalt-phosphates-and-applications"},fullPath:"/books/cobalt-compounds-and-applications/cobalt-phosphates-and-applications",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()