AP combustion mechanism
\\n\\n
More than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\\n\\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\\n\\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\\n\\nAdditionally, each book published by IntechOpen contains original content and research findings.
\\n\\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\\n\\n\\n\\n
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'
Simba Information has released its Open Access Book Publishing 2020 - 2024 report and has again identified IntechOpen as the world’s largest Open Access book publisher by title count.
\n\nSimba Information is a leading provider for market intelligence and forecasts in the media and publishing industry. The report, published every year, provides an overview and financial outlook for the global professional e-book publishing market.
\n\nIntechOpen, De Gruyter, and Frontiers are the largest OA book publishers by title count, with IntechOpen coming in at first place with 5,101 OA books published, a good 1,782 titles ahead of the nearest competitor.
\n\nSince the first Open Access Book Publishing report published in 2016, IntechOpen has held the top stop each year.
\n\n\n\nMore than half of the publishers listed alongside IntechOpen (18 out of 30) are Social Science and Humanities publishers. IntechOpen is an exception to this as a leader in not only Open Access content but Open Access content across all scientific disciplines, including Physical Sciences, Engineering and Technology, Health Sciences, Life Science, and Social Sciences and Humanities.
\n\nOur breakdown of titles published demonstrates this with 47% PET, 31% HS, 18% LS, and 4% SSH books published.
\n\n“Even though ItechOpen has shown the potential of sci-tech books using an OA approach,” other publishers “have shown little interest in OA books.”
\n\nAdditionally, each book published by IntechOpen contains original content and research findings.
\n\nWe are honored to be among such prestigious publishers and we hope to continue to spearhead that growth in our quest to promote Open Access as a true pioneer in OA book publishing.
\n\n\n\n
\n'}],latestNews:[{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"},{slug:"all-intechopen-books-available-on-perlego-20201215",title:"All IntechOpen Books Available on Perlego"},{slug:"oiv-awards-recognizes-intechopen-s-editors-20201127",title:"OIV Awards Recognizes IntechOpen's Editors"},{slug:"intechopen-joins-crossref-s-initiative-for-open-abstracts-i4oa-to-boost-the-discovery-of-research-20201005",title:"IntechOpen joins Crossref's Initiative for Open Abstracts (I4OA) to Boost the Discovery of Research"},{slug:"intechopen-hits-milestone-5-000-open-access-books-published-20200908",title:"IntechOpen hits milestone: 5,000 Open Access books published!"},{slug:"intechopen-books-hosted-on-the-mathworks-book-program-20200819",title:"IntechOpen Books Hosted on the MathWorks Book Program"}]},book:{item:{type:"book",id:"8345",leadTitle:null,fullTitle:"Boundary Layer Flows - Theory, Applications and Numerical Methods",title:"Boundary Layer Flows",subtitle:"Theory, Applications and Numerical Methods",reviewType:"peer-reviewed",abstract:'Written by experts in the field, this book, "Boundary Layer Flows - Theory, Applications, and Numerical Methods" provides readers with the opportunity to explore its theoretical and experimental studies and their importance to the nonlinear theory of boundary layer flows, the theory of heat and mass transfer, and the dynamics of fluid. With the theory\'s importance for a wide variety of applications, applied mathematicians, scientists, and engineers - especially those in fluid dynamics - along with engineers of aeronautics, will undoubtedly welcome this authoritative, up-to-date book.',isbn:"978-1-83968-186-8",printIsbn:"978-1-83968-185-1",pdfIsbn:"978-1-83968-187-5",doi:"10.5772/intechopen.78474",price:119,priceEur:129,priceUsd:155,slug:"boundary-layer-flows-theory-applications-and-numerical-methods",numberOfPages:234,isOpenForSubmission:!1,isInWos:1,hash:"14d9725e87983a03938f073f6c5ee815",bookSignature:"Vallampati Ramachandra Prasad",publishedDate:"January 22nd 2020",coverURL:"https://cdn.intechopen.com/books/images_new/8345.jpg",numberOfDownloads:4581,numberOfWosCitations:2,numberOfCrossrefCitations:3,numberOfDimensionsCitations:4,hasAltmetrics:0,numberOfTotalCitations:9,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"August 29th 2018",dateEndSecondStepPublish:"November 19th 2018",dateEndThirdStepPublish:"January 18th 2019",dateEndFourthStepPublish:"April 8th 2019",dateEndFifthStepPublish:"June 7th 2019",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"146601",title:"Dr.",name:"Vallampati",middleName:null,surname:"Ramachandra Prasad",slug:"vallampati-ramachandra-prasad",fullName:"Vallampati Ramachandra Prasad",profilePictureURL:"https://mts.intechopen.com/storage/users/146601/images/system/146601.jpg",biography:"Prof. V. Ramachandra Prasad is currently working as a Professor\nin the Mathematics Department, School Advanced Sciences,\nVellore Institute of Technology, Vellore, Tamil Nadu, India. He\nhas 25 years of teaching experience and has authored more than\n100 publications in the area of fluid dynamics and heat transfer.