Autophageal processes susceptible to therapeutic modulation.
\r\n\tBesides the development of cryptographic tools (hardware and software), we are also interested in the applications of cryptography in current and future scenarios like blockchain, internet of things, industry 4.0, privacy enforcement, cybersecurity and special algorithms such as zero-knowledge proofs and identity-based cryptography.
\r\n\r\n\t
\r\n\tFinally, cryptography does not live in a vacuum, but it is intertwined with our society, sometimes rising questions that are beyond the purely technical realm. For example: Is the weakening introduced by key escrow mechanisms worth the gain? How does cryptography interact with privacy rights? What is the economic impact of cryptography? We welcome contribution to those less technical questions as well.
Ovarian cancer (OC) is the leading cause of death from gynecologic malignancies in the United States [1]. It is estimated that 22,240 women will be diagnosed with OC, and 14,080 women will die of the disease in 2017 [1]. Ovarian malignancies can be primary (arising from normal structures within the ovary) or secondary (arising from non-ovarian tissue). Approximately 90% of all primary OC are epithelial carcinomas [2]. Epithelial ovarian cancer (EOC) is sensitive to many chemotherapeutic agents, and the current standard treatment consists of cytoreductive surgery followed by chemotherapy with platinum compounds such as cisplatin or carboplatin and a taxane agent such as paclitaxel [3]. A high percentage of patients with advanced EOC however, eventually develop recurrent disease within 3 years and only 10–30% of patients presenting with stage III or IV disease survive 5 years following initial diagnosis [3, 4]. This poor survival rate is mainly due to the development of chemotherapy resistance following several rounds of treatment. In many cases, initial recurrences are platinum-sensitive but the disease eventually becomes platinum-resistant; which is defined as disease progressing within 6 months of platinum-based therapy [4, 5]. Platinum-resistant patients are subsequently limited to non-platinum and non-taxane chemotherapy treatment options such as topotecan, gemcitabine, and pegylated liposomal doxorubicin which have shown moderate therapeutic success [6]. Alternative treatment options for platinum-resistant disease are, therefore, constantly being explored and immunotherapy and targeted agents are increasingly undergoing clinical trials which are showing positive results.
\nThe serendipitous discovery that platinum coordination complexes blocked bacterial replication led to the hypothesis that these complexes could be of great clinical value as anti-tumor agents [7]. Cis-diamminedichloroplatinum II (cisplatin) was the first drug in its class successfully marketed followed by carboplatin and oxaliplatin. All three drugs have similar mechanisms of action. Cisplatin and carboplatin are approved for the treatment of OC; while tumor cell resistance mechanisms to both drugs are similar they differ in their pharmacokinetic and toxicity profiles [8]. Oxaliplatin is highly effective in colorectal cancers because it’s mechanism of action (MOA) is not limited to that of the other platinum compounds [8].
\nCisplatin, the prototype platinum compound, is taken up into cells by passive diffusion or via the active copper transporter 1 (CTR1) [9]. The subsequent activation of cisplatin is mediated by the displacement of chloride atoms by water to form a highly reactive electrophile that targets nucleophilic sites on DNA and DNA-associated proteins. The N-7 guanine base is most susceptible, although the O-6 guanine, N1, N3 adenine, and N3 cytosine are also targeted. Cisplatin DNA interactions result in the formation of both mono- and bifunctional adducts with the latter forming cis-Pt (NH3)2-d(GpG) at twice the rate of cis-Pt (NH3)2-d(ApG). Interstrand crosslinks are not as common. The bulky adducts between DNA and cisplatin can bend the helix and unwind DNA. The critical importance is the recognition of DNA-cisplatin adducts by proteins that either initiate DNA repair by nucleotide excision repair (NER) or inhibit repair through high mobility group (HMG) proteins. Platinum compounds are cell cycle non-specific (CCNS) causing arrest in S/G2 [9].
\nMultiple mechanisms are thought to play a role in tumor cell resistance to cisplatin due to the heterogeneity of the disease. Resistance to cisplatin typically confers resistance to carboplatin, but not to oxaliplatin. Some common mechanisms of tumor cell resistance to cisplatin in OC includes increased repair to damaged DNA [10], drug efflux by copper efflux transporters ATP7A [11] and ATP7B [12], reduced uptake by CTR1 [13], and increased expression of glutathione and GSH-S-transferase, which are electron donors forming conjugates with cisplatin and rendering it inactive [10]. Both increased efflux and reduced uptake result in reduced drug accumulation. Overexpression of epidermal growth factor (EGF) and its receptor (EGFR) in cancer cells are critical for growth and survival and EGFR overactivity using autocrine and/or paracrine signals is associated with platinum resistance [14]. The overexpression of the tyrosine kinase; focal adhesion kinase, has also been linked to platinum resistance in OC through several mechanisms including increased expression of the transcription factor OCT4 and the cell surface protein N-cadherin, as well as increased aldehyde dehydrogenase (ALDH) activity [15, 16].
\nAlthough there are many chemotherapeutic agents available, the level of response of platinum-resistant ovarian cancer (OC-Pt) to these drugs is increasingly diminished as the disease progresses [17]. In the past decade, this has fueled a consistent increase in the development of targeted therapies aimed at either supplementing chemotherapeutic regimens or providing novel monotherapy in OC-Pt [17]. Categories of targeted drugs that are undergoing clinical trials or have received FDA approval for OC-Pt include focal adhesion kinase (FAK) inhibitors, poly(adenosine diphosphate [ADP] ribose) polymerase (PARP) inhibitors, anti-angiogenic agents, epidermal growth factor receptor targeting agents, folate receptor antagonists, and insulin growth factor receptor inhibitors.
\nPARP inhibitors are a group of targeted drugs that have been at the forefront of emerging OC-Pt therapeutics over the past decade [18, 19]. Human PARPs comprise a total of 17 enzymes [20]. The PARP-1 isoform was the first member of the family to be described and it is the major active PARP enzyme in human cells with the remainder of activity mainly attributed to the PARP-2 isoform [21]. Both PARP-1 and PARP-2 are DNA damage repair enzymes [21]. Human PARP-1 (113 kDa) is a nuclear protein/enzyme which binds with DNA and promotes DNA repair by releasing PARP-1 from DNA and allows recruitment of proteins involved in both base excisional repair (BER) and homologous recombination [22]. Human PARP-2 (62 kDa) is a nuclear protein that binds less efficiently to DNA single-strand breaks but instead recognizes gaps and flap structures [23]. These DNA repair properties of PARPs have made them important anticancer targets in a variety of cancers including OC.
\nThe inhibition of PARP enzymes, especially PARP-1, results in an excess of single-strand breaks, which subsequently causes double-strand breaks to occur as DNA replicates [24]. Under normal circumstances, defects such as double-strand breaks are usually repaired by the homologous recombination process that involves breast cancer type susceptibility (BRCA) proteins. Tumors with defective homologous recombination, including BRCA1/2-mutated OCs, are therefore very sensitive to PARP inhibition [25].
\nPARP inhibitor drugs are able to cause cancer cell death by inhibiting repair of single-strand breaks and subsequently trapping PARP on DNA, forming cytotoxic PARP-DNA complexes [25]. Several small molecular PARP inhibitor drugs are now undergoing clinical trials and two of them (olaparib and rucaparib) have already been approved by the FDA for use in OC-Pt.
\nOlaparib (Lynparza), a product of AstraZeneca, received approval from the U.S. Food and Drug Administration (FDA) in December 2014. Olaparib is an inhibitor of several PARP enzymes, including PARP1, PARP2, and PARP3 [26]. The orally administered drug is used for monotherapy in patients with germline BRCA-mutated advanced recurrent OC-Pt [26]. Phase II clinical trials have shown that olaparib significantly improves progression-free survival (PFS) in OC-Pt with similar rates of response reported in patients with BRCA1- and BRCA2-mutated disease [26]. The most common side effects observed with olaparib were mild gastrointestinal irritation, anemia, and severe fatigue.
\nRucaparib (Rubraca), a product of Clovis Oncology, was granted accelerated approval from the FDA on December 19, 2016 for the treatment of patients with deleterious BRCA mutation (germline and/or somatic) associated with advanced OC, which had been treated with two or more chemotherapies that included those with OC-Pt. Rucaparib is also a non-specific inhibitor of several PARP enzymes, including PARP1, PARP2, and PARP3 [27]. The ARIEL2 and Study 10 clinical trials produced critical integrated efficacy and safety data in OC-Pt patients which showed that the average response rate was approximately 25% with minimal differences between patients who harbored a BRCA1 mutation, and those who harbored a BRCA2 mutation [27]. Adverse reactions to the drug included fatigue, anemia, dysgeusia, and decreased appetite [27].
\nA third PARP inhibitor niraparib (Zejula), a product of Tesaro, was approved on March 27, 2017 to maintain treatment of adult patients with recurrent epithelial ovarian and fallopian tube cancer that is completely or partially responsive to platinum-based chemotherapy. Niraparib inhibits both PARP1 and PARP2 and currently has no specific indications in OC-Pt [28].
\nIt is generally accepted that the major categories of cancers that are sensitive to PARP inhibitors are BRCA-mutated cancers. Interestingly, drug resistance to PARP inhibitors have been linked to the development of secondary mutations in the BRCA gene themselves [29]. These secondary mutations can restore functional BRCA1 or BRCA2 genes leading to deleterious consequences in patients with cancer [29]. Other mechanisms of resistance to PARP inhibitors include increased multi drug resistance protein-1 (MDR-1) activity, which leads to increased drug efflux from cancer cells as well as reduced expression of tumor suppressor p53-binding protein 1 (TP53BP1), which is required for non-homologous end-joining DNA repair [30]. Many of these resistance mechanisms are active in OC-Pt [10, 11, 12, 13, 14, 15, 16] and therefore can potentially circumvent the therapeutic effects of PARP inhibitors. Nonetheless, PARP inhibitors show much promise in OC-Pt therapeutics.
\nSolid tumors rely on neovascularization for growth and survival in hypoxic environments. The process of angiogenesis is critical for normal ovarian function and for growth, development, and metastasis of OC cells [31]. The hypoxic environment drives angiogenesis in solid tumors which requires continual and persistent growth of new blood vessels [32]. Data strongly suggest a close correlation between increased levels of hypoxia-inducible factor 1-α (HIF 1-α); a transcription factor stabilized during hypoxia and vascular endothelial growth factor (VEGF) in EOC [33]. VEGF is a potent pro-angiogenic growth factor that is upregulated during hypoxia and is elevated in epithelial ovarian neoplasms [33]. VEGF-A is a major pro-angiogenic growth factor that binds to VEGF receptor-1 (VEGFR-1) and VEGF receptor-2 (VEGFR-2), although VEGFR2 is considered the major target. The VEGF-A/VEGFR-2 interaction activates the RAF/MAPK and PI3K/AKT signaling pathways favoring both proliferation and survival of endothelial cells. Intratumoral protein levels of VEGFR-2 were found to be significantly higher in platinum-resistant OC compared to platinum-sensitive OC patient tumors [34]. Many agents targeting angiogenesis have been developed and several have shown some degree of clinical efficacy in OC-Pt. The anti-angiogenic group of drugs include bevacizumab, aflibercept, nintedanib, trebananib, pazopanib, sunitinib, sorafenib, and cediranib.
\nBevacizumab (Avastin), a monoclonal antibody that binds to the vascular endothelial growth factor (VEGF)-receptor ligand VEGF-A, is the most extensively investigated anti-angiogenic agent in clinical OC research. Currently, it is the only anti-angiogenic drug that is FDA approved for the treatment of OC as monotherapy or in combination regimens with paclitaxel, topotecan, doxorubicin (pegylated), carboplatin, or gemcitabine for recurrent OC-Pt [35]. Bevacizumab potentiates the cytotoxic effect of chemotherapeutic agents by reducing interstitial fluid pressure and vascular permeability to increase delivery of cytotoxic drugs to cancer cells [35].
\nA phase II trial of bevacizumab as a single agent in OC-Pt reported that 40.3% of these patients survived progression free for at least 6 months while median PFS and overall survival were 4.7 and 17 months, respectively [36]. Common adverse effects related to bevacizumab were hematologic and gastrointestinal [36].
\nSubsequent randomized phase III clinical trials focused on the use of bevacizumab with standard chemotherapeutic regimens as first-line treatment in both platinum-sensitive and platinum-resistant OC. AURELIA was the first randomized phase III trial (Study ID#: NCT00976911) to evaluate combined bevacizumab with chemotherapy in OC-Pt [37]. All patients received standard chemotherapy with either paclitaxel or topotecan or liposomal doxorubicin. Patients randomized to arm 2 of the study received bevacizumab (10 mg/kgIV every 2 weeks or 15 mg/kg IV every 3 weeks) concomitantly. The study showed improved PFS and overall response rate with no new safety concerns. The percentage of adverse events associated with chemotherapy + bevacizumab was 57.0% versus 40.3% (chemotherapy alone). Proteinuria and hypertension had the highest incidence rate, whereas gastrointestinal perforations were comparable 2% (bevacizumab) versus 0% (bevacizumab + chemotherapy). Treatment arms that consisted of a higher exposure to chemotherapy in the bevacizumab + chemotherapy combined study group, had a higher incidence rate of hand-foot syndrome and peripheral sensory neuropathy.
\nThe topoisomerase I inhibitor Irinotecan (Camptosar), in combination with bevacizumab was evaluated in recurrent OC in an open-label randomized phase III trial (Study ID#: NCT01091259) [38]. This cohort included 19 patients with OC-Pt. The objective response rate for all patients entered was 27.6% and the clinical benefit rate was 72.4%. Adverse events with the addition of bevacizumab relative to GI toxicity was limited to <3% and considered acceptable [38]. These studies show that it is clinically proven that bevacizumab + chemotherapy demonstrate efficacy in OC-Pt and that safety can be achieved with the right dose and combination of drugs.
