Open access peer-reviewed chapter

Post-Incipience Cavitation Evolution of an Eccentric Journal Bearing

By Coda H.T. Pan and Daejong Kim

Submitted: March 7th 2018Reviewed: August 10th 2018Published: November 5th 2018

DOI: 10.5772/intechopen.80842

Downloaded: 457


Hypothesis of Gümbel is a statement of the initial state of an incompressible fluid film as governed by the hyperbolic differential equation. Olsson’s interphase condition, upon providing cross-boundary interface continuity, targets the Swift-Stieber state at the rupture boundary with a nonvanishing speed that is a function of the postulated cavitation morphology model; experimental photographic records suggest the rolling stream concept which combines an adhered film immediately downstream of the boundary and striated streams farther on. To study cavitation without end-leakage effects, the pre-incipience contiguous fluid film solution is given by the Sommerfeld solution with the ambient state and is reduced to the π-film, and the issue of post-incipience evolution is reduced to an appropriate interpretation of a suitably defined evolution time. To treat cavitation with allowance for end-leakage effects, computation of the pre-incipience contiguous film requires a two-dimensional adaptation of the Sommerfeld solution with a consistent spline interpolation scheme, and treatment of Olsson’s interphase condition is quite elaborate.


  • journal bearing
  • cavitation
  • hyperbolic differential equations
  • morphology

1. Introduction

1.1. JFO dissertation reports

Popularly recognized acronym JFOis used to represent three important dissertation reports published by Chalmers University of Technology that summarize the monumental effort of Prof. Bengt Jakobsson:

  • Floberg [1] examined the Sommerfeld-Gümbel issue, noting symmetry properties that can be associated with the film thickness function and the possibility of suppressing cavitation via an elevated bias pressure in the absence of end leakage.

  • Jakobsson and Floberg [2] resorted to adoption of a relaxation procedure of the 5-point type, using midpoint Poiseuille flux in the circumferential direction and claimed to be more accurate than the Christopherson algorithm [3] to deal with side leakage for bearings of finite length; occurrence of cavitation was modeled as the suppression of the Poiseuille flux component. Various ways of fluid supply were considered.

  • Olsson [4] turned attention to dynamically loaded bearings; allowing for time-dependence, the void boundary was required to move to maintain fluid continuity. The concept of “fractional width of oil strip” was introduced to characterize the cavitated fluid. Olsson mentioned the possibility of an adhered moving film but tacitly chose not to treat it. The condition of Swift [5] and Stieber [6] is regarded to be prerequisite.

1.2. Morphology of cavitated fluid

Photographs of striated cavitated pattern are commonly cited as validation of the morphology model of narrow oil strips shown in Figure 1(a); Pan et al. [9] suggested an alternative interpretation as depicted in Figure 1(b), and the two-component rupture front describes shear sheets interspersed by wet voids that emerge in the form of a moving adhered film. The oil strip morphology model presents an awkward prerequisite of the Swift-Stieber condition that is not achievable.

Figure 1.

Alternative interpretations of striated void patterns. (a) Narrow oil strip model of Jakobsson and Floberg [2] as sketched in Braun and Hannon [7]. (b) Photographs after Dowson and Taylor [8] depicted as the model of two-component rupture front.

1.3. Olsson’s interphase condition

Olsson derived an interphase condition (OIC) across a void boundary that requires the void boundary to move to maintain fluid-gas continuity. The symbol Θ was introduced to represent fractional content of fluid in the film space in the cavitated region. He noted that the motion of either boundary can be treated by the method of characteristics for hyperbolic differential equations.

The one-dimensional form of OICis


Regardless of the morphology model, an exact analytical integral of the above equation is contradictory to the Swift-Stieber condition!

OICwas used indiscriminately to model dynamic performance of heavily loaded reciprocating engine bearings. Realization of the past wasted effort is ample motivating impetus for the present work.

1.4. Rolling stream cavitation morphology

Primarily concerned with the 1-D Swift-Stieber evolution process, Pan et al. [9] advocated the rolling stream cavitation morphology that makes use of a two-component rupture front description of the cavitated fluid film; 1.0 > ΘΣ > 0.0 is the width fraction of the wet shear sheet illustrated in Figure 1(b). The latter value requires a satisfactory resolution of the problem posed by Savage [10].

1.5. Cross-boundary interface condition

Pan et al. [9] reasoned that the flow crossing the moving rupture boundary is same as that of the cavitated fluid that enters the ruptured region; therefore, in place of Eq. (1), cross-boundary interface condition (CBIC) is proposed:


CBICtargets the Swift-Stieber condition at the rupture boundary.