\nOver the past decade he has worked in the areas of multi-physical\nfluid dynamics and numerical simulation. His work has investigated\ncomplex phenomena of interest in mechanical engineering, applied mathematics,\nchemical engineering, and material processing. He has made fundamental\ncontributions in magnetic fluid dynamics, thermal radiation heat transfer, fluid\nmodeling, micro polar non-Newtonian hydrodynamics, magnetic induction flows,\nviscoelastic liquid flows, porous media, and boundary flows. He has authored over\n100 journal articles in these areas and also numerous conference presentations. He\nhas published six books on radiation heat transfer, thermo-diffusion and diffusion-thermo\neffects on boundary layer flows, and Viscoelastic flows. More recent\nwork has involved non-Newtonian fluid dynamics, fluid particle suspensions, and\nlid driven cavities. The numerical methods he has used are the finite difference\nmethod, finite element method, network simulation methods, and finite volume\ncodes. I have worked in collaboration with US, Indian, Spanish, British, and Taiwanese\nresearchers. He is working as reviewer for over 100 national and\ninternational journals. His h-index is 24 and i-10 index is 50.",institutionString:"Vellore Institute of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"0",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Vellore Institute of Technology University",institutionURL:null,country:{name:"India"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"970",title:"Mathematical Physics",slug:"mathematical-physics"}],chapters:[{id:"65410",title:"3D Boundary Layer Theory",doi:"10.5772/intechopen.83519",slug:"3d-boundary-layer-theory",totalDownloads:416,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Vladimir Shalaev",downloadPdfUrl:"/chapter/pdf-download/65410",previewPdfUrl:"/chapter/pdf-preview/65410",authors:[null],corrections:null},{id:"66522",title:"TBL-Induced Structural Vibration and Noise",doi:"10.5772/intechopen.85142",slug:"tbl-induced-structural-vibration-and-noise",totalDownloads:358,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Zhang Xilong, Kou YiWei and Liu Bilong",downloadPdfUrl:"/chapter/pdf-download/66522",previewPdfUrl:"/chapter/pdf-preview/66522",authors:[null],corrections:null},{id:"66869",title:"Roughness Effects on Turbulence Characteristics in an Open Channel Flow",doi:"10.5772/intechopen.85990",slug:"roughness-effects-on-turbulence-characteristics-in-an-open-channel-flow",totalDownloads:598,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Abdullah Faruque",downloadPdfUrl:"/chapter/pdf-download/66869",previewPdfUrl:"/chapter/pdf-preview/66869",authors:[{id:"217678",title:"Associate Prof.",name:"Abdullah",surname:"Faruque",slug:"abdullah-faruque",fullName:"Abdullah Faruque"}],corrections:null},{id:"65415",title:"Leading Edge Receptivity at Subsonic and Moderately Supersonic Mach Numbers",doi:"10.5772/intechopen.83672",slug:"leading-edge-receptivity-at-subsonic-and-moderately-supersonic-mach-numbers",totalDownloads:291,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Marvin E. Goldstein and Pierre Ricco",downloadPdfUrl:"/chapter/pdf-download/65415",previewPdfUrl:"/chapter/pdf-preview/65415",authors:[null],corrections:null},{id:"65411",title:"Transition Modeling for Low to High Speed Boundary Layer Flows with CFD Applications",doi:"10.5772/intechopen.83520",slug:"transition-modeling-for-low-to-high-speed-boundary-layer-flows-with-cfd-applications",totalDownloads:1035,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Unver Kaynak, Onur Bas, Samet Caka Cakmakcioglu and Ismail Hakki Tuncer",downloadPdfUrl:"/chapter/pdf-download/65411",previewPdfUrl:"/chapter/pdf-preview/65411",authors:[null],corrections:null},{id:"67295",title:"Physical Models of Atmospheric Boundary Layer Flows: Some Developments and Recent Applications",doi:"10.5772/intechopen.86483",slug:"physical-models-of-atmospheric-boundary-layer-flows-some-developments-and-recent-applications",totalDownloads:399,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Adrián R. Wittwer, Acir M. Loredo-Souza, Mario E. De Bortoli and Jorge O. Marighetti",downloadPdfUrl:"/chapter/pdf-download/67295",previewPdfUrl:"/chapter/pdf-preview/67295",authors:[null],corrections:null},{id:"69291",title:"Dimple Generators of Longitudinal Vortex Structures",doi:"10.5772/intechopen.83518",slug:"dimple-generators-of-longitudinal-vortex-structures",totalDownloads:401,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Volodymyr Voskoboinick, Andriy Voskoboinick, Oleksandr Voskoboinyk and Volodymyr Turick",downloadPdfUrl:"/chapter/pdf-download/69291",previewPdfUrl:"/chapter/pdf-preview/69291",authors:[null],corrections:null},{id:"65807",title:"Thermal-Hydrodynamic Characteristics of Turbulent Flow in Corrugated Channels",doi:"10.5772/intechopen.84736",slug:"thermal-hydrodynamic-characteristics-of-turbulent-flow-in-corrugated-channels",totalDownloads:240,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Nabeel