\nPazopanib (Votrient) is an oral anti-angiogenic multi-targeted tyrosine kinase inhibitor with activity against VEGFR-1, 2, and 3. Pazopanib is currently FDA approved for advanced renal cell carcinoma and soft tissue carcinoma. The PACOVAR study (Study ID#: NCT01238770) evaluated pazopanib in combination with metronomic cyclophosphamide in 16 patients with platinum-resistant EOC [39]. Metronomic chemotherapy is the close, regular administration of chemotherapy drugs at low, minimally toxic doses, with no prolonged break periods. In the PACOVAR study, median PFS and overall survival were 8.35 and 24.95 months, respectively. The most common adverse events were elevation of liver enzymes, leukopenia, diarrhea, and fatigue. Altogether, five serious adverse events developed in four patients. The study concluded that pazopanib + metronomic cyclophosphamide was a feasible regimen for patients with recurrent OC-Pt.
\nPazopanib has also shown promising results in mice injected with a highly aggressive cisplatin-resistant SKOV-3 clone of OC cells in combination with metronomic oral topotecan (toperisomerase I inhibitor) [40].
\nAflibercept (Ziv-aflibercept/VEGF-trap) mimics the VEGF receptor and has similar ligand binding components to VEGFR-1 and VEGFR-2 [41]. Aflibercept binds to circulating VEGFs and acts like a “VEGF trap” [42]. This primarily results in suppression of VEGF-A and VEGF-B activity and subsequently inhibits the growth of new blood vessels in tumors [42]. Aflibercept was administered at two doses in a randomized, double-blind, phase II trial that assessed response evaluation criteria in solid tumor response rates, as a single agent treatment in recurrent OC-Pt (Study ID#: NCT00327171). The study concluded that the treatment was well tolerated by the patients but the required objective response rate endpoint was not achieved [43]. The participants in this study had received 3–4 prior chemotherapy lines and were resistant to liposomal doxorubicin or topotecan. Hypertension was the most common toxicity observed.
\nFocal adhesion kinase (FAK) is a non-receptor cytoplasmic tyrosine kinase that is encoded by the protein tyrosine kinase 2 (PTK2) gene, and is found in most tissues in the human body [44]. PTK2 gene amplification with subsequent increased activation through phosphorylation occurs in many OCs, where it is involved in promoting cancer cell migration, invasion, adhesion, proliferation, and survival [45, 46, 47]. High FAK activity is generally associated with worse overall cancer patient survival [48, 49]. Several studies have shown that FAK expression is significantly increased in OC-Pt, and that this platinum resistance is associated with increased tumor-associated aldehyde dehydrogenase (ALDH) activity, as well as overexpression of X-linked inhibitor of apoptosis (XIAP) [16, 50]. We have also demonstrated in our studies that platinum-resistant OC cells are resensitized to cisplatin when co-treated with a FAK inhibitor [15].
\nSeveral FAK inhibitors have been developed to prevent FAK activation by blocking its phosphorylation sites; which halts its downstream signaling pathways with subsequent reduction in ovarian tumorigenesis and cancer progression. A few of these drugs are now in clinical trials. The FAK inhibitor defactinib from Verastem was evaluated in a phase I study (Study ID#: NCT00787033) which found that OC-Pt patients achieved a prolonged PFS [51]. Defactinib produced grade 1–2 adverse events that were easily managed and reversible, even with continued dosing [51]. A phase I/Ib, open-label (Study ID#: NCT01778803) multi-center, dose-escalation trial of paclitaxel in combination with defactinib was subsequently initiated in OC-Pt patients with advanced cancers [52]. The combination was found to be efficacious with no apparent increase in the severity and incidence of paclitaxel-related toxicities.
\nA phase I/Ib, open-label, multi-center, dose-escalation, and dose expansion trial (Study ID#: NCT02943317) to evaluate the safety, efficacy, pharmacokinetics, and pharmacodynamics of defactinib in combination with the human monoclonal PD-L1 antibody avelumab in recurrent or refractory stage III–IV OC is currently ongoing, and is expected to enroll approximately 100 patients at up to 15 sites across the United States. The FAK inhibitor GSK2256098 was also evaluated in a phase I clinical trial (Study ID#: NCT01138033) in patients with advanced solid tumors including OC-Pt [53]. GSK2256098 significantly reduced FAK activity in tumors of patients that received the drug at a dose of 750 mg twice daily.
\nFAK inhibition is still an emerging area in OC-Pt therapeutics and many clinical trials are underway that will provide more insight into their efficacy in different histological types of OC.
\nFolate receptors (FRs) are proteins that bind folate with high affinity. The FR-α and FR-β isoforms are well characterized as membrane-bound receptors that facilitate the binding and subsequent internalization of folate compounds and their chemical derivatives [54]. The FR-α receptor is significantly overexpressed in EOC where it promotes tumor growth by either an aberrant folate uptake mechanism or dysregulated signaling pathways [55]. The FR-α receptor can also induce platinum resistance by regulating the expression of apoptosis-related molecules; Bcl-2 and Bax and a higher expression of FR-α level has been linked to poor prognosis in OC patients [56]. These properties of the FR-α receptor makes it a prime therapeutic target for OC. In recent years, two drugs (vintafolide and farletuzumab) have gained relevance as FR-α receptor antagonist applicable in OC-Pt. Farletuzumab (MORAb-003), a monoclonal antibody to FR-α was evaluated in a phase III trial (Study ID#: NCT00738699) in combination with paclitaxel for advanced OC-Pt patients [57]. The drug was developed by Morphotek and the study was unfortunately discontinued because of minimal changes in PFS and the occurrence of serious adverse events including neutropenia and atrial fibrillation [57].
\nVintafolide (originally known as EC145), is a water-soluble derivative of folic acid that is conjugated to the vinca alkaloid ‘desacetylvinblastine hydrazide’ [58]. The combination of vintafolide with pegylated liposomal doxorubicin (PLD) produced a statistically significant increase in PFS for OC-Pt patients [59]. This result was the outcome of the PRECEDENT trial; a randomized phase II study, that compared the combination of vintafolide + PLD with PLD alone [59]. Patients with FR positive cancer showed improved PFS compared to no PFS benefits in FR negative patients. After this successful phase II trial, a phase III trial called the PROCEED study was initiated (Study ID#: NCT01170650) to further evaluate the efficacy and safety of the vintafolide + PLD (Doxil) combination in OC-Pt patients. The main goal of the study is to determine PFS using version 1.1 of the response evaluation criteria in solid tumor (RECIST), and etarfolatide imaging to determine patients FR status [55]. Etarfolatide is a non-invasive, folate receptor-targeting companion imaging agent, which consists of a small molecule targeting the folate receptor and an imaging agent, which is based on technetium-99 m [55].
\nThe targeting of the FR receptor appears to be promising strategy for OC-Pt cancer subsets that significantly overexpress these receptors. New folate conjugates are in development and this area of therapeutics is expected to consistently improve.
\nThe insulin-like growth factor (IGF) system consists of IGF-I, IGF-II, their target receptors (IGF-IR, IGF-IIR, insulin receptor (IR), and the insulin-related receptor (IRR)) as well as a family of six different IGF-binding proteins (IGFBPs) [60]. Upon binding of IGFs to IGF-1R and IR (but not IRR and IGF-2R), many signaling pathways can be activated. These downstream signaling mechanisms include the Ras-Raf-MAPK and PI3K-Akt transduction pathways. These transduction mechanisms result in stimulation of cell proliferation, motility, and inhibition of apoptosis [60]. All IGF-signaling system components are expressed in OC and likewise stimulate cell proliferation, invasive, and angiogenic activity of OC cells [61]. More importantly, IGF-1R/IR inhibition in platinum-resistant ovarian cancer cells resensitizes them to the cytotoxic effects of cisplatin; indicating a role of the IGF system in OC-Pt [62]. This highlights a therapeutic opportunity for insulin and insulin-like growth factor receptor inhibition.
\nIn the past few years, a number of inhibitors targeting the IGFR/IR have been developed, including antibodies against the receptors and small molecule receptor kinase inhibitors [63]. A trial (Study ID#: NCT01708161) with ganitumab (developed by Amgen), a human monoclonal antibody against IGF-IR, has been completed in patients with solid tumors including OC-Pts. This was a multi-center, open-label, phase Ib/II study. The aim of the phase Ib arm, was to estimate the median toxic doses and/or identify the recommended phase II dose(s) for the combination of BYL719 (a PI3K inhibitor) and ganitumab [64]. The phase II arm assessed the clinical efficacy and safety of the combination in OC patient populations including PIK3CA-mutated or -amplified OCs [64]. Data from this study are yet to be released, but will provide insight on the effect of ganitumab in OC-Pt.
\nA phase I/II trial (Study ID#: NCT00889382) with the small molecule, dual IGF-1R/IR tyrosine kinase inhibitor linsitinib (OSI-906) has also been completed [65]. The study evaluated intermittent and continuous linsitinib dosing and weekly paclitaxel in patients with recurrent EOCs including OC-Pts as well as other solid cancer types (endometrial and primary peritoneal) [65]. Of the 58 patients treated in the study, 3 OC patients showed a partial response, and stable disease was achieved in 10 OC patients. Pharmacokinetic studies showed no significant interactions when linsitinib was administered 2 h prior to paclitaxel. The most common drug-related toxicities were fatigue, nausea, hyperglycemia and drug eruption. Other details of the study outcomes related to PFS have not yet been published.
\nMany compounds are constantly being screened for IGF-IR inhibitory activity, but the similarity between the IGF-IR and the IR receptor presents a challenge for developing selective inhibitors for the IGF-IR. The main concern with this lack of selectivity is that dual inhibitors of IR and IGF-IR, has resulted in hyperglycemia in many clinical trials. This is a major hurdle to overcome in this area of OC therapeutics.
\nThe epidermal growth factor receptor (EGFR) is a member of the tyrosine kinase family of growth factor receptors. These receptors play a direct role in regulating cell proliferation, apoptosis, survival, cell differentiation, and migration [14]. The ERbB family of receptor tyrosine kinases includes EGFR (also known as HER1/ErbB1), EGFR2 (HER2/neu/ERbB2), HER3/ErbB3, and HER4/ErbB4 [66]. Dysregulation of the EGFR function has been linked to the pathology of OC [14] but evidence is conflicting; as other studies have not found strong evidence of a direct link between EGFR expression and function and OC progression. Many factors have been suggested for the mixed results; these include variability in experimental methods, detection procedures, and scoring metrics. Despite the variable study outcomes in OC, evidence supports dysregulated EGFR ligand and receptor expression, heterologous regulation by GPCR ligands, and other non-ligand stimuli initiating chronic activation of EGFRs [14]. This chronic stimulation favors tumor development and progression [14].
\nThe current therapeutic strategy is to inhibit EGFR activity using small molecule tyrosine kinase inhibitors or monoclonal antibodies [67]. Clinical trials have been conducted using the following agents alone and in combination: cetuximab, gefitinib, erlotinib, trastuzumab, and pertuzumab. These treatment regimens were evaluated in patients with recurrent or progressive disease, platinum-sensitive disease, and platinum-resistant/refractory disease among others [67].
\nOf note, the PENELOPE phase III trial investigated the efficacy of pertuzumab in combination with chemotherapy (single-agent topotecan, weekly paclitaxel, or gemcitabine) for treatment of platinum-resistant patients with downregulated human epidermal growth factor 3 (HER3) mRNA expression [68]. The results showed no significant improvement in PFS for the primary analysis (stratified hazard ratio, 0.74; 95% CI, 0.50–1.11; P = 0.14; median PFS, 4.3 months for pertuzumab plus chemotherapy versus 2.6 months for placebo plus chemotherapy). The study concluded that pertuzumab has the potential to be investigated further despite the lack of significance. To date, clinical trials evaluating anti-EGFR and HER therapies have shown minimal improvement in OC-Pt treatment outcome. Further studies evaluating inhibitors of downstream signaling and simultaneous antagonism of the EGFR and HER have been recommended [66].
\nCurrent chemotherapeutic regimens for OC-Pt patients whether monotherapy or combinatorial are inadequate. Immunotherapeutic approaches are now being increasingly explored for these patients where a therapeutic ceiling has been reached with standard chemotherapy. Immunotherapy in OC-Pt patients is just emerging and is currently restricted to clinical trials that have shown promising results. The American Cancer Society defines cancer immunotherapy as ‘treatment that uses your body\'s own immune system to help fight cancer’. Within the tumor microenvironment, the pathological interactions between cancer cells and immune cells is complex and most events spiral into an immunosuppression that causes tumor cells to proliferate and evade immune system attack [69]. There are several categories of immunotherapeutic agents that either stimulate the body’s immune system’s ability to eradicate cancer cells (e.g. cancer vaccines and adoptive T cell transfer), target proteins on the surface of T cells that prevent them from attacking cancer cells (e.g. immune checkpoint inhibitors), or identify specific abnormalities on the surface of cancer cells that render them susceptible to targeted agents (e.g. monoclonal antibodies) [69]. Many of these drugs are being evaluated in OC-Pt patients and are discussed below.
\nCheckpoint proteins are molecules found on the surface of T cells that prevent them from attacking cancer cells [70]. Two such proteins are cytotoxic T lymphocyte antigen-4 (CTLA-4) and programmed death-1 (PD-1) [71]. PD-1 is expressed on the surface of activated T cells and its ligands, PD-L1 and PD-L2 are found on the surface of dendritic cells or macrophages [70]. Interaction of PD-1 with either PD-L1 or PD-L2 results in inhibition of T cell signaling, reduction in T cell numbers, and increased susceptibility of T cells to apoptosis [71]. CTLA-4 regulates T cell priming and activation in the initiation phase of the immune response [71]. The high expression of PD-L1 and PD-L2 on OC cells is associated with shorter PFS [72]. Similarly, evidence suggests that OC patients with low CTLA-4-mediated signals have a better prognosis than patients with high CTLA-4 activity [73].