2. Post-incipience cavitation evolution

The classical Sommerfeld solution [11] was cited by Gümbel [12], noting that sub-ambient film pressure had not been observed in experiments. The path of an evolution process is due to the celebrated Swift-Stieber condition [5, 6]. Gümbel’s hypothesis to ignore sub-ambient part of the 1D Sommerfeld solution can be generalized to apply to a properly computed contiguous journal bearing film. Equation (2) is the characteristic formula of the post-incipience evolution. Following Gümbel’s hypothesis with a complete initial value specification deals with the hyperbolic differential equation noted by Olsson.

2.1. Rolling stream cavitation morphology (initial ΘΣ CBIC)

The rolling stream cavitation morphology uses a two-component rupture front description of the cavitated fluid film; 1.0 > ΘΣ > 0.0 would be used to illustrate the influence of the unknown parameter.

While CBICgoverns the rupture boundary, the formation boundary motion derived in OICremains valid:


For the 1D problem, pursuant to Gümbel’s hypothesis, τstepping both boundaries in synchronism from τ=0.0with an assigned δτ:


Θ¯Σ,Θ¯formationand 12κ=01H2P/θκδτare algebraic mean approximations; Swift-Stieber condition targets the Sommerfeld invariant Φθ;rupture=Hrupture=1ε2/1+ε2with accuracy no better than the floating-point word processor precision, typically o1014. The evolution trajectory is dependent on the initial ΘΣ.

If the initial ΘΣ <1.0Swift-Stieber condition is satisfied at nil τ, trajectory time scale is expanded by a factor of 1Θrupture CBIC, and the formation boundary is regarded to be immobile in the expanded time scale. For all other initials 1.0 > ΘΣ > 0.0, the same Sommerfeld invariant is targeted, the formation boundary would move into the divergent semicircle, and the evolution trajectory is regarded to have reached the asymptotic Swift-Stieber condition when the most recent τstep yielded less than o1014formation boundary shift.

2.2. Computation of the contiguous film (LGCMIED)

The presence of end-leakage flow calls for ζ̇rupture CBICand ζ̇formation, respectively, by CBICand OIC. A new computation algorithm was introduced [13] to execute Eqs. (2) and (3). LGCMIED, used as acronym for Liquid-film Grid-Centered Mesh Integral Emulation of flux Divergence, divergence emulation can be constructed around the dash-line peripheries of the central cell illustrated in from mid-mesh fluxes Φθ;i0.5,jandΦζ;i,j0.5. Extending to 2D problems, side-leakage fluxes would be computed according to the illustration of Figure 2(b).

Figure 2.

LGCMIEDscheme: (a) internal grid and (b) boundary grid.

2.3. Lubricant circulation

In Figure 2(b), as illustrated, Φζ;i,Nis directed into the fluid film representing a feeding function; if a reverse direction is indicated, then the cross-end-boundary process represents a draining function. Two combinations are possible, either feed-feed or feed-drain.

The feed-feed arrangement with both ends maintained at atmospheric ambient is the π-film. Perfect ζsymmetry is seen in all flux profiles; slight 2D attribute is seen in slight convexity in Φθ;ruptureand concavity in Φθ;formation(see Figure 3).

Figure 3.

Void boundaries and peripheral fluxes of π-film.

Figure 4.

Void boundaries and peripheral fluxes with Pfeed = 10−6.

2.4. Feed pressurization

In the feed-drain arrangement, feed lubricant pressurization is a design feature of considerable importance. Increased through-flow by pressurization is potentially a way to meet a heavy duty application. For a very small Pfeed, e.g., 106, void boundaries and peripheral fluxes are graphically not distinguishable from those of the π-film.

For a moderately larger Pfeed, e.g., 103, void boundaries and peripheral fluxes, as shown in Figure 5, are quite different.

Figure 5.

Void boundaries and peripheral fluxes with Pfeed = 10−3.

Void feeding flow is computed by adapting the short-bearing approximation of Michell [14].

Bearing in mind that Ppeakof the Sommerfeld solution is 2.160137, feed pressure effects for Pfeed=103are remarkably prominent. Etsion and Ludwig [15] reported on measurement of fluid film inertia effects in the submerged operation of a cavitated journal bearing in a self-induced oscillating mode. The pronounced feed pressurization features shown in Figure 5 may prevent establishment of the asymptotic Swift-Stieber condition but develop a self-induced limit cycle oscillation; CBICalways targets the Swift-Stieber condition, but the asymptotic state is not guaranteed.