S. Dhaidana and Abdalrazzaq K. Abbas",downloadPdfUrl:"/chapter/pdf-download/65807",previewPdfUrl:"/chapter/pdf-preview/65807",authors:[null],corrections:null},{id:"68809",title:"Singularly Perturbed Parabolic Problems",doi:"10.5772/intechopen.84339",slug:"singularly-perturbed-parabolic-problems",totalDownloads:342,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Asan Omuraliev and Ella Abylaeva",downloadPdfUrl:"/chapter/pdf-download/68809",previewPdfUrl:"/chapter/pdf-preview/68809",authors:[null],corrections:null},{id:"70366",title:"Solving Partial Differential Equation Using FPGA Technology",doi:"10.5772/intechopen.84588",slug:"solving-partial-differential-equation-using-fpga-technology",totalDownloads:505,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Vu Duc Thai and Bui Van Tung",downloadPdfUrl:"/chapter/pdf-download/70366",previewPdfUrl:"/chapter/pdf-preview/70366",authors:[null],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"1966",title:"Molecular Dynamics",subtitle:"Theoretical Developments and Applications in Nanotechnology and Energy",isOpenForSubmission:!1,hash:"c1e56574dff3c36a222df9d90ccebf9c",slug:"molecular-dynamics-theoretical-developments-and-applications-in-nanotechnology-and-energy",bookSignature:"Lichang Wang",coverURL:"https://cdn.intechopen.com/books/images_new/1966.jpg",editedByType:"Edited by",editors:[{id:"107906",title:"Prof.",name:"Lichang",surname:"Wang",slug:"lichang-wang",fullName:"Lichang Wang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5192",title:"Nonlinear Systems",subtitle:"Design, Analysis, Estimation and Control",isOpenForSubmission:!1,hash:"f0fcb297b36945433902e923bf668b8b",slug:"nonlinear-systems-design-analysis-estimation-and-control",bookSignature:"Dongbin Lee, Tim Burg and Christos Volos",coverURL:"https://cdn.intechopen.com/books/images_new/5192.jpg",editedByType:"Edited by",editors:[{id:"147032",title:"Prof.",name:"Dongbin",surname:"Lee",slug:"dongbin-lee",fullName:"Dongbin Lee"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6128",title:"Resonance",subtitle:null,isOpenForSubmission:!1,hash:"da5cccb1323ad52317e2001caf4e92f9",slug:"resonance",bookSignature:"Jan Awrejcewicz",coverURL:"https://cdn.intechopen.com/books/images_new/6128.jpg",editedByType:"Edited by",editors:[{id:"68338",title:"Prof.",name:"Jan",surname:"Awrejcewicz",slug:"jan-awrejcewicz",fullName:"Jan Awrejcewicz"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6716",title:"Perturbation Methods with Applications in Science and Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4eb95b646172fe61a2068c4a98ac13e4",slug:"perturbation-methods-with-applications-in-science-and-engineering",bookSignature:"İlkay Bakırtaş",coverURL:"https://cdn.intechopen.com/books/images_new/6716.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74026",slug:"corrigendum-to-calf-sex-influence-in-bovine-milk-production",title:"Corrigendum to: Calf-Sex Influence in Bovine Milk Production",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74026.pdf",downloadPdfUrl:"/chapter/pdf-download/74026",previewPdfUrl:"/chapter/pdf-preview/74026",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74026",risUrl:"/chapter/ris/74026",chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]}},chapter:{id:"73504",slug:"calf-sex-influence-in-bovine-milk-production",signatures:"Miguel Quaresma and R. Payan-Carreira",dateSubmitted:"April 21st 2020",dateReviewed:"September 10th 2020",datePrePublished:"October 8th 2020",datePublished:"January 20th 2021",book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:[{id:"38652",title:"Dr.",name:"Rita",middleName:null,surname:"Payan-Carreira",fullName:"Rita Payan-Carreira",slug:"rita-payan-carreira",email:"rtpayan@gmail.com",position:null,institution:{name:"University of Évora",institutionURL:null,country:{name:"Portugal"}}},{id:"309250",title:"Dr.",name:"Miguel",middleName:null,surname:"Quaresma",fullName:"Miguel Quaresma",slug:"miguel-quaresma",email:"miguelq@utad.pt",position:null,institution:{name:"University of Trás-os-Montes and Alto Douro",institutionURL:null,country:{name:"Portugal"}}}]},book:{id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,fullTitle:"Animal Reproduction in Veterinary Medicine",slug:"animal-reproduction-in-veterinary-medicine",publishedDate:"January 20th 2021",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",licenceType:"CC BY 3.0",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"7551",leadTitle:null,title:"Biotechnological Approaches in Plant Mutation Breeding",subtitle:null,reviewType:"peer-reviewed",abstract:"
\r\n\tMutation breeding is one of the old breeding strategies to enhance the resistance of new plant varieties to biotic and abiotic stress factors. Nowadays, many plant biotechnology techniques such as plant tissue cultures, in vitro mutagenesis, in vitro selection, in vitro regeneration are used as a complement to classic mutation breeding. Plant biotechnology provides many advantages in terms of time, cost and labor in breeding process. Currently, many plant breeders use a combination of mutation and plant biotechnology techniques in their studies.