\nSeveral antibodies directed against PD-1 (pembrolizumab, nivolumab, and avelumab), PD-L1 (atezolizumab and durvalumab), and CTLA-4 (ipilimumab) have been evaluated in OC. Nivolumab (Opdivo) is a fully humanized IgG4 antibody that blocks the engagement of PD-1-by-PD-1 ligands [74]. Nivolumab was administered every 2 weeks to patients with advanced or relapsed OC-Pt and response rate was assessed by RECIST [74]. The study included 15 OC-Pt patients and the drug showed encouraging clinical efficacy. Some adverse drug reactions including fever, disorientation, and gait disturbance were observed. A dose escalation study (Study ID#: UMIN000005714) is now under way as a second arm of this trial.
\nAvelumab (Bavencio) is a fully human monoclonal antibody of isotype IgG1 that targets PD-L1. It was evaluated in a phase Ib (Study ID#: NCT01772004) expansion study in 75 patients with recurrent/refractory OC which included OC-Pt [75]. Of this cohort, 8 patients showed a partial response and 33 patients displayed stable disease, which was reported as a disease control rate of 54.7%.
\nOne other phase Ib study (KEYNOTE-028/Study ID#: NCT02054806) evaluated the anti-tumor activity and safety of pembrolizumab (Keytruda) in patients with PD-L1 positive advanced OC which included patients refractory to platinum therapy [76]. Pembrolizumab is a humanized antibody that binds to and blocks PD-1. PD-1 blockade with pembrolizumab was well tolerated and displayed anti-tumor activity. Of the 26 patients enrolled in the study, 1 achieved complete response, 2 partial response, and 6 had stable disease. The most common adverse events were fatigue (42.3%), anemia (30.8%), and decreased appetite (30.8%).
\nThe role of the PD-1/PD-L1 axis is continuously been studied and characterized in OC and with new information on OC-Pt immunogenicity emerging consistently, this disease is expected to remain a focused target of PD-1/PD-L1 based therapeutics.
\nInhibition of CTLA-4 during the T cell priming/activation step leads to dysregulated expansion of auto-reactive T cells, including tumor-specific T cells [73]. The anti-CTLA 4 monoclonal antibody ipilimumab (Yervoy) has shown anti-tumor effect in stage IV OC. Ipilimumab is a recombinant human monoclonal antibody (IgG1 kappa immunoglobin) that antagonizes the CTLA-4 immune checkpoint. The administration of ipilimumab to 11 stage IV OC patients previously vaccinated with granulocyte-macrophage colony-stimulating factor (GM-CSF)-modified irradiated autologous tumor cells showed promising results [77]. Ipilimumab caused a reduction or stabilization of CA-125 levels in these patients and no serious toxicities directly attributable to the antibody were observed.
\nTremelimumab is a fully human IgG2 monoclonal antibody to CTLA-4. The combination of tremelimumab with the immunotherapeutic agent durvalumab is currently undergoing a phase I trial (Study ID#: NCT01975831) which includes OC-Pt patients [78]. The primary endpoints of this study are to evaluate safety and identify the maximum tolerated dose of the combination. The secondary objectives are to determine effects on tumor response and PFS. Preliminary data show that the combination has a manageable safety profile, with evidence of clinical activity. Trials with anti-CTLA-4 inhibitors in other cancer types have been associated with significant immune-related toxicities [79], and this might be the major limitation in terms of advancing their application in OC-Pt. More clinical trials are needed in this area of OC-Pt therapeutics.
\nThe aim of vaccinations in cancer patients is to sensitize the immune system to recognize, target, and eradicate tumor cells in an approach that employs both adaptive and innate immunity [80]. Vaccines aim to provoke a tumor-specific immune response by increasing tumor-associated antigen (TAA) presentation by antigen-presenting cells (APCs) which subsequently generates tumor-antigen specific cytotoxic T lymphocytes [80].
\nDendritic cell, peptide, and recombinant viral vaccines are the main types currently undergoing clinical trials for OC. One promising TAA for dendritic cell vaccines is mucin 1 (MUC-1). MUC-1 is a heavily glycosylated, type 1 transmembrane protein that is overexpressed in a large number of cancers including OCs [81]. While multiple MUC-1 vaccines are now in development, CVac (developed by Prima BioMed) is the leading candidate for OC. In the CAN-003 phase II study, 63 confirmed Stage III or IV OC patients received CVac [82]. While the study cohort did not disclose if the patient cohort included OC-Pts, CVac demonstrated positive trends in progression free survival and immune responses and further studies in OC-Pt patients are warranted.
\nA dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized OC lysate was also evaluated in a pilot study (Study ID#: NCT01132014) of five subjects with recurrent OC [83]. Of the five patients who received the DC vaccine, two had PFS of 24 months or more.
\nPeptide vaccines rely primarily on the immunogenicity of the injected peptides to stimulate an immune response. In the cancer setting, the peptides chosen for the vaccine are TAAs.
\nA phase I trial of the NY-ESO-1 OLP vaccine showed promising results in advanced OC patients that initially received chemotherapy with at least one platinum-based chemotherapy regimen [84]. NY-ESO-1 OLP contains synthetic overlapping long peptides (OLP) from the cancer-testis antigen NY-ESO-1 [84]. The vaccine was found to be safe and rapidly induced consistent integrated immune responses in nearly all vaccinated patients. A phase I/IIb multi-center study was also conducted to evaluate the safety and immunogenicity of the anti-idiotypic antibody vaccine ACA125 in 119 patients with advanced ovarian carcinoma (including OC-Pt patients) [85]. ACA125 functionally imitates the tumor antigen CA125. Preliminary evidence demonstrated safety and immunogenicity of the vaccine. The study data has not reveal conclusions regarding OC-Pt subgroups and this requires further evaluation.
\nRecombinant viral vaccines utilize genetically modified viruses as vectors for introducing TAA-encoding DNA into cells within the body. PANVAC is a vaccine with payload delivered through two viral vectors: recombinant vaccinia and recombinant fowlpox [86]. The vectors contain transgenes for the tumor-associated antigens epithelial mucin 1 (MUC-1) and carcinoembryonic antigen (CEA). Overexpression of MUC-1 and CEA is seen in OC [87, 88]. In a pilot study of PANVAC in 14 OC patients (including OC-Pt), median time to progression was 2 months and median OS was 15.0 months [86].
\nAdoptive cell therapy (ACT) involves the infusion of tumor antigen cells to stimulate innate anti-tumor immunity and induce cancer regression [89]. A pilot study in which seven patients with recurrent local OC were given multiple cycles of intraperitoneal infusions of autologous MUC1 peptide-stimulated cytotoxic T lymphocytes has been completed [90]. Clinical benefit was seen in only one patient who was disease free >12 years. While it is difficult to interpret this information in the context of OC-Pt, the study is worth mentioning as at least one patient had received prior platinum therapy.
\nA phase I clinical trial of adoptive transfer of folate receptor-alpha-redirected autologous T cells for recurrent OC cancer was initiated to establish the safety and proof of concept of autologous FRα-redirected T cells administered intravenously, in subjects with recurrent stage II to IV FRα-positive epithelial ovarian carcinoma (including OC-Pt subgroups) [91]. It is also possible that ACT can be used in combination strategies but the challenge with solid tumors such as OCs; is that tumor microenvironment immunity can cause immunosuppression and render ACT ineffective.
\nToll-like receptors (TLRs) comprise a family of 13 receptors found on hematopoietic and nonhematopoietic cells [92]. The TLR8 subtype is mainly found in monocytes and dendritic cells and it plays an important role in the immune response by recognizing single-stranded RNAs as its natural ligand. Motolimod (Motolid/formerly known as VTX2337) is a synthetic, small molecule, selective agonist of TLR8 that stimulates natural killer cell activity and enhances antibody-dependent cellular cytotoxicity [92]. A phase II randomized, double-blind, placebo-controlled study (Study ID#: NCT01294293), evaluated chemo-immunotherapy combination using motolimod with PLD in recurrent or persistent OC [92]. While the addition of motolimod to PLD did not significantly improve overall survival or PFS, the combination was well tolerated, with no synergistic or unexpected serious toxicity. Another phase II study is also now underway (Study ID#: NCT01666444) in patients with recurrent or persistent epithelial ovarian, fallopian tube, or primary peritoneal cancer. The purpose of this study is to compare the overall survival of patients treated with motolimod + PLD versus those treated with PLD alone in women with recurrent or persistent, epithelial ovarian, fallopian tube, or primary peritoneal cancer. This study will provide further insight on the future of motolimod in OC-Pt.
\nOver the past decade we have learned that OC in general responds poorly (11–25% overall) to single-agent immunotherapy; especially checkpoint blocking strategies [93]. There is very limited data regarding response rates of OC-Pt subgroups specifically, but in most cases these cohorts of patients are integrated in general OC study data, suggesting similar patterns of response. When reviewed collectively, the data suggest that efficient anti-tumor immune response is likely to require combinatorial therapeutic strategies that simultaneously target different stages of tumor escape. Combinations involving immune checkpoint inhibitors, anti-angiogenic agents, and PARP inhibitors are gaining momentum in clinical OC-Pt research and are highlighted below.
\nCurrently, several trials combining PARP and immune checkpoint inhibitors are ongoing [94]. An open-label dose escalation study (Study ID#: NCT02485990) of tremelimumab alone or combined with olaparib for recurrent or persistent OC is currently recruiting participants. This study is aimed at determining what dose of tremelimumab and olaparib is safe and effective in patients with persistent OC including those with OC-Pt.
\nA phase I/II Study (Study ID#: NCT02484404) of durvalumab in combination with olaparib and/or cediranib for advanced solid tumors including OC-Pt is currently recruiting. The aim of the phase I arm is to determine the safety of the combination of durvalumab with olaparib or cediranib. Phase II studies will determine the efficacy of these combination in treating OC.
\nThe TOPACIO trial (Study ID#: NCT02657889) will evaluate niraparib in combination with pembrolizumab in patients with triple-negative breast cancer or OC-Pt. The primary outcome measures are to determine dose-limiting toxicities of combination treatment with niraparib and pembrolizumab and to determine the objective response rate using RECISTv1.1.
\nThe OCTOVA study (Study ID#: NCT03117933), is currently recruiting participants for a randomized phase II trial investigating the efficacy of chemotherapy plus olaparib and cediranib combination therapy in patients with BRCA-mutated OC-Pt. Patients will be randomized to one of three treatment groups: olaparib only, olaparib and cediranib, and the control group paclitaxel. The aim is to compare efficacy and tolerability of the three treatments.
\nA phase II study (Study ID#: NCT02659384) to evaluate the combination of atezolizumab plus bevacizumab and acetylsalicylic acid in recurrent OC-Pt is currently recruiting. The primary aim is to determine PFS at 6 months by RECIST.
\nThe administration of ipilimumab in 11 patients with metastatic ovarian carcinoma after vaccination with irradiated autologous tumor cells engineered to secrete GM-CSF (GVAX), showed promising results [95]. Three patients achieved stable disease as measured by CA-125 levels, and one patient achieved an objective response by radiographic criteria and maintained disease control over 4 years with regular infusions of anti-CTLA-4 antibody.
\nThere are still many hurdles to overcome in the treatment of OC-Pt but some progress has been made in recent years, especially with the development of new immunotherapeutic agents. The good news is that OC cancer is a targetable tumor and although the OC-Pt subgroup of patients have biologically distinct tumors, both targeted therapies and immunotherapy offer an opportunity to uniquely address these differences. As new agents are developed in these categories, the main challenge with existing and future clinical trials will be the risk of adverse events and toxicities, especially with combination immunotherapeutic regimens, where there is an elevated risk for adverse immune events. A second challenge is the optimization of the dose and schedule of immunotherapeutic combinations in order to maximize the overall risk-benefit profile of a given combination. This requires multiple clinical trials with dose escalation studies that can be expensive. This approach is necessary however, especially in the setting of platinum-resistant OC cancer where much research is still needed.
\nMetabolic cardiomyopathies can be caused by disturbances in metabolism and may develop in the context of a broad spectrum of pathological conditions. These disorders include a number of inherited metabolic diseases in early childhood affecting the heart and other organs. Cardiomyopathies are associated with systemic metabolic diseases acquired during adulthood, such as metabolic syndrome, dyslipidemia, obesity, hypertension, diabetes mellitus and cardiomyopathy by alcoholism [1], which are also considered important causes of cardiovascular diseases. Furthermore, abnormal mitochondrial function related to mitochondrial ATP-producing capacity and high cardiac energy demand is linked to several of these cardiovascular diseases. The heart is a high-energy-demanding organ and mitochondria are important organelles that provide its source of cellular energy by oxidative phosphorylation; however, enzyme deficiency related to mitochondrial beta-oxidation leads to cardiac disorders. Another key point is that autophagic activity has been found to decrease with age resulting in intracellular protein aggregate accumulation, unfolded protein response activation and subsequent cardiomyocyte apoptosis, likely contributing to the accumulation of damaged macromolecules and organelles during aging. Equally important, several forms of heart failure are progressive disorders associated with substantial morbidity and mortality, and of these, cardiovascular pathologies are the leading cause of death in the elderly. Autophagy, a lysosome-mediated degradation pathway, plays a critical role in proteostasis by removing potentially toxic cytosolic protein aggregates and damaged organelles within cells [2]. Cardiomyocyte proteostasis is the gradual derailment of cellular protein homeostasis important to protein quality control [3]. The dysfunction in proteostasis leading to the accumulation of protein aggregates is the hallmark of cardiovascular disease and many chronic and age-related diseases [4].
\nThe metabolic syndrome has become one of the most important topics in recent decades because of the marked increase in cardiovascular risk associated with the clustering of risk factors [5]. Obesity is a major independent risk factor for cardiovascular disease, including cardiac hypertrophy and heart failure. Leptin, an adipocyte-derived hormone, acts through its receptors (LepRs) on hypothalamic neurons that regulate body weight and energy homeostasis. LepRs are also expressed on cardiovascular cells, and leptin has also been shown to promote cardiomyocyte hypertrophy, endothelial proliferation, migration and angiogenesis, and fibrosis.