Figures 3, 4, 5, 6 are computed immediately upon accepting Gümbel’s hypothesis to initiate post-incipience cavitation evolution. Treatment of the 2-D aspect of Eq. (2) regarding ζ̇ΣCBIC, a high order τstepping iterative procedure is required [16].

Figure 6.

Michell function (void feeding).

2.5. Spline-smoothed LGCMIED

Consolidating divergence emulation at both central and boundary grids, contiguously blended Φζ;i,j, can be compiled as shown in Figure 7. Each “curve” is nearly a straight line. A third-order polynomial curve fit connects upper and lower parts of the bearing. Line plotting is used to bring out “kinks” in first-order spline blending in connecting mid-mesh and grid point values. To carry out smooth Swift-Stieber targeting with ΘΣ < 1.0, second-order spline blending is necessary [17].

Figure 7.

Axial-blended Φζ;i,j.

Spline interpolation of Φθis performed at ζCBIC interpolated.

3. Summary

  1. CBICis used to target the Swift-Stieber condition at the rupture boundary.

  2. Gümbel’s hypothesis is extended to allow 2D treatment in conjunction with computation of contiguous films with LGCMIED algorithm.

  3. The two-component rupture front description of the cavitated fluid film; 1.0 > ΘΣ > 0.0 is an unknown parameter. ΘΣ < → 1.0 would yield the asymptotic Swift-Stieber state.

  4. In 1D problems, a universal post-incipience cavitation evolution is τstepped according to an assumed ΘΣ.

  5. In 2D problems, it is necessary to specify lubricant circulation roles of the two bearing ends:

    • Feed-feed

    • Feed-drain

  6. Feed pressurization is represented by an elevated Pfeed.

  7. Sample contiguous film calculation immediately following Gümbel’s hypothesis represents the beginning of post-incipience cavitation evolution.


Roman lettersC

radial bearing clearance, m


journal eccentricity, m


nondimensional film thickness, = 1 + εcosθ

i, j,k

Cartesian unit base vectors


number of circumferential mesh spacings in a semicircular span


number of axial mesh spacings across one-half length of the bearing


nondimensional film pressure, =6μωR/C2p


film pressure above ambient, pascal


time, s

x, y, z

Cartesian coordinates, m

Greek lettersε

bearing eccentricity ratio, = e/C


nondimensional flux vector, =iΦθ+kΦζ


nondimensional cross-void circumferential flux


fluid fraction of cavitated film at void boundary


circumferential coordinate, radian


circumferential location of void boundary, radian


non dimensional circumferential speed of void boundary


circumferential mesh spacing


nondimensional time, =12ωt


journal rotational rate, rad/s


nondimensional axial coordinate


axial location of void boundary


nondimensional axial speed of void boundary


axial mesh spacing


cross-boundary interface continuity


computational fluid mechanics


Elrod’s cavitation algorithm




liquid grid centered mesh integral emulation of divergence


Olsson’s interphase condition

© 2018 The Author(s). Licensee IntechOpen. This chapter is distributed under the terms of the Creative Commons Attribution 3.0 License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to cite and reference

Link to this chapter Copy to clipboard

Cite this chapter Copy to clipboard

Coda H.T. Pan and Daejong Kim (November 5th 2018). Post-Incipience Cavitation Evolution of an Eccentric Journal Bearing, Cavitation - Selected Issues, Wojciech Borek, Tomasz Tański and Mariusz Król, IntechOpen, DOI: 10.5772/intechopen.80842. Available from:

chapter statistics

457total chapter downloads

More statistics for editors and authors

Login to your personal dashboard for more detailed statistics on your publications.

Access personal reporting

Related Content

This Book

Next chapter

Introductory Chapter: Cavitation - An Overview of New Research Results

By Wojciech Borek, Tomasz Tański and Mariusz Król

Related Book

First chapter

Introductory Chapter: Why Austenitic Stainless Steels are Continuously Interesting for Science?

By Zbigniew Brytan, Wojciech Borek and Tomasz Tański

We are IntechOpen, the world's leading publisher of Open Access books. Built by scientists, for scientists. Our readership spans scientists, professors, researchers, librarians, and students, as well as business professionals. We share our knowledge and peer-reveiwed research papers with libraries, scientific and engineering societies, and also work with corporate R&D departments and government entities.

More About Us