\r\n\tAt this point, it is important to review current developments in this area. In this book we will discuss the topics of radiobiology, in vitro mutagenesis, mutation breeding for resistance to biotic and abiotic stress factors, improved new crop varieties, metabolic pathways for antioxidant enzymes in plants, gene expression, omics approaches in mutation and image analyses studies in mutation breeding. This book intends to provide the reader with a comprehensive overview of the current developments in plant mutation breeding.
Despite the widespread use and long investigative history of ammonium perchlorate(AP)-fuel mixtures, it still can be said that AP alone and AP/HTPB (hydroxyl-terminated-polybutadiene) composites remain among the most confounding materials in the research setting [1]. Since the physical structure of composite propellants like the AP/HTPB composite is heterogeneous, the combustion wave structure appears to be also heterogeneous. During the combustion, at the burning surface, the decomposed gases from the ammonium perchlorate particles and fuel binder (HTPB) are interdiffused and produce diffusion flame streams. Due this, the flame structure of AP composite propellants is complex and locally three-dimensional in shape.
Ammonium perchlorate (NH4ClO4) is a powerful oxidizer salt largely used in solid propellant formulations for application in airspace and defense materials industries. It is obtained by reaction between ammonia and perchloric acid, or by double decomposition between an ammonium salt and sodium perchlorate, and crystallizes with romboedric structure in room temperature and pressure, with relative density of 1.95 [2] Similarly to most ammonium salts, AP thermal decomposition occurs before its fusion. When submitted to a low heating rate, decomposes releasing gases chlorine, nitrogen and oxygen and water in the vapor state; while with a high heating rate stimulus there are instant reactions with high energy release.
During the combustion process of AP crystals at high pressures, is possible to observe the formation of a tiny layer of ammonium perchlorate in liquid phase at the grain surface [3], followed by a region where it is presented in gaseous phase.
According to Beckstead and Puduppakkam [4], the combustion of a monopropellant can be divided in three regions (condensed, liquid-gas two-phase region and gas region). The two-phase region consists of liquid and gaseous species resulting from the melting and/or decomposition of the solid phase. The precise division between the two-phase and gas-phase region (i.e. the \'burning surface\') is not well defined due to chemical reactions, bubbles, and condensed material being convected away from the surface. In the gas phase region of a monopropellant, the flame is essentially premixed. The species emanating from the surface react with each other and/or decompose to form other species. A wide variety of reactions involving many species occur in the gas flame until equilibrium is reached in the final flame zone.
Thermal decomposition of AP, as its combustion processes, have been experimentally studied and reported in the literature. The thermal decomposition of AP may be observed by differential thermal analysis (DTA) and thermal gravimetry (TG), in the figure below [5]. A heating rate of 0.33 K/s was used on the analysis.
TG and DTA of AP decomposition [5]
The phase transition from orthorhombic to cubic crystal lattice (ΔH = -85 kJ/kg) is represented by the endothermic peak on 520 K. The exothermic events on 607 K and 720 K are due to the proper decomposition of the AP crystal in ammonia and perchloric acid, followed by the formation of chloridric acid and oxygen (decomposition of HClO4), according to the reactions below.
These oxygen molecules will be used as oxidizer in binders combustion, when the AP is used in a composite propellant or even when is burning by itself.