\nThe effects of the mechanistic target of rapamycin (mTOR) are mediated through its activity as a central inhibitor of autophagy, a highly conserved cell survival mechanism. Cardiac hypertrophy is associated with increased energy demands, and cellular stressors like ischemia or nutrient deprivation, which result in the rapid regulation of myocardial autophagy. In this context, endothelial cells are particularly sensitive to metabolic stress, and defective or maladaptive endothelial autophagy may contribute to the rarefaction of the cardiac microvasculature during hypertrophy, a critical event in the transition toward heart failure [6]. In the present work, we review the current understanding of the role of autophagy and proteostasis in the pathogenesis of heart disease, considering the essential involvement of both degradation processes to find a novel therapeutic target to resolve the ever-expanding epidemic of metabolic cardiomyopathy and heart failure associated with significant morbidity and mortality.
\nA complex proteostasis network functions to ensure the maintenance of proteostasis, consisting of molecular chaperones and proteolytic machineries and their regulators in healthy cells. Each type of these molecules with a precise amino acid sequence has important physical properties to determine specific protein structure and a three-dimensional conformation to proteins, which is important in order to regulate cellular performance and balance. Protein structures are made by the formation of peptide bonds that build the polypeptide long chains of alpha-amino acids, a common property of all proteins. Disturbed proteostasis in postmitotic cell types, such as cardiomyocytes and neurons, produces an accumulation of misfolded and aggregated proteins resulting in disease. These factors coordinate protein synthesis with polypeptide folding for the conservation of protein conformation and protein degradation. In particular, maintaining proteome balance is a challenging task against external and endogenous stresses that accumulate during chronic cardiovascular disease and aging, which lead to the decline of the proteostasis network capacity and proteome integrity [4].
\nThe protein flux of the cell must remain in balance to ensure proper cell and tissue function. The protein homeostasis, also known as proteostasis, leads to the accumulation of protein aggregates and it is the cause of several diseases. In view of this, protein aggregation is a common characteristic of many chronic diseases. Proteome balance is a task in defiance of external and endogenous stresses that accumulate in a lifetime, such as chronic cardiovascular diseases and aging. Moreover, regulated proteolysis mediated by proteases of damaged proteins is fundamental for protein quality control of eukaryotic cells that require the ubiquitin-proteasome system (UPS). The UPS activity can be executed by ubiquitin-protein ligases or chaperones and the first crucial step is recognition of a specific degradation signal (degron). Degrons are portions of a protein that when exposed create a signal that is recognized by target proteins to the UPS pathway [7].
\nFrom this perspective, after several steps of substrate polyubiquitylation followed by substrate unfolding and degradation, proteins with specific degrons are recognized by the proteasome and targeted for degradation.
\nThe cellular proteome is exceedingly complex and large-scale proteomic studies have identified thousands of modification sites (common modifications include phosphorylation, ubiquitylation, methylation and acetylation) in roughly 50% of proteins in humans, the combinatorial nature of which is mostly unknown [8]. Individual proteins often exist in several modified forms and they also engage in numerous dynamically regulated protein complexes during their life cycle. It is estimated that about 100,000 distinct protein isoforms can be generated through alternative splicing from all the pool of protein-coding genes. Nonetheless, the mechanisms that underlie the dynamics, interactions, stoichiometry and turnover of most individual protein species are poorly understood at the global level [8].
\nIn the cell, the proteome is a wide surveillance and regulatory network of the biogenesis process and protein degradation, which intervenes when these processes develop in a suboptimal way [8]. Proteome imbalance often results in complex and chronic diseases; therefore, it is a continuous process in order to meet the dynamic of proteomic needs of the cell [8]. In healthy cells, a complex proteostasis network (PN), comprised of molecular chaperones and proteolytic machineries and their regulators, operates to ensure the maintenance of proteostasis. These factors coordinate protein synthesis with polypeptide folding, the conservation of protein conformation and protein degradation [4]. The PN is performed by mechanisms controlling protein biosynthesis, cotranslational folding process, trafficking, neofunctionalization and degradation of proteins in vivo, among others, to maintain proteome balance and conform to the PN [9].
\nThe proteome must have the ability to generate adequate synthesis, folding and protein expression and at the same time to detect abnormalities during this process by identifying the characteristics that force protective degradation when a component lacks quality. Human cells have more than 103 proteins per cell, and 5% of these are involved only in protein synthesis and turnover, and 60–80% of the etiologies of some diseases are associated with misfolding proteins. Therefore, it is clear that the constantly dynamic and complex eukaryote proteome requires a tightly regulated process [10].
\nThe description of cellular proteomes requires an understanding not only of how proteins and their multimeric assemblies are built and their mechanisms established but also of the rules that determine how proteins are selected for degradation when they are unable to assemble properly with components of cognate networks. The network is constantly regulating the proteome, but it responds to conditions of proteotoxic stress by addressing the triage decision of fold, hold or degrade [11]. Consequently, the PN is constantly regulating the proteome and influences several cellular functions by affecting their physiology and readapting through transcriptional and translational changes within the biology of the cell [10, 11].
\nNumerous biological pathways affecting protein synthesis, folding, misfolding, trafficking, disaggregation and degradation may adapt the PN by using proteostasis regulators that can partially correct protein impairment, resulting in human diseases by cell stress and aging. The main PN components include several modules like protein synthesis machinery and the major mammalian protein degradation: UPS that is central to the unfolding protein response (UPR), which is activated when unfolded or misassembled proteins accumulate in the endoplasmic reticulum (ER), and the armada of intra- and extracellular chaperones including proteases, which detoxify cells from nonrepairable proteins [10, 11].
\nThe structure of a determined protein is crucial for its function; hence, molecular chaperones are important components of the PN. Chaperones and other proteins like oxidoreductases and glycosylating enzymes bind nascent proteins and assist in proper folding into the correct structure and cellular location throughout their life cycle [12].
\nDiverse agents modify the structure of proteins like aging, oxidative, and thermal stress or misfolding-prone mutations. In this context, misfolded, damaged, unnecessary or aggregated proteins should be degraded, or their interactions could cause cell instability. There are two major intracellular proteolysis pathways: the autophagy-lysosomal pathway and UPS [13]. The difference between these two processes is the nature of the targeted protein degradation: in the case of autophagy, it mainly acts in the cytoplasm, and for UPS, considered the main route of protein degradation in mammalian cells, it acts on both cytoplasm and nucleus [14].
\nA deficient PN allows the disruption of cellular membranes by damaged proteins or toxic aggregates, which interfere with cell function, and as a result, many metabolic, oncological, cardiovascular and neurodegenerative disorders could appear in the individual [15].
\nThe UPS is a complex machine formed by numerous subunits that degrade ubiquitin-attached proteins. This proteolysis pathway is critical for the quality control of proteins by eliminating damaged proteins and also maintaining the concentration of many regulatory proteins of apoptosis, inflammation, signal transduction and cell cycle [12]. The other proteolysis pathway, autophagy that is in charge of degraded proteins, is not detected by the UPS, and it has an important role in the immune response and starvation stage [16]. Autophagy eliminates several dysfunctional cell components or catabolizes them when the cell is under starvation and stress to maintain optimal levels of energy and nutrients [12]. ROS, DNA damage or starvation activates this autoproteolysis pathway engulfing organelles in the autophagosome that are later fused with lysosomes, and by doing so, the amino acids and fatty acids produced by the catabolism of the organelles are recycled in the cytoplasm. However, three ways of delivering target proteins to the lysosome have been identified, and based on this, autophagy is classified into three distinct types: microautophagy, chaperone-mediated autophagy (CMA) and macroautophagy [16].
\nIn microautophagy, the cellular contents are invaginated directly by the lysosome. The major cytosolic chaperone systems are HSP70 and HSP90, which are connected to the UPS pathway. The proteasome complex contains the proteolytic active sites in the core particle (20S) and the regulatory activity of the holo-complex in the regulatory particle (19S). The UPS pathway only recognizes polyubiquitination proteins, a process that requires three enzymes: E1 ubiquitin activator, E2 conjugase and E3 ligase, which act sequentially. The polyubiquitylated proteins are recognized by the core particle for their degradation by the regulatory particle (19S) [17]. Meanwhile, CMA uses the molecular chaperone, known as heat shock cognate 71 kDa protein (Hsc70), for recognition of the KFERQ sequence motif in cytosolic proteins that must be degraded, and drives them to the lysosome membrane [18]. The transmembrane receptor or docking protein is a lysosomal-associated membrane protein-2A (LAMP-2A) that transports the unfolded cytosolic proteins into the lysosome [18].
\nMacroautophagy involves the formation of the autophagosomes, defined as special structures that invaginate cellular contents or target proteins and then transport them to the lysosome. Besides eliminating pathogens, autophagy is also required for antigen presentation by the major histocompatibility complex (MHC) class II. The major autophagy pathway used by cells is the MHC class II [16].
\nDiabetic cardiomyopathy (DC) is a specific heart muscle disease that increases the risk of heart failure and mortality in diabetic patients independent of vascular pathology. Basal level autophagy plays a housekeeping role to maintain cellular homeostasis. However, autophagy mechanisms are impaired in diabetic hearts. In this sense, diminished autophagy limits cardiac injury in type 1 diabetes and inhibited autophagy contributes to cardiac injury in type 2 diabetes. In this context, protein homeostasis is a necessity for the correct function of the cell, in other words, an interaction between protein synthesis, transport, post-translational modification and degradation [17]. However, an accumulation of defective proteins results in proteotoxicity or disturbed proteostasis. Progression of cardiovascular diseases due to proteostasis alterations has been related with interstitial fibrosis and altered myocardial remodeling. Recent evidence indicates that the progression of ventricular dysfunction may be associated with changes in the process of autophagy and impaired proteostasis.
\nAutophagy in the mitochondria is a necessary process for maintaining a healthy mitochondrial network, also known as mitophagy. Under pathological conditions, mitochondrial dysfunction and enhanced ROS generation associated to cardiac hypertrophy and impaired left ventricular function with increased aggregation of abnormal proteins and enlarged or collapsed mitochondria can be found, such as structural and functional remodeling with changes in composition of the extracellular matrix, which are characterized by fibrotic tissue, impaired vascular and coronary microvascular function or effects on subcellular cardiomyocyte composition (Figure 1). Thus, mitophagy has been shown to be essential for myocardial protection [19]. In addition, calorie restriction is sufficient to accelerate cardiac autophagic flux and reduce mitochondrial oxidative damage in the heart, results that suggest the important role of autophagy for maintaining optimal mitochondrial structure and function [20].
\nFactors involved in autophagy and proteostasis in metabolic cardiomyopathy. Many proteins participate in the activation and formation of the autophagosome. TGF-β1 induces the activation of signaling pathways such as Smad, which in turn activates the formation of fibrogenic proteins such as type 1 collagen and fibronectin, and these induce hypertrophy and cardiac fibrosis generating cardiac damage and activating autophagy in cardiomyocytes. Modified of Kobayashi et al. [
Proteostasis and autophagy are related to various heart diseases; however, both mechanisms can be beneficial or harmful depending on age and pathology. From this standpoint, heart diseases linked to autophagy due to degradation of contractile heart proteins are associated with cardiac aging, inherited cardiomyopathy, diabetic cardiomyopathy (DC), atherosclerosis, heart failure (HF) and atrial fibrillation (AF) [20]. The quality of cardiomyocytes depends on the efficient elimination of damaged proteins by autophagy. The mechanism performed by chaperone proteins, particularly heat shock proteins (HSP70/HSP40/HSP110) and chaperonins like the T-complex protein 1 ring complex (TRiC), takes place to a greater extent in the heart in response to oxidative stress [21]. HSPs are found in specific protein regions to prevent aggregation; these HSPs regulate oxidative stress (OS) and metabolism and maintain proper cell proliferation. The imbalance in the degradation of damaged intracellular proteins induces aging of the heart muscle fibers as a result of OS, the deterioration of the Ca+2 transits and the excessive generation of ROS. This process affects remodeling, favoring hypertrophy and cardiac fibrosis [22].
\nIn cardiomyopathies, the accumulation of incorrectly folded proteins or acquired dysfunction of protein quality control has been implicated in impaired proteostasis. The cellular function in the myocardium follows the regulation of proteostasis and autophagy in order to control the quality of new synthesized proteins and removal of unfolded/misfolded proteins. When UPS targets are too large to be degraded by the proteasome, the autophagy system must control degradation through the selection between UPS and autophagy. Among autophagy regulators, the endosomal sorting complex required for transport protein complexes (ESCRT) affects the lysosome-autophagosome fusion. Part of ESCRT is the charged multivesicular body protein 2B (CHMP2B), which is required for autophagy. The work of Zaglia et al., in 2014, identified a novel link between UPS and autophagy and showed that the muscle-specific ubiquitin ligase atrogin-1 controls turnover of the ESCRT-III family protein CHMP2B, which controls the autophagy signaling pathways [23].
\nTransforming growth factor β1 (TGF-β1) is an important regulator of fibrogenesis. Its expression is regulated by biochemical stimuli, as a humoral response to infections, glucose and pH [24]. Binding of TGF-β1 to specific cellular receptors, such as TGF-β type II and RII, activates phosphorylation for intracellular signaling pathways, such as Smad2 and Smad3 [25], which induce the expression of fibrogenic proteins like type I collagen and fibronectin [26]. These pathways trigger an inappropriate deposition of collagen in cardiac fibers, causing impaired heart function [27]. However, in other cell lineages, TGF-β1 is also capable of inducing autophagy, so the regulatory mechanisms between the two events are unknown [26].
\nMany target molecules are involved in fibrosis including the multiprotein complex formed by phosphoinositide 3-kinase class III (PI3K) dependent on Beclin 1, which regulates vesicular autophagy by activation of signaling pathways, such as Akt, and, in turn, increases the expression of TGF-β for the development of fibrosis [28]. HSP25 and alpha B-crystallin are expressed to a lesser extent in the heart; however, they fulfill the function of chaperone proteins that favor stability between actin and desmin, thus avoiding cardiotoxicity [29]. PINK1 (PTEN-induced putative kinase 1) is another protein involved in autophagy. It is located in the outer membrane of defective mitochondria, and it favors autophagy through the recruitment of the Parkin protein to depolarized mitochondria of cardiomyocytes [30].
\nThese mechanisms can induce deregulation of autophagy by apoptosis in type II cells in cardiac tissue, which leads to the development of myocardial infarction (MI) [31]. Moreover, autophagy has been shown to be active in the perimeter of cardiovascular fibrotic tissue as a mechanism for fibrosis recovery and scarring secondary to cell apoptosis [32]. Many molecules protect against type 1 diabetes–induced cardiac dysfunction by activating autophagy. Lastly, the inhibition of autophagy has a beneficial effect on type 2 diabetes–induced cardiomyopathy [33].
\nCardiomyopathies as a result of excessive ROS production and protein modifications in the mitochondria involve abnormal mitochondrial function resulting in cardiac disorders due to the high energy demand of the heart through this organelle, considered as a source of cellular energy production and mitochondrial ATP production achieved by oxidative phosphorylation and beta-oxidation. As a result of mitochondrial damage, the process of autophagy, known as mitophagy, is essential for myocardial function and protection [19].
\nThe physiological performance of endothelial nitric oxide synthase enzyme (eNOS) is important for NO production, which is dependent on L-arginine through its reaction with O2 and the constitutive eNOS dependent on Ca2+/calmodulin, as well as the cofactors (6R-)5,6,7,8-tetrahydrobiopterin (BH4), nicotinamide adenine dinucleotide phosphate (NADPH), flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN). Nitric oxide (NO) produced by the endothelium from eNOS, which is oxidized to L-citrulline and NO, works through the transference of electrons from NADPH via FAD and FMN. Both eNOS constitutive activation events are dependent, and in caveolae, they are Ca2+/calmodulin concentration dependent [34].
\nUnder pathological situations and in the presence of uncoupled eNOS, increased OS is produced, instead of producing NO after eNOS activation due to the reaction with reduced BH4 levels and upregulated NADPH. As a result of these cardiovascular (CV) risk factors, NO is not produced, but there is ROS production. These abnormal reactions due to CV risk factors reduce bioactive NO [34].
\nThe biological abnormalities produced by excessive ROS production such as superoxide anion (▬O2), hydrogen peroxide (H2O2) and hydroxyl radical (▬OH) species [35], including the rapid interaction of O2\n− with NO, result in the loss of NO bioavailability and increased production of peroxynitrite (ONOO−) [34]. The harmful overproduction of these ROS and protein mitochondrial modifications as a result of impaired redox and pathological signaling in the CV system mediate regulation of the most important ion channels, transporters and kinases related to heart diseases.
\nThese mechanisms lead to selective cardiac dysfunction and decreased energy production due to reductions in mitochondrial respiration, increased OS and defective contractile Ca2+ regulatory proteins. These types of changes and alterations in mitochondrial biogenesis, content and function related to an heterogeneous group of cardiovascular disease risk factors like metabolic syndrome, have been documented. Damaged mitochondria are degraded through mitophagy, the main protective function of autophagy that is for myocardial protection and the target of successful drug development emerging in the cardiovascular space. These strategies may be applied upon several redox targets, such as the membrane caveolae region where key cardiovascular redox proteins, such as eNOS, calmodulin and NADPH oxidase, among other important cardiovascular-related receptors, are located. Thus, calorie restriction is sufficient to accelerate cardiac autophagic flux to help improve mitochondrial oxidative damage and to maintain a healthy mitochondrial network [11, 18, 19].
\nDr. Christian de Duve was the first to use the term “autophagy,” meaning “self-eating” in Greek, at the Ciba Foundation Symposium on Lysosomes, which took place in London on February 12–14, 1963 [36]. When there is a functional decline in the cardiovascular system and aging, cardiomyocytes need a cellular control mechanism to minimize damage and prevent cardiac malfunction. In this context, autophagy may degrade and recycle long-lived proteins, cytoplasmic components and organelles [37]. The notion of autophagy as cell death is a phenomenon that has been controversial and remains mechanistically undefined. It should be noted that when autophagy promotes cell death, there is an association of autophagy with the different cell death pathways [38].
\nThe biogenesis of an autophagosome is orchestrated by the so-called autophagy-related (ATG) proteins, which act in a hierarchical order to first generate the phagophore and then expand it into an autophagosome. The mammalian homologs of ATG1 are the uncoordinated-51-like kinases 1 and 2 (ULKA1 and ULK2) ULK complex, the ATG9A cycling system and the autophagy-specific class III phosphatidylinositol 3-kinase (PtdIns3K) complex, which are key in generating the phagophore upon induction of autophagy [39]. Besides, knockdown of EP300 and the inhibition of histone acetylases potentially induce autophagy indicating that protein deacetylation may play a role in the autophagic cascade. EP300 acetylates several autophagy-related proteins, including autophagy-related 5 (ATG5), ATG7, ATG12 and microtubule-associated protein 1 light chain 3 β (LC3). Lastly, protein deacetylation influenced by several proteins controls autophagy at diverse levels from the modification of autophagy core proteins to transcriptional factors controlling autophagic genes [39].
\nAutophagy is also considered an evolutionarily conserved process critical for cellular homeostasis [3]. Implication of either the pathogenesis or the response to a wide variety of diseases by autophagy has been related to the pathogenesis of various disease states and to the basic molecular pathways that regulate autophagy [40]. Basal levels of autophagy maintain cellular homeostasis, and under stress conditions, high levels of autophagy are induced. However, the pro-death role of autophagy is complicated due to the extensive cross-talk between different signaling pathways [38]. Autophagy is a process by which cytoplasmic components are sequestered in double membrane vesicles and degraded upon fusion with lysosomal compartments. Depending on the stimulus, autophagy can degrade cytoplasmic contents nonspecifically or it can target the degradation of specific cellular components. Higher eukaryotes have adopted both of these mechanisms and account for the expanding role of autophagy in various cellular processes, as well as they contribute to the variation in cellular outcomes after induction of autophagy. As the basic molecular pathways that regulate autophagy are elucidated, the relationship of autophagy to the pathogenesis of various disease states becomes apparent [40].
\nAutophagy is a highly conserved eukaryotic pathway responsible for the lysosomal degradation (and subsequent recycling) that is rapidly growing and elucidating an intriguing mechanistic complexity as well as a tremendous range of cargo substrates. Imbalances in proteostasis are connected to aging and multiple (age-associated) disorders [41]. Several pathologies including cardiovascular disease and stress-related disorders are associated with autophagy dysregulation. Moreover, excessive or insufficient levels of autophagic flux have been characterized in cardiomyocytes, cardiac fibroblasts, endothelial cells and vascular smooth muscle cells within the cardiovascular system [42]. Damaged and potentially cytotoxic mitochondria elicit an autophagic response termed mitophagy. Depending on the initiating stimulus, the substrate selection could differ. Thus, mitophagy takes part in physiological processes like the removal of paternal mitochondria during egg fertilization, and it is also a key process for the removal of damaged mitochondria in toxic conditions [43]. Furthermore, autophagy stimulation may result in reduced accumulation of misfolded and aggregated proteins; however, the overactivation of autophagy can trigger autophagy-mediated apoptosis.
\nThe cardiovascular system has the ability to adapt to a wide range of environmental stresses. The myocardium itself manifests robust plasticity for both physiological and pathological stimuli. From this perspective, autophagy is an intracellular process required to maintain cardiovascular homeostasis, and it is also an evolutionarily ancient process of intracellular catabolism in response to a wide variety of stresses. In the case of postmitotic cells, where cell replacement is not an option, finely tuned quality control of cytoplasmic constituents and organelles is especially critical [41]. Mitochondrial DNA has an important role at inducing and maintaining inflammation in the heart that escapes from autophagy. These autophagic mechanisms degrade damaged mitochondria through fusion of autophagosomes and lysosomes. Lastly, the impairment of mitochondrial cristae affecting cardiac morphology and function is induced by pressure overload [44].
\nExcessive caloric intake results in obesity, a major independent risk factor for cardiovascular disease, including cardiac hypertrophy and heart failure. From this standpoint, cardiac remodeling is modulated by overnutrition or starvation. The adipokine leptin mediates energy balance between adipose tissue and the brain. Leptin and its receptors (LepRs) are expressed in the heart. LepRs belong to the class I cytokine receptor family signaling via JAK (Janus kinase)-2 and signal transducer and activator of transcription (STAT)-3. In addition, nutrient signaling mediators, such as mTOR (mammalian target of rapamycin), induce LepR-mediated activation of Akt. Cellular hypertrophy, proliferation and survival play an important role in cardiovascular function and pathology mediated by the Akt/mTOR pathway [45]. To examine the importance of endothelial leptin signaling in cardiac hypertrophy, transverse aortic constriction was used in mice with inducible endothelium-specific deletion of leptin receptors (End.LepR-KO) or littermate controls (End.LepR-WT). Histology and quantitative polymerase chain reaction analysis confirmed reduced cardiomyocyte hypertrophy. STAT3 activation was reduced, and Akt (protein kinase B) and mTOR phosphorylation after transverse aortic constriction were blunted in End.LepR-KO mice hearts [46].
\nFor normal cardiac physiology in response to pressure overload (PO), mTORC2 is also required to ensure cardiomyocyte survival. It has been observed that dysregulation of autophagy in cardiomyocytes is implicated in various heart disease conditions. In these cases, vigorous protein quality control (PQC) systems are essential for maintaining the long-term well-being of nonproliferating mammalian cells, such as neurons and cardiomyocytes (CMs) [47]. Similarly, PO activates autophagy in at least an acute phase and the suppression of PO-induced autophagy that alleviates pathological cardiac remodeling. Recent investigations revealed that enhancing autophagy ameliorates desmin-related cardiomyopathies, which are inherited cardiomyopathies that result in severe heart failure due to protein aggregation and myofibrillar disarray in CMs [47].
\nPerturbations in autophagy are involved in virtually all stages of cardiovascular disease. Research in the last decade has revealed that autophagy in cardiomyocytes plays a protective role, but not only during hemodynamic stress, but also in homeostasis during aging, resulting in mitochondrial damage. These damaged mitochondria are degraded through mitophagy and this process could be the main protective function of autophagy in the heart. From this standpoint, the mTORC1 complex regulates numerous biological processes, including proliferation, protein synthesis and autophagy inhibition. In addition, the mTORC1 pathway inhibits phosphorylation of the ULK1 protein (Ser 757) [48] considered an important element of autophagy activation.
\nThe effects of mTOR are mediated through its activity as a central inhibitor of autophagy, a highly conserved cellular survival mechanism by which nutrient-deprived cells refresh the bioavailability of metabolic precursors [6]. In the cardiovascular system, the mTOR pathway regulates the physiological and pathological processes in the heart. In this regard, mTORC2 is necessary to maintain normal cardiac physiology and it ensures the survival of cardiomyocytes that have been subjected to PO. However, partial genetic or pharmacological inhibition of mTORC1 has been shown to reduce cardiac remodeling and heart failure in response to PO and chronic myocardial infarction. Therefore, mTOR may be a therapeutic strategy to confer cardioprotection [45].
\nNonetheless, depending on the context, autophagic flux may be biased up or down. A large body of preclinical evidence suggests that autophagy is a double-edged sword in cardiovascular disease, acting in either beneficial or maladaptive ways, depending on the context. Modulation of Beclin 1 significantly influences both autophagy and apoptosis, thereby deeply affecting the survival and death of cardiomyocytes in the heart. This is the reason why it is important to discuss the signaling mechanism of autophagy modulation through Beclin 1, including the therapeutic potential of Beclin 1 in heart diseases [49]. In light of this, the autophagic machinery in cardiomyocytes and other cardiovascular cell types has been proposed as potential therapeutic targets. Autophagy mediators hold promise as targets for cardiovascular disease therapy; however, recent evidence suggesting that titration of autophagic flux holds potential as a new therapeutic goal for cardiovascular diseases, and heart failure, needs to be analyzed further [40].
\nThe use of pharmacological modulators can be beneficial for the treatment and prevention of autophagy. It is known that many agents or procedures induce or reduce autophagy activity; among these are spermidine, carvedilol, trehalose, resveratrol, metformin, caloric restriction, exercise training, intermittent fasting and ischemia/reperfusion.
\nFasting and calorie restriction are the most potent nongenetic autophagy stimulators related to autophagy promotion. Regarding the upregulation of autophagy, the evidence overwhelmingly suggests that autophagy has to be induced in a wide variety of tissues and organs in response to food deprivation. From a mechanistic point of view, age-related vascular remodeling is driven by a greater accumulation of ROS. Thus, the induction of autophagy per se is sufficient to extend the shelf life in various species ranging from yeast to mammals [50]. Therefore, in addition to preserving the homeostasis of organisms in baseline physiological conditions, autophagy also contributes to metabolic fitness and the adaptation to stressful conditions, such as nutrient deprivation, hypoxia, OS or physical exercise.
\nAutophagy is a critical process for cell homeostasis and survival, and it is also implicated in the reduction of OS and inflammation. Furthermore, autophagic processes have been associated with a greater expression of eNOS and bioavailability of the protein. Long-lived, damaged, dysfunctional and potentially harmful cellular components break down for detoxification, energy production and cell renewal, providing building components and stimulating anabolic processes for effective cell recycling.