The combustion mechanism of AP has been studied and modified. The table below shows the elementary reactions which take part on the combustion process. This mechanism was proposed by Gross [6], according to literature data. It is very interesting the analysis of the combustion for its close relation to the thermal decomposition. When high pressure or high temperatures are used, the material suffers combustion instead of thermal decomposition, i.e. there’s a higher velocity of decomposition and higher energy release, but the process is usually incomplete.
Reaction | A | b | Ea |
HClO4=ClO3+OH | 1.00E+14 | 0.0 | 3.91E+04 |
HClO4+HNO=ClO3+H2O+NO | 1.50E+13 | 0.0 | 6.00E+03 |
ClO3=ClO+O2 | 1.70E+13 | 0.5 | 0,00E+00 |
Cl2+O2+M=ClO2+Cl+M | 6.00E+08 | 0.0 | 1.12E+04 |
ClO+NO=Cl+NO2 | 6.78E+12 | 0.0 | 3.11E+02 |
ClO+ClOH=Cl2+HO2 | 1.00E+11 | 0.0 | 1.00E+04 |
ClOH+OH=ClO+H2O | 1.80E+13 | 0.0 | 0,00E+00 |
HCl+OH=Cl+H2O | 5.00E+11 | 0.0 | 7.50E+02 |
Cl2+H=HCl+Cl | 8.40E+13 | 0.0 | 1.15E+03 |
ClO+NH3=ClOH+NH2 | 6.00E+11 | 0.5 | 6.40E+03 |
NH3+Cl=NH2+HCl | 4.50E+11 | 0.5 | 1.00E+02 |
NH3+OH=NH2+H2O | 5.00E+07 | 1.6 | 9.55E+02 |
NH2+O2=HNO+OH | 3.00E+09 | 0.0 | 0,00E+00 |
NH2+NO=H2O+N2 | 6.20E+15 | -1.3 | 0,00E+00 |
HNO+OH=NO+H2O | 1.30E+07 | 1.9 | -9.50E+02 |
HNO+O2=NO2+OH | 1.50E+13 | 0.0 | 1.00E+04 |
HNO+H=H2+NO | 4.50E+11 | 0.7 | 6.60E+02 |
NO+H+M=HNO+M | 8.90E+19 | -1.3 | 7.40E+02 |
HO2+N2=HNO+NO | 2.70E+10 | 0.5 | 4.18E+04 |
NO+HO2=NO2+OH | 2.11E+12 | 0.0 | 4.80E+02 |
H+NO2=NO+OH | 3.47E+14 | 0.0 | 1.48E+03 |
H2+OH=H2O+H | 2.16E+08 | 1.5 | 3.43E+03 |
AP combustion mechanism
Based on combustion mechanisms, the burning process may be simulated and analyzed by some specific softwares. In a previous work [7], these simulations were done, considering a perfectly stirred reactor, different internal pressures and a specific temperature profile. The combustion simulation results may be observed in the figure below, which show the behavior of AP combustion with different internal pressures of the combustion chamber.
AP combustion at a) 1 atm; b) 5 atm; c) 30 atm and d) 60 atm.
The “elbows” appear due to the increase of the occurrence of intermediate reactions in the flame zone. This phenomenon generates a great variation on the mole fractions of intermediates (as the high temperature enhance the speed of the slower reactions, generating more radicals), which modify the concentration of the main species (specially in the flame zone), so the different slope is observed. As the pressure in the combustion chamber increases, there is an approximation of the flame to the material\'s surface and accentuation of the "elbows" presented on the flame region, indicating the influence of the speed increase of elementary reactions in the decomposition process of the material in study. This gain in chemical speed reactions may be converted in gain in thrust of rocket motors and specific impulse of solid propellant grains.
When a composite propellant is used, like AP-HTPB, the combustion process depends on the diffusion of the gases generated on the initial decomposition of the oxidizer, which surrounds the binder molecules at the burning surface. The combustion mechanism has higher complexity as new components are added, because there are the elementary reactions for each component decomposition and their interactions in chamber, as well as the formation and decomposition of new intermediary species, especially in the flame region. The proposed mechanism for AP-HTPB combustion may be observed in Table 2 below.