\nVascular induction of NO production as a response to shear stress during exercise with augmented blood flow and increased flux sanguin over endothelial cells (EC) result in eNOS activation and NO production. Autophagic process has been related to greater expression of eNOS and bioavailability of the protein. ATG3 is an important autophagy pathway mediator; in contrast with a reduction of 85% by knockdown of ATG3 protein expression using control siRNA upon exposure to shear stress showed impairment of eNOS activation and as a result were incapable of produce NO as a response to shear stress. Autophagy is a critical process for cell homeostasis and survival is also implicated. Long-lived, damaged, dysfunctional and potentially harmful cellular components break down for detoxification, energy production and cell renewal, providing building components and stimulating anabolic processes for effective cell recycling as a result of autophagy [51].
\nSubstantial evidence indicates that exercise training plays a beneficial role in the prevention and treatment of CV diseases. The regulation of autophagy during exercise is a bidirectional process. Autophagy is a physiologic process that is a defense mechanism for cells in adverse environments and it is also involved in several pathological processes [52]. Autophagy normal levels confer cell protection versus environmental stimuli to balance and protect organisms [53]. In this context, various diseases are the response to excessive or insufficient autophagy. Exercise training, referring generally to the cardiac adaptation to exercise, which has to be in an appropriate intensity as a chronic stimulation process, can reduce the risk of CV diseases and improve the prognosis of patients after CV events. This type of training can also reduce the production of ROS, reduce the inflammatory response, regulate collagen metabolism, moderate the imbalance of extracellular matrix synthesis and degradation, and alleviate cardiac fibrosis [54].
\nCalorie restriction and stimulation of autophagy have healthy effects on the lifespan and cardioprotection in humans. Intermittent fasting induces adverse ventricular remodeling and cardiomyocyte death in null mice with LAMP2 (lysosome-associated membrane protein 2) associated with an impaired autophagic flow. The study of Godar et al. [54] highlights that intermittent fasting conferred cardioprotection in wild-type female mice, with an ∼50% reduction in infarct size compared to controls matched without fasting, and this cardioprotection was lost in heterozygous null mice for LAMP2. One of the characteristics of these heterozygous null mice is the accumulation of damaged mitochondria with a deteriorated basal autophagic flux even on a fed day fed after 6 weeks, which probably results in the loss of cardioprotection observed with this regimen in wild-type mice. Intermittent fasting modulates OS from the myocardium through the effects on the mitochondria, where it is lost in the context of LAMP2 ablation due to the deterioration of mitochondrial autophagy [55]. Recent studies have discovered a potential mechanism for transcriptional replacement of autophagy-lysosome machinery with starvation. In addition, a central role was attributed to dephosphorylation and the cytoplasm induced by rapid hunger to nuclear translocation of TFEB (EB transcription factor) [55]. The endogenous TFEB-mediated stimulation of the autophagic flow is essential for the cytoprotective effects of repetitive hunger in hypoxia-reoxygenation injury. The research group suggests the hypothesis that the transcriptional replenishment of the autophagy-lysosome machinery by fasting (and hunger as described earlier) may be a critical determinant of beneficial autophagy, which allows living organisms to survive in what has probably been one of the first evolutionary stresses that accompanied the origin of life [56].
\nTherefore, starvation (total caloric restriction) is a potent stimulus for the induction of myocardial macroautophagy (called “autophagy”) [57, 58, 59]. It is already known that autophagy is essential for cardiac homeostasis in the period of perinatal hunger at birth; this effect is observed before the establishment of breast milk supply [60]. In experiments using mice with genetic ablation of autophagy proteins ATG5 and ATG7, autophagosomes could not be formed and fatal myocardial ischemia developed [60, 61]. In this respect, autophagy is also essential for the maintenance of cardiac structure and function during prolonged starvation in mice, since the concomitant deterioration of autophagy with FOXo1 genetic ablation, Becn1 haplo-insufficiency [57] or pharmacological inhibition with bafilomycin A1 [62], an inhibitor of acidification and lysosome function, produces a rapid development of cardiomyopathy with starvation.
\nThe different roles of autophagy in cardiomyocytes exposed to varying degrees of ischemia/reperfusion injury (I/R) or severe anoxia (S/A) were explored, and it was observed that the autophagic activity of cardiomyocytes increased with an increment in ischemia that was dependent on the duration of anoxia, undergoing ischemia, or severe ischemia [63].
\nDuring the process of cardiac ischemia, the restriction in the blood supply and the reduction of ATP leads to an imbalance in the amount of blood and energy, causing cell heart dysfunction and myocardial damage, inflammation and excess of ROS production leading to cardiomyocyte death. It should be noted that ATP levels can be monitored by adenosine monophosphate-activated protein kinase (AMPK), which functions as a nutrient deprivation sensor in response to a decreased ATP level during cardiac ischemia [64].
\nIn the initial phase of ischemia, a low level of ATP activates AMPK in cardiomyocytes. Once activated, AMPK directly phosphorylates and activates ULK1 resulting in the induction of autophagy by modifying ULK1 directly or indirectly [48]. The pathway by which AMPK activates autophagy is through AMPK/mTORC1 signaling. AMPK inhibits mTORC1 through phosphorylation of TSC2 and the raptor site, followed by indirect activation of ULK1 [48]. Recent studies revealed new pathways through which AMPK activated autophagy. Also, AMPK directly phosphorylates and activates activated ULK1, allowing the onset of autophagy [65, 66, 67]. Also, in the early I/R process, ROS modify the function of Ca2+ channels and exchangers, which triggers a decrease in available ATP, and thus, directly affect the autophagy process [68].
\nBeclin 1 is an important autophagic protein that has been shown to regulate both the formation and processing of autophagosomes, especially in the reperfusion phase. An in vitro study revealed that autophagic response to nutrient deprivation mediated by Beclin 1 is modulated by the Bcl-2 protein in cardiac cells [69]. Moreover, it has been observed that ROS can also be strong inducers of Beclin 1 in mediating autophagy during the reperfusion phase [70]. In addition to regulating Beclin 1 expression, ROS could also oxidize and decrease ATG4 activity, contributing to LC3 lipidation at the start of autophagy [71].
\nCellular stress by ischemia, hypoxia, depletion of intracellular Ca2+ stores, induced OS and ROS, and the accumulation of unfolded/misfolded proteins induce ER dysfunction known as ER stress, and then the unfolded protein response (UPR) is generated to deal and play a critical role in cell death after myocardial I/R injury. Several transcription factors are induced by ER stress and the UPR whose branch includes ATF6, inositol-requiring enzyme 1 (IRE1) and PKR-like ER kinase (PERK) activated by I/R injury, which is the mediated signal pathway of UPR. The activating transcription factor 6 alpha (ATF6) is an ER transmembrane protein and most ATF6-induced proteins localize to the ER [72].
\nCatalase is an enzyme that has been shown to decrease damaging ROS in the heart. ATF6 induces catalase known to decrease ROS and reduce I/R damage in the heart. Catalase is a component of peroxisomes that has also been found in the cytosol and cardiac mitochondria, and it neutralizes H2O2 and also serves to oxidize ONOO▬, NO and organic peroxides; however, it has not be found in the ER. In the study by Jin et al. [72], they examined the effects of blocking ATF6-induced proteins in the ER stress response on I/R injury in cardiac myocytes and mouse hearts. The role of ATF6 as a link between ER stress and OS and its effect on I/R myocardial injury show an important function for ATF6, which binds to specific elements in the regulatory elements of the catalase gene inducing its transcription [72].
\nMyocardial I/R injury negatively regulates protein synthesis, leading to the activation of signaling pathways from the ER to the cytosol and nucleus, representing UPR and ER-associated protein degradation (ERAD). Most of I/R damage is caused by ROS generated outside the ER. The study by Zhang et al. revealed that all the three branches of UPR pathway are involved. Moreover, they demonstrated reduced myocardium damage in I/R surgery, while the activation of UPR had opposite effects. The results of this study were shown after the inhibition using a standardized animal model with Sprague-Dawley rats that were pretreated with UPR stimulator dithiothreitol (DTT) and UPR inhibitor 4-phenylbutyrate (4PBA) and then subjected to myocardial I/R surgery [73].
\nUnder the cardiac I/R condition, increased autophagic activity compensated for impaired UPS function, thereby maintaining proteolysis at an appropriate level. However, cooperation between UPS (short-lived proteins) and autophagy (long-lived proteins) is considered a housekeeping mechanism for protein quality control in I/R injury. Thus, this increased autophagic response helps to maintain an adequate proteolysis level and proteostasis in order to compensate impaired UPS function under cardiac I/R condition, which ultimately results in degradation by the proteasome as well as autophagy.
\nSpermidine (SPD) is a type of polyamine that has been shown to enhance heart function to delay cellular and organismal aging and provide cardiovascular protection in humans. Initially, the cardioprotective effects of SPD were explored in rodent models of physiological cardiac aging (mice) and congestive heart failure induced by high salt concentration (rats) [74]. SPD in the diet of mice delays cardiac aging by improving diastolic function.
\nFurthermore, the evidence demonstrated that a high intake of SPD in the diet was correlated with a reduction in the incidence of cardiovascular diseases. In humans, high levels of SPD (natural polyamine) in the diet, as assessed by food questionnaires, correlated with reduced blood pressure and a lower incidence of cardiovascular disease. Subsequently, SPD was identified as a potent inducer of autophagy [74]. SPD by increasing autophagic and mitophageal activity improves mitochondrial respiratory function. SPD also inhibited kidney damage and fibrosis. It is suggested that the effect of SPD on the improvement of cardiac function is mediated by the promotion of autophagy and mitophagy in the heart and by the reduction of the systemic chronic inflammatory response. This natural polyamine is importantly involved in maintaining cellular homeostasis, and it affects several processes including cell growth, proliferation and tissue regeneration; it also stimulates the antineoplastic immune response and anti-aging properties, including transcriptional and transductional modulation through several enzymes and nucleic acid enzymes. Moreover, SPD promotes chaperone activity and ensures proteostasis through anti-inflammatory and antioxidant properties, and it also enhances mitochondrial function and cellular respiration [75].
\nTherefore, the effect of exogenous SDP administration was examined in aged rat hearts [76]. SPD was shown to improve mitochondrial biogenesis by increasing nuclear expression of PGC-1α (peroxisome proliferator-activated receptor gamma coactivator alpha), which is mediated by enhanced NAD+-dependent deacetylase activity of SIRT1 (sirtuin-1). These results suggest that SIRT1 is an essential intermediary in the mechanism by which SPD stimulates mitochondrial biogenesis and function in cardiac cells. In addition, findings showed that the administration of SPD in vivo increased the activity of the antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT), and improved mitochondrial respiratory activity in the myocardium [76]. To date, there are not enough clinical trials to evaluate the effects of SPD in reducing cardiovascular diseases. These findings could guide new therapeutic strategies to counteract cardiac aging and prevent age-related cardiovascular disease and, as a result, lay the foundation for better heart disease treatments related to mitochondrial dysfunction [76].
\nCarvedilol (CVL) belongs to the so-called α, β blockers, used to treat high blood pressure and congestive heart failure, which are generally used for the treatment of cardiovascular disorders. CVL blocks sympathetic neural activation through antagonism of the β1, β2 and α1 adrenoceptors and it has demonstrated greater cardiovascular benefits than traditional β blockers in both humans and animals. However, some benefits beyond decreased blood pressure were observed clinically, suggesting the potential anti-inflammatory activity of CVL [77]. In addition, CVL is a known membrane “fluidizer” that alters membrane structure and protein-lipid interactions [78]. The most widely characterized inflammasome sensor in the heart is activated in response to noninfectious stimuli, such as cell debris during acute myocardial infarction. The NOD-like receptor (NLR) family, pyrin domain–containing protein 3 (NLRP3) inflammasome is a component of the inflammatory process. Activation of the NLRP3 inflammasome triggers further myocardial damage indirectly through the release of IL-1β and directly through the promotion of inflammatory cell death via pyroptosis [79]. Pyroptosis is a type of caspase-1–dependent cell death, which is often associated with inflammasome activation and IL-1β production characterized by a loss of cell membrane integrity that leads to fluid influx and cell swelling [77]. Experimental studies have shown that strategies inhibiting the activation of the NLRP3 inflammasome in the early reperfusion period after acute myocardial infarction reduce the overall size of the infarct and preserve normal cardiac function [79]. There is also evidence supporting the therapeutic value of NLRP3 inflammasome-targeted strategies in experimental models and data supporting the role of the NLRP3 inflammasome in AMI and its consequences on adverse cardiac remodeling, cytokine-mediated systolic dysfunction and heart failure [79]. Mechanistic analysis revealed that CVL prevented lysosomal and mitochondrial damage and reduced apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. Additionally, CVL caused autophagic induction through a SIRT1-dependent pathway, which inhibited the NLRP3 inflammasome [77].
\nCVL activates survival signaling of p-AKT and pluripotential markers in cardiomyocytes (CM) after I/R. Cardioprotective actions of CVL are associated with higher levels of the miR-199a-3p and miR-214 cardioprotective miRNAs [79]. CVL stimulates the processing of microRNA (MIR)-199a-3p and miR-214 in the heart through β-arrestin-1–biased β-1 adrenergic receptor (β1 AR) for cardioprotective signaling. Studies show that using cultured cardiomyocyte and primary cardiomyocyte cell lines, carvedilol is regulated by an increase in miR-199a-3p and miR-214 in ventricular and atrial cardiomyocytes undergoing reperfusion ischemia (I/R) injury.
\nIt is known that trehalose, a natural disaccharide, protects cells against various stresses. Trehalose is a natural disaccharide formed from two glucose molecules with an α-type glycosidic junction. It is widely distributed in nonmammalian species, such as fungi, yeasts, bacteria, invertebrates, insects and plants. Trehalose acts to provide energy sources and protect the integrity of cells exposed to various environmental stresses. Furthermore, it has also been shown that trehalose protects against apoptosis in an autophagy-dependent manner. This natural disaccharide improves cardiac remodeling, fibrosis and apoptosis after myocardial infarction and attenuated heart dysfunction [80]. The cardioprotective effect of trehalose was not observed in the heterozygous elimination of Beclin 1 in mice, indicating that these protective effects are mediated by autophagy [81]. In this connection, trehalose induces autophagy by facilitating the recruitment of LC3B to the autophagosomal membranes in an mTOR-independent manner. The basal level of autophagy plays a unique housekeeping role in the regulation of cardiac geometry and impaired autophagy function and may contribute to various end-organ complications in insulin resistance and diabetes, including cardiomyopathy and nephropathy [82]. Autophagy is usually regulated by both mTOR-dependent and -independent mechanisms. The mTOR pathway is considered the classic autophagy regulation route, which negatively regulates autophagy involving two functional complexes: mTORC1 and mTORC2, with a much more predominant role for mTORC1. Research findings suggest that trehalose may rescue the contractile myocardial defect induced by insulin resistance and apoptosis, through autophagy associated with the dephosphorylation of p38 MAPK and FOXo1 without affecting the phosphorylation of Akt [82]. Moreover, it was observed that trehalose not only activated autophagy but also increased the expression of p62. In addition, the expression of antioxidant genes regulated by trehalose through enhanced nuclear translocation of Nrf2 in a p62-dependent manner leads to the suppression of OS. Therefore, a new antioxidant action target for trehalose was proposed [83].
\nSeveral lysosomal inhibitors such as bafilomycin A1 (BafA1), protease inhibitors and chloroquine (CQ) have been used interchangeably to block autophagy in vitro for lysosomal degradation. Only CQ and its derivate hydroxychloroquine (HCQ) are FDA-approved drugs currently considered the principal compounds used in clinical trials aimed for treating tumors through autophagy inhibition by impairing autophagosome fusion [84]. They focus on how CQ inhibits autophagy and directly compare its effects to those of BafA1. CQ mainly inhibits autophagy by impairing autophagosome fusion with lysosomes rather than by affecting the acidity and/or degradative activity of this organelle. Furthermore, CQ induces an autophagy-independent severe disorganization of the Golgi and endolysosomal systems, which impair autophagosome fusion. These results of Mauthe et al. suggest not using these compounds (CQ and HCQ) for in vivo experiments because of multiple cellular alterations caused by these drugs [84].
\nHuman clinical studies differ markedly in terms of the administered doses of resveratrol, as well as in the duration of treatment. Overall, the most pronounced effects of resveratrol include reduced body weight in obese patients and a partial decrease in systolic blood pressure, as well as fasting blood glucose levels and HbA1c in patients with diabetes mellitus in some clinical trials. Studies show that resveratrol attenuates high glucose-induced cardiomyocyte apoptosis through AMPK, a serine/threonine kinase that detects the state of cellular energy and regulates energy homeostasis [85]. Activation of AMPK is involved in the determination of multiple cellular processes including cell growth, apoptosis [86] and autophagy [87]. It is known that AMPK activation could inhibit mTOR, the best characterized protein kinase that negatively regulates autophagy [88]. Diabetic cardiomyopathy has shown inhibition of autophagy and increased apoptosis in cardiac cells. The study of Xu et al. demonstrated that using resveratrol in H9c2 cardiac myoblast cells exposed to high glucose combined with palmitate suppressed autophagic activity and increased apoptotic cell death. The H9c2 cells showed restored autophagy and attenuated apoptosis in cells with diabetic stimuli when treated with resveratrol [89, 90].
\nMetformin is a first-line antidiabetic drug that also activates autophagy and it has cardiovascular protective effects [91], although a recent study reported otherwise, since metformin did not achieve the cardioprotective effect in an I/R model in nonaged pigs [92]. This was proven because the protective effect of metformin was abolished by treatment with chloroquine. This treatment inhibits the fusion of lysosomes with autophagosomes and a high lysosomal pH, avoids the final digestion stage and inhibits lysosomal activity [93].
\nHowever, a recent study by Chen Li et al. showed protection with metformin on both cellular and animal models of aging and I/R injury. During aging, failure of organelles results in the accumulation of macromolecules and impaired proteostasis that result in the death of cardiac tissue. Necroptosis is a programmed cell death involving receptor-interacting protein kinases 1 and 3 (RIP1, RIP3) that form the necrosome and mixed lineage kinase domain-like protein (MLKL), which are subsequently phosphorylated [94]. Besides, metformin treatment was able to restore autophagy and reduce the accumulation of p62 in the aged myocardium, as well as decrease the cardiac junction of p62-RIP1-RIP3 complexes and the RIP3 and MLKL-induced phosphorylation. Therefore, metformin can break the unfavorable chain mechanism of aging-related autophagy decrease that induces necroptosis [94].
\nDiabetes is a metabolic disorder that contributes to the development of cardiac fibrosis and cardiomyopathy. Aminoguanidine (AG) inhibits advanced glycation end products (AGEs) and advanced oxidation protein products (AOPP) accumulated as a result of excessive oxidative stress in diabetes. In a recent work, we investigated whether AG supplementation mitigates oxidative-associated cardiac fibrosis in rats with type 2 diabetes mellitus (T2DM). In vivo experiments were performed in a model of T2DM, and in vitro we used primary rat myofibroblasts to confirm the antioxidant and antifibrotic effects of AG to determine if blocking the receptor for AGEs (RAGE) prevents the fibrogenic response in myofibroblasts. Diabetic rats exhibited an increase in cardiac fibrosis resulting from a high-fat, high-carbohydrate diet (HFCD) and streptozotocin (STZ) injections. In contrast, AG treatment significantly reduced cardiac fibrosis, alfa-smooth muscle actin (αSMA) and oxidative-associated NOX4 and NOS2 mRNA expression [95]. In vitro challenge of myofibroblasts with AG under T2DM conditions reduced intra- and extracellular collagen type I expression and platelet-derived growth factor (PDGF), transforming growth factor beta (TGFβ1) and collagen type 1 a 1 (COL1A1) mRNAs, albeit with a similar expression of tumor necrosis factor alpha (TNFα) and interleukin-6 (IL-6) mRNAs. This was accompanied by reduced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2) and SMAD2/3 but not of AKT1/2/3 and signal transducer and activator of transcription (STAT) pathways. RAGE blockade further attenuated collagen type I expression in AG-treated myofibroblasts. Thus, AG reduces oxidative stress-associated cardiac fibrosis by reducing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM [95]. However, clinical studies need to be performed in order to evaluate if AG treatment is useful and well-tolerated in human cardiac disease and leads to a significant reduction in cardiac fibrosis as well as it modulates the expression of oxidative and fibrogenic response in myofibroblasts like in this disease model.
\nAlthough the autophagy modulators described above have great potential, there are currently no interventions aimed at modulating autophagy for human use. Despite this, there are already licensed medicines for use in humans, which activate or inhibit autophagy, such as rapamycin, chloroquine and HCQ, among others, that were not developed for this purpose [96]. The main clinical obstacle is that they have low pharmacological specificity for their objective, which is the autophagic process [84]. However, they have allowed us to know the main pathways by which the autophagy process is activated or inactivated. Several pharmacological and nutritional interventions are available to inhibit autophagy in the initiation, nucleation, elongation, fusion or degradation phase [97]. In addition, several agents modulate autophagy through multiple molecular mechanisms that are not yet characterized (Table 1).
\nAutophageal processes susceptible to therapeutic modulation.
Examples of autophagy activators. A-769662, a new activator of AMP-activated protein kinase (AMPK); BECN1, Beclin 1; H2S, hydrogen sulfide; mTORC1, target of rapamycin complex 1.
Alteration of proteostasis in heart tissue leads to diabetic cardiomyopathy characterized by myocardial remodeling and interstitial fibrosis. Cardiomyocyte proteotoxicity frequently faces the chronic accumulation of misfolded or unfolded proteins that can lead to proteotoxic formation or aggregation of soluble peptides with reduced cardiac function and arrhythmias. However, under pathological conditions, autophagic flux may be an important strategy to prevent the progression of various cardiovascular diseases due to risk of dysfunctional endothelial cells. Autophagy is insufficient in endothelial cells isolated from individuals with diabetes mellitus. Moreover, it has been demonstrated that intact autophagy is essential for eNOS signaling in endothelial cells. Nitric oxide-mediated vasodilation was promoted by the induction of autophagy.
\nAutophagy has been shown to be a mechanism of fibrosis recovery and scarring secondary to cell apoptosis and active in the perimeter of cardiovascular fibrotic tissue. Autophagy inhibition has a beneficial effect on type 2 diabetes–induced cardiomyopathy. These findings suggest that autophagy is diversely altered in different types of diabetes-induced cardiac pathologies. Therefore, targeting autophagy regulation may be a potential therapeutic strategy for diabetic cardiomyopathy.
\nMoreover, the animal model of T2DM induced by STZ plus HFCD whose diabetic response evokes pro-oxidative and profibrotic attenuated reactions in the presence of AG suggests that this molecule may be part of autophagy therapy for diabetic cardiomyopathy. Thus, AG reduces oxidative stress-associated cardiac fibrosis by decreasing pERK1/2, pSMAD2/3 and collagen type I expression via AGE/RAGE signaling in T2DM.
\nThe knowledge of the molecules involved in mechanisms of proteostasis and autophagy in cardiac cells and the role they play in various signaling pathways will serve as an opportunity for the future design of therapeutic targets for the treatment of fibrosis, alterations of cardiac tissue remodeling and cardiomyopathy.
\nThis work was partially supported by grant from the academic group, SEP/PRODEP and CONACYT/PRO-SNI.
\nThe authors declare no conflict of interest.
IntechOpen Compacts provide a mid-length publishing format which bridges the gap between journal articles, book chapters and monographs, and cover content across all scientific disciplines. Compacts are the preferred publishing option for brief research reports on new topics, in-depth case studies, dissertations, or essays exploring new ideas, issues or broader topics on the research subject.
",metaTitle:"IntechOpen Compacts",metaDescription:"IntechOpen Compacts present a mid-length publishing format which bridges the gap between journal articles, book chapters, and monographs and covers content across all scientific disciplines.",metaKeywords:null,canonicalURL:"/page/compacts",contentRaw:'[{"type":"htmlEditorComponent","content":"Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\\n\\nCOMPACTS-SHORT FORM MONOGRAPH
\\n\\nCOST
\\n\\n4,000 GBP Compacts Monograph - Short Form
\\n\\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\\n\\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\\n\\nOptional Services
\\n\\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\\n\\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\\n\\nFUNDING
\\n\\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\\n\\nBENEFITS
\\n\\nPUBLISHING PROCESS STEPS
\\n\\nSee a complete overview and description of the steps involved in the publishing process here.
\\n\\nSEND YOUR PROPOSAL
\\n\\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\\n\\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Without sacrificing the quality of carefully edited and produced peer-reviewed content, Compacts are published as part of IntechOpen’s book collection but on a faster schedule, typically 4-6 weeks after acceptance. With an average of 132,000 visitors per week, publishing in Compacts not only guarantees high visibility but also facilitates international content sharing. As a fully Open Access publisher, the utilization of a CC BY NC 4.0 license means that other researchers will never have to pay permission fees and can adapt, use, and further build upon the material published in Compacts, eliminating any barriers to the further development of scientific research.
\n\nCOMPACTS-SHORT FORM MONOGRAPH
\n\nCOST
\n\n4,000 GBP Compacts Monograph - Short Form
\n\nThe final price will depend on the volume of the publication and includes project management, editorial and peer-review services, technical editing, language copyediting, cover design, book layout, book promotion and ISBN assignment.
\n\n*The price does not include Value-Added Tax (VAT). Residents of European Union countries need to add VAT based on the specific rate applicable in their country of residence. Institutions and companies registered as VAT taxable entities in their own EU member state will not pay VAT by providing us with their VAT registration number. This is made possible by the EU reverse charge method.
\n\nOptional Services
\n\nIntechOpen has collaborated with Enago, through its sister company, Ulatus – one of the world’s leading providers of book translation services. The services are designed to convey the essence of your work seamlessly to readers from across the globe in their own language. Enago’s expert translators incorporate cultural nuances in translations to make the content relevant for local audiences while retaining the original meaning and style. With a high degree of linguistic and subject expertise, Enago translators are equipped to handle all complex and multiple overlapping themes encompassed in a single book to deliver a superior quality of translation.
\n\nIntechOpen Authors that wish to use this service will receive a 20% discount on all translation work. For more information or a quote, please visit: https://www.enago.com/intech.
\n\nFUNDING
\n\nWe feel that financial barriers should never prevent researchers from publishing their research. Please consult our Open Access Funding page to explore funding opportunities and learn more about how you can finance your IntechOpen publication.
\n\nBENEFITS
\n\nPUBLISHING PROCESS STEPS
\n\nSee a complete overview and description of the steps involved in the publishing process here.
\n\nSEND YOUR PROPOSAL
\n\nIf you are interested in publishing your book with IntechOpen, please submit your book proposal by completing the Publishing Proposal Form.