Reaction | A | b | Ea |
Cl2+O2+M=ClO2+Cl+M | 6.00E+08 | 0 | 1.12E+04 |
ClO+NO=Cl+NO2 | 6.78E+12 | 0 | 3.11E+02 |
HCl+OH=Cl+H2O | 5.00E+11 | 0 | 7.50E+02 |
Cl2+H=HCl+Cl | 8.40E+13 | 0 | 1.15E+03 |
NH3+Cl=NH2+HCl | 4.50E+11 | 0.5 | 1.00E+02 |
NH3+OH=NH2+H2O | 5.00E+07 | 1.6 | 9.55E+02 |
NH2+O2=HNO+OH | 3.00E+09 | 0 | 0.00E+00 |
NH2+NO=H2O+N2 | 6.20E+15 | -1.3 | 0.00E+00 |
HNO+OH=NO+H2O | 1.30E+07 | 1.9 | -9.50E+02 |
HNO+O2=NO2+OH | 1.50E+13 | 0 | 1.00E+04 |
HNO+H=H2+NO | 4.50E+11 | 0.7 | 6.60E+02 |
NO+H+M=HNO+M | 8.90E+19 | -1.3 | 7.40E+02 |
HO2+N2=HNO+NO | 2.70E+10 | 0.5 | 4.18E+04 |
NO+HO2=NO2+OH | 2.11E+12 | 0 | 4.80E+02 |
H+NO2=NO+OH | 3.47E+14 | 0 | 1.48E+03 |
H2+OH=H2O+H | 2.16E+08 | 1.5 | 3.43E+03 |
CH4+Cl=CH3+HCl | 2.50E+13 | 0 | 3.83E+03 |
CH4+H=CH3+H2 | 6.60E+08 | 1.6 | 1.08E+04 |
CH4+OH=CH3+H2O | 1.00E+08 | 1.6 | 3.12E+03 |
CH3+H+M=CH4+M | 1.27E+16 | -0.6 | 3.83E+02 |
CO+OH=CO2+H | 4.76E+07 | 1.2 | 7.00E+01 |
CO+ClO=CO2+Cl | 3.00E+12 | 0 | 1.00E+03 |
CO+ClO2=CO2+ClO | 1.00E+10 | 0 | 0.00E+00 |
H+O2=O+OH | 8.30E+13 | 0 | 1.44E+04 |
CH2+H2=CH3+H | 5.00E+05 | 2 | 7.23E+03 |
CH2+H+M=CH3+M | 2.50E+16 | -0.8 | 0.00E+00 |
CH4+O=CH3+OH | 1.02E+09 | 1.5 | 6.00E+02 |
OH+CH3=CH2+H2O | 5.60E+07 | 1.6 | 5.42E+03 |
C2H4+O2=2CO+2H2 | 1.80E+14 | 0 | 3.55E+04 |
NH2+NO2=2HNO | 1.40E+12 | 0 | 0.00E+00 |
NH2+ClO=HNO+HCl | 2.50E+12 | 0 | 0.00E+00 |
O2+HNO=NO+HO2 | 1.00E+13 | 0 | 1.30E+04 |
H+Cl+M=HCl+M | 5.30E+21 | -2 | -2.00E+03 |
Cl+Cl+M=Cl2+M | 3.34E+14 | 0 | -1.80E+03 |
Cl+HO2=ClO+OH | 2.47E+13 | 0 | 8.94E+02 |
ClO+O=Cl+O2 | 6.60E+13 | 0 | 4.40E+02 |
H+HCl=Cl+H2 | 7.94E+12 | 0 | 3.40E+03 |
HCl+O=Cl+OH | 2.30E+11 | 0.6 | 9.00E+02 |
Cl2+O=Cl+ClO | 2.51E+12 | 0 | 2.72E+03 |
N2O+M=N2+O+M | 6.20E+14 | 0 | 5.61E+04 |
N2O+OH=N2+HO2 | 2.00E+12 | 0 | 2.11E+04 |
N2O+O=NO+NO | 2.90E+13 | 0 | 2.32E+04 |
N2O+O=N2+O2 | 1.40E+12 | 0 | 1.08E+04 |
N2O+H=N2+OH | 4.40E+14 | 0 | 1.89E+04 |
2H+M<="/>H2+M | 1.00E+18 | -1 | 0.00E+00 |
2H+H2<="/>2H2 | 9.00E+16 | -0.6 | 0.00E+00 |
2H+H2O<="/>H2+H2O | 6.00E+19 | -1.3 | 0.00E+00 |
2H+CO2<="/>H2+CO2 | 5.50E+20 | -2 | 0.00E+00 |
ClO2+NO=ClO+NO2 | 1.00E+11 | 0 | 0.00E+00 |
Cl+ClO2=ClO+ClO | 5.00E+13 | 0 | 6.00E+03 |
ClO+ClO=Cl2+O2 | 1.00E+11 | 0 | 0.00E+00 |
Cl+HO2=HCl+O2 | 1.80E+13 | 0 | 0.00E+00 |
Cl+O2+M=ClO2+M | 8.00E+06 | 0 | 5.20E+03 |
NO2+O=NO+O2 | 1.00E+13 | 0 | 6.00E+02 |
HNO+HNO=H2O+N2O | 3.95E+12 | 0 | 5.00E+03 |
NO2+NO2=NO+NO+O2 | 1.00E+14 | 0 | 2.50E+04 |
Cl+N2O=ClO+N2 | 1.20E+14 | 0 | 3.35E+04 |
OH+OH=H2O+O | 6.00E+08 | 1.3 | 0.00E+00 |
NH2+NO2=H2O+N2O | 4.50E+11 | 0 | 0.00E+00 |
HNO+NH2=NH3+NO | 5.00E+11 | 0.5 | 1.00E+03 |
ClO+HNO=HCl+NO2 | 3.00E+12 | 0 | 0.00E+00 |
HCl+HO2=ClO+H2O | 3.00E+12 | 0 | 0.00E+00 |
NH2+NO=H+N2+OH | 6.30E+19 | -2.5 | 1.90E+03 |
NH2+OH=H2O+NH | 4.00E+06 | 2 | 1.00E+03 |
NH2+NH2=NH+NH3 | 5.00E+13 | 0 | 1.00E+04 |
NH+NO=N2+OH | 1.00E+13 | 0 | 0.00E+00 |
NH+NO=H+N2+O | 2.30E+13 | 0 | 0.00E+00 |
Cl+NH2=HCl+NH | 5.00E+10 | 0.5 | 0.00E+00 |
ClO2+NH=ClO+HNO | 1.00E+14 | 0 | 0.00E+00 |
N+NO2=NO+NO | 1.00E+14 | 0 | 0.00E+00 |
N+N2O=N2+NO | 5.00E+13 | 0 | 0.00E+00 |