\n\nNot sure if this is the right option for you? Please refer back to the main Publish with IntechOpen page or feel free to contact us directly at book.department@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"21"},books:[{type:"book",id:"10671",title:"Connected Adolescence",subtitle:null,isOpenForSubmission:!0,hash:"f005179bb7f6cd7c531a00cd8da18eaa",slug:null,bookSignature:"Prof. Massimo Ingrassia and Prof. Loredana Benedetto",coverURL:"https://cdn.intechopen.com/books/images_new/10671.jpg",editedByType:null,editors:[{id:"193901",title:"Prof.",name:"Massimo",surname:"Ingrassia",slug:"massimo-ingrassia",fullName:"Massimo Ingrassia"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10814",title:"Anxiety, Uncertainty, and Resilience During the Pandemic Period - Anthropological and Psychological Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"2db4d2a6638d2c66f7a5741d0f8fe4ae",slug:null,bookSignature:"Prof. Fabio Gabrielli and Dr. Floriana Irtelli",coverURL:"https://cdn.intechopen.com/books/images_new/10814.jpg",editedByType:null,editors:[{id:"259407",title:"Prof.",name:"Fabio",surname:"Gabrielli",slug:"fabio-gabrielli",fullName:"Fabio Gabrielli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10908",title:"Decision Making",subtitle:null,isOpenForSubmission:!0,hash:"126486f7f91e18e2e3539a32c38be7b1",slug:null,bookSignature:"Prof. Fausto Pedro García Márquez",coverURL:"https://cdn.intechopen.com/books/images_new/10908.jpg",editedByType:null,editors:[{id:"22844",title:"Prof.",name:"Fausto Pedro",surname:"García Márquez",slug:"fausto-pedro-garcia-marquez",fullName:"Fausto Pedro García Márquez"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10909",title:"Psychometrics",subtitle:null,isOpenForSubmission:!0,hash:"51388e9ab6c536936b8da4f9c226252e",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10909.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10910",title:"Learning Disabilities",subtitle:null,isOpenForSubmission:!0,hash:"0999e5f759c2380ae5a4a2ee0835c98d",slug:null,bookSignature:" Sandro Misciagna",coverURL:"https://cdn.intechopen.com/books/images_new/10910.jpg",editedByType:null,editors:[{id:"103586",title:null,name:"Sandro",surname:"Misciagna",slug:"sandro-misciagna",fullName:"Sandro Misciagna"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10981",title:"Sport Psychology in Sports, Exercise and Physical Activity",subtitle:null,isOpenForSubmission:!0,hash:"5214c44bdc42978449de0751ca364684",slug:null,bookSignature:"Ph.D. Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/10981.jpg",editedByType:null,editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:6},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5327},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"383",title:"Biotechnology",slug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry-biotechnology",parent:{title:"Bioorganic Chemistry",slug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry"},numberOfBooks:1,numberOfAuthorsAndEditors:46,numberOfWosCitations:139,numberOfCrossrefCitations:69,numberOfDimensionsCitations:190,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry-biotechnology",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"880",title:"Plant Breeding",subtitle:null,isOpenForSubmission:!1,hash:"00fb30196097697f0e1211ce27ba426d",slug:"plant-breeding",bookSignature:"Ibrokhim Y. Abdurakhmonov",coverURL:"https://cdn.intechopen.com/books/images_new/880.jpg",editedByType:"Edited by",editors:[{id:"213344",title:"Dr.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"25554",doi:"10.5772/29982",title:"Haploids and Doubled Haploids in Plant Breeding",slug:"haploids-and-doubled-haploids-in-plant-breeding",totalDownloads:27579,totalCrossrefCites:41,totalDimensionsCites:68,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Jana Murovec and Borut Bohanec",authors:[{id:"80213",title:"Prof.",name:"Borut",middleName:null,surname:"Bohanec",slug:"borut-bohanec",fullName:"Borut Bohanec"},{id:"127399",title:"Dr.",name:"Jana",middleName:null,surname:"Murovec",slug:"jana-murovec",fullName:"Jana Murovec"}]},{id:"25556",doi:"10.5772/37458",title:"Genomics-Assisted Plant Breeding in the 21st Century: Technological Advances and Progress",slug:"genomics-assisted-plant-breeding-in-the-21st-century-technological-advances-and-progress",totalDownloads:7714,totalCrossrefCites:1,totalDimensionsCites:27,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Siva P. Kumpatla, Ramesh Buyyarapu, Ibrokhim Y. Abdurakhmonov and Jafar A. Mammadov",authors:[{id:"112839",title:"Dr.",name:"Siva Prasad",middleName:null,surname:"Kumpatla",slug:"siva-prasad-kumpatla",fullName:"Siva Prasad Kumpatla"},{id:"124831",title:"Dr.",name:"Jafar",middleName:null,surname:"Mammadov",slug:"jafar-mammadov",fullName:"Jafar Mammadov"},{id:"124832",title:"Dr.",name:"Ramesh",middleName:null,surname:"Buyyarapu",slug:"ramesh-buyyarapu",fullName:"Ramesh Buyyarapu"},{id:"213344",title:"Dr.",name:"Ibrokhim Y.",middleName:null,surname:"Abdurakhmonov",slug:"ibrokhim-y.-abdurakhmonov",fullName:"Ibrokhim Y. Abdurakhmonov"}]},{id:"25553",doi:"10.5772/29827",title:"Use of 2n Gametes in Plant Breeding",slug:"use-of-2n-gametes-in-plant-breeding",totalDownloads:3953,totalCrossrefCites:13,totalDimensionsCites:26,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"A. Dewitte, K. Van Laere and J. Van Huylenbroeck",authors:[{id:"53763",title:"Dr.",name:"Angelo",middleName:null,surname:"Dewitte",slug:"angelo-dewitte",fullName:"Angelo Dewitte"},{id:"59918",title:"Dr.",name:"Johan",middleName:null,surname:"Van Huylenbroeck",slug:"johan-van-huylenbroeck",fullName:"Johan Van Huylenbroeck"},{id:"120546",title:"Dr.",name:"Katrijn",middleName:null,surname:"Van Laere",slug:"katrijn-van-laere",fullName:"Katrijn Van Laere"}]}],mostDownloadedChaptersLast30Days:[{id:"25554",title:"Haploids and Doubled Haploids in Plant Breeding",slug:"haploids-and-doubled-haploids-in-plant-breeding",totalDownloads:27579,totalCrossrefCites:41,totalDimensionsCites:68,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Jana Murovec and Borut Bohanec",authors:[{id:"80213",title:"Prof.",name:"Borut",middleName:null,surname:"Bohanec",slug:"borut-bohanec",fullName:"Borut Bohanec"},{id:"127399",title:"Dr.",name:"Jana",middleName:null,surname:"Murovec",slug:"jana-murovec",fullName:"Jana Murovec"}]},{id:"25550",title:"Virtual Plant Breeding",slug:"virtual-plant-breeding",totalDownloads:2806,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Sven B. Andersen",authors:[{id:"79388",title:"Prof.",name:"Sven Bode",middleName:null,surname:"Andersen",slug:"sven-bode-andersen",fullName:"Sven Bode Andersen"}]},{id:"25555",title:"Chromosome Substitution Lines: Concept, Development and Utilization in the Genetic Improvement of Upland Cotton",slug:"chromosome-substitution-lines-concept-development-and-utilization-in-the-genetic-improvement-of-upla",totalDownloads:5462,totalCrossrefCites:2,totalDimensionsCites:12,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Sukumar Saha, David M. Stelly, Dwaine A. Raska, Jixiang Wu, Johnie N. Jenkins, Jack C. McCarty, Abdusalom Makamov, V. Gotmare, Ibrokhim Y. Abdurakhmonov and B.T. Campbell",authors:[{id:"105070",title:"Dr.",name:"Sukumar",middleName:null,surname:"Saha",slug:"sukumar-saha",fullName:"Sukumar Saha"}]},{id:"25561",title:"Challenges, Opportunities and Recent Advances in Sugarcane Breeding",slug:"challenges-opportunities-and-recent-advances-in-sugarcane-breeding",totalDownloads:7432,totalCrossrefCites:2,totalDimensionsCites:23,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Katia C. Scortecci, Silvana Creste, Tercilio Calsa Jr., Mauro A. Xavier, Marcos G. A. Landell, Antonio Figueira and Vagner A. Benedito",authors:[{id:"74637",title:"Prof.",name:"Vagner",middleName:null,surname:"Benedito",slug:"vagner-benedito",fullName:"Vagner Benedito"}]},{id:"25551",title:"Modelling and Simulation of Plant Breeding Strategies",slug:"modelling-and-simulation-of-plant-breeding-strategies",totalDownloads:4488,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Jiankang Wang",authors:[{id:"71858",title:"Dr.",name:"Jiankang",middleName:null,surname:"Wang",slug:"jiankang-wang",fullName:"Jiankang Wang"}]},{id:"25560",title:"Olive – Colletotrichum acutatum: An Example of Fruit-Fungal Interaction",slug:"olive-colletotrichum-acutatum-an-example-of-fruit-fungal-interaction",totalDownloads:3426,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Sónia Gomes, Pilar Prieto, Teresa Carvalho, Henrique Guedes-Pinto and Paula Martins-Lopes",authors:[{id:"72207",title:"Prof.",name:"Paula",middleName:null,surname:"Martins-Lopes",slug:"paula-martins-lopes",fullName:"Paula Martins-Lopes"},{id:"72215",title:"Dr.",name:"Sónia",middleName:null,surname:"Gomes",slug:"sonia-gomes",fullName:"Sónia Gomes"},{id:"72222",title:"Prof.",name:"Henrique",middleName:null,surname:"Guedes-Pinto",slug:"henrique-guedes-pinto",fullName:"Henrique Guedes-Pinto"},{id:"72224",title:"Dr.",name:"Pilar",middleName:null,surname:"Prieto",slug:"pilar-prieto",fullName:"Pilar Prieto"},{id:"72226",title:"MSc.",name:"Teresa",middleName:null,surname:"Carvalho",slug:"teresa-carvalho",fullName:"Teresa Carvalho"}]},{id:"25562",title:"Heritability of Cold Tolerance (Winter Hardiness) in Gladiolus xgrandiflorus",slug:"heritability-of-cold-tolerance-winter-hardiness-in-gladiolus-xgrandiflorus",totalDownloads:2788,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Neil O. Anderson, Janelle Frick, Adnan Younis and Christopher Currey",authors:[{id:"69714",title:"Prof.",name:"Neil",middleName:null,surname:"Anderson",slug:"neil-anderson",fullName:"Neil Anderson"},{id:"69724",title:"Ms.",name:"Janelle",middleName:null,surname:"Frick",slug:"janelle-frick",fullName:"Janelle Frick"},{id:"69725",title:"Dr.",name:"Adnan",middleName:null,surname:"Younis",slug:"adnan-younis",fullName:"Adnan Younis"},{id:"69726",title:"Mr.",name:"Chris",middleName:null,surname:"Currey",slug:"chris-currey",fullName:"Chris Currey"}]},{id:"25564",title:"Genetic Variability Evaluation and Selection in Ancient Grapevine Varieties",slug:"genetic-variability-evaluation-and-selection-in-ancient-grapevine-varieties",totalDownloads:2044,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Elsa Gonçalves and Antero Martins",authors:[{id:"72007",title:"Prof.",name:"Elsa",middleName:null,surname:"Gonçalves",slug:"elsa-goncalves",fullName:"Elsa Gonçalves"},{id:"79368",title:"Prof.",name:"Antero",middleName:null,surname:"Martins",slug:"antero-martins",fullName:"Antero Martins"}]},{id:"25553",title:"Use of 2n Gametes in Plant Breeding",slug:"use-of-2n-gametes-in-plant-breeding",totalDownloads:3953,totalCrossrefCites:13,totalDimensionsCites:26,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"A. Dewitte, K. Van Laere and J. Van Huylenbroeck",authors:[{id:"53763",title:"Dr.",name:"Angelo",middleName:null,surname:"Dewitte",slug:"angelo-dewitte",fullName:"Angelo Dewitte"},{id:"59918",title:"Dr.",name:"Johan",middleName:null,surname:"Van Huylenbroeck",slug:"johan-van-huylenbroeck",fullName:"Johan Van Huylenbroeck"},{id:"120546",title:"Dr.",name:"Katrijn",middleName:null,surname:"Van Laere",slug:"katrijn-van-laere",fullName:"Katrijn Van Laere"}]},{id:"25557",title:"A Multiplex Fluorescent PCR Assay in Molecular Breeding of Oilseed Rape",slug:"a-multiplex-fluorescent-pcr-assay-in-molecular-breeding-of-oilseed-rape",totalDownloads:2749,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"plant-breeding",title:"Plant Breeding",fullTitle:"Plant Breeding"},signatures:"Katarzyna Mikolajczyk, Iwona Bartkowiak-Broda, Wieslawa Poplawska, Stanislaw Spasibionek, Agnieszka Dobrzycka and Miroslawa Dabert",authors:[{id:"71973",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Mikolajczyk",slug:"katarzyna-mikolajczyk",fullName:"Katarzyna Mikolajczyk"},{id:"81084",title:"Dr.",name:"Miroslawa",middleName:null,surname:"Dabert",slug:"miroslawa-dabert",fullName:"Miroslawa Dabert"},{id:"87118",title:"Dr.",name:"Agnieszka",middleName:null,surname:"Dobrzycka",slug:"agnieszka-dobrzycka",fullName:"Agnieszka Dobrzycka"},{id:"87119",title:"Dr.",name:"Stanislaw",middleName:null,surname:"Spasibionek",slug:"stanislaw-spasibionek",fullName:"Stanislaw Spasibionek"},{id:"87120",title:"Dr.",name:"Wieslawa",middleName:"Maria",surname:"Poplawska",slug:"wieslawa-poplawska",fullName:"Wieslawa Poplawska"},{id:"87121",title:"Prof.",name:"Iwona",middleName:"Maria",surname:"Bartkowiak-Broda",slug:"iwona-bartkowiak-broda",fullName:"Iwona Bartkowiak-Broda"}]}],onlineFirstChaptersFilter:{topicSlug:"biochemistry-genetics-and-molecular-biology-bioorganic-chemistry-biotechnology",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/cancer-management-and-therapy/targeted-therapies-in-platinum-resistant-ovarian-cancer-advances-in-immunotherapy-combination-strate",hash:"",query:{},params:{book:"cancer-management-and-therapy",chapter:"targeted-therapies-in-platinum-resistant-ovarian-cancer-advances-in-immunotherapy-combination-strate"},fullPath:"/books/cancer-management-and-therapy/targeted-therapies-in-platinum-resistant-ovarian-cancer-advances-in-immunotherapy-combination-strate",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()