NH+OH=H2O+N | 5.00E+11 | 0.5 | 2.00E+03 |
NH+OH=H2+NO | 1.60E+12 | 0.6 | 1.50E+03 |
NH+NH2=N+NH3 | 1.00E+13 | 0 | 2.00E+03 |
HO2+CH3<="/>O2+CH4 | 1.00E+12 | 0 | 0.00E+00 |
CH2+CH4<="/>2CH3 | 2.46E+06 | 2 | 8.27E+03 |
AP-HTPB combustion mechanisma
M: any metal surface or metallic additive used only as support or catalyst
a Kinetic data composed of [8]
Similarly, the combustion process of ammonium perchlorate formulated with hydroxyl terminated polybutadiene was simulated in a perfect stirred reactor (with 70/30 proportion), with variations in the internal chamber pressure (Figure 3 below).
AP/HTPB combustion [7]
The combustion process of AP/HTPB has presented invariable with pressure. This behavior should be attributed to the homogeneous dispersion of AP admist the binder, in the solid phase, and to the lack of this species in relation to the binder (generating lower concentrations of O2 than necessary). Also, in the gas phases, it is assumed that all of the liquid AP and HTPB present on the condensed phase decompose to form gaseous species; evaporation is not included.
In this simulation, the oxygen molar fraction suffers a decrease (and cancels), according to the reactions with HTPB decomposition products, for the formation of carbon monoxide and dioxide. Also, it is interesting to highlight that in this case the carbon monoxide molar fraction suffers a decrease, because the restriction of oxidizer species makes that the oxygen presented in CO to be also used as oxidizing source, viewing the reactive behavior of this specie. In this simulation, the molar fractions of CO and CO2 are not null initially, because given the system temperature, HTPB suffers an initial decomposition that should not be discarded, generating both carbon oxides.
There is always the premise in all simulations and all studies that the materials are in a perfect state, flawless. Unfortunately, this is not the reality in most industries or laboratories, when there’s low turnover. Therefore, the materials may suffer many different changes in their structure or properties. The main one is the aging process.
The aging process is one of the most significant factors responsible for changes in the activation energy of solid propellants (usually reduction). This phenomenon can be defined as the growth of cross bonds in the polyurethane chain, altering the mechanical properties of traction resistance and elongation, in comparison of the properties just after the fabrication [9]. This aging process can be responsible for the appearance of failures and cracks in the grains, which compromise the propellant performance.
The AP/HTPB composite decomposition and the combustion mechanism have been extensively investigated in the last decades and the appearance of advanced methods of diagnostics, like flash pyrolysis, thermogravimetry and differential scanning calorimetry, led to the ressurgence of the interest. These methods are widely used for the investigation of thermal decomposition of organic materials [10], polymers [11,12], composites [13] and explosives [14].
Kissinger [15] and Ozawa [16] and Flynn [17] demonstrated that differential scanning calorimetry (DSC) technique, based on the linear relation between peak temperature and heating rate, can be used to determine the kinetics parameters of a thermal decomposition (activation energy, rate constant). The Ozawa method is one of the most popular methods for estimating activation energies by linear heating rate and it is the so-called isoconversional method. Thermal analysis cannot be used to elucidate the complete mechanism of a thermal degradation but the dynamic analysis has been frequently used to study the overall thermal degradation kinetics of polymers and composites because it gives reliable information on the frequency factor(A), the activation energy (E) and the overall reaction order [18].
In the present work, the differential scanning calorimetry (DSC) technique and the Ozawa dynamic method were used to determine the kinetic parameters of the aged and non-aged solid propellant, AP/HTPB, thermal decomposition. The Kissinger method for obtaining the activation energy value was also employed for a comparison purpose.
AP was obtained from Avibras Indústria Aeroespacial S.A.; HTPB from Petroflex Industry S.A., a subsidiary of Petrobras – Petróleo do Brasil S.A.; IPDI from Merck; DOA from Elekeiroz S.A.. The composite propellant was produced in a batch process of 5 kg mass (pilot plant) using a planetary mixer under vacuum atmosphere during 2 hours. All raw materials are incorporated in HTPB polyol, starting with AP that was classified to a medium size of 300 micrometers. When all ingredients are added to the HTPB polyol, the IPDI curing agent can be mixed to the liquid propellant. The propellant curing process was conducted in a temperature of 60 Celsius during a 120 hs period time.
The synthetic aging process was conducted by exposing the cured propellant formulation to a temperature of 338 K for 300 days in a muffle (FNT-F3-T 6600W) that was monitored day by day during this period.
The polyurethane network was obtained by curing HTPB polymer samples with IPDI (isophore diisocianate) at an [NCO]/[OH] equivalent ratio of 0.95, at 338 K for 120 h. The NCO/OH ratio is defined as the equivalent ratio between the materials containing NCO (IPDI) groups and those containing OH groups (HTPB) and it affects the mechanical properties of cured composite propellant [13,14]. The chemical composition of the propellant was (weight) binder 22% and others 78%. The synthetic aging process was conducted by exposing the propellant formulation to a temperature of 338 K for 300 days.
DSC curves were obtained on a model DSC50 Shimadzu in the temperature range of 298-773 K, under dynamic nitrogen atmosphere (ca. 50 mL/min). Sample masses were about 1.5 mg, and each sample was heated in hermetically sealed aluminum pans. Seven different heating rates were used for the non-aged samples: 10.0, 15.0, 20.0, 30.0, 35.0, 40.0 and 45.0 K min-1; for the aged samples, three different heat rates were used: 30, 35 and 40 K min-1. DSC system was calibrated with indium (m.p.= 429.6 K; ΔHfus=28.54 Jg-1) and zinc (m.p.= 692.6 K).
The method used in the analysis of composite samples was based on DSC experiments in which the temperatures of the extrapolated onset of the thermal decomposition process and the temperatures of maximum heat flow were determined from the resulting measured curves for exothermic reactions. DSC curves at different heating rates, β, for non-aged and aged composite samples are shown in Figs. 4 and 5, respectively.
In order to determine the kinetic parameters of the degradation step Ozawa and Kissinger’s methods were applied. They were both derived from the basic kinetic equations for heterogeneous chemical reactions and therefore have a wide application, as it is not necessary to know the reaction order [19] or the conversional function to determine the kinetic parameters. The activation energy determined by applying these methods is the sum of activation energies of chemical reactions and physical processes in thermal decomposition and therefore it is called apparent.
The temperatures of exothermic peaks, Tp, can be used to calculate the kinetic parameters by the Ozawa method [16,17]. These parameters are the activation energy, Ea, and the pre-exponential factor, A, relatives to the decomposition process.
A linear relationship between the heating rate (log β) and the reciprocal of the absolute temperature, Tp-1, may be found and the following linear equation can be established:
where a and b are the parameters of the linear equation: a is -0.4567E/R (slope) and b is a constant (linear coefficient). R is the gas constant.
Assuming that the rate constant follows the Arrhenius law and that the exothermic reaction can be considered as a single step process, the conversion at the maximum conversion rate is invariant with the heating rate when this is linear. Having in account such assumptions, eq. (1) may be applied to the exothermic peak maximum temperature considering different heating rates [15,19]. Thus carrying out several experiments at different heating rates a plot of log ß vs 1/Tp may be done and the activation energy can be estimated directly from the slope of the curve using the following equation derived [14] from the eq.(1):
where - d log ß/ d Tp-1 = parameter a (eq.1).
With the same above assumptions, the Kissinger method8 may be used to calculate the activation energy and the pre-exponential factor from the maximum rate condition which will occur at the maximum exothermic peak temperature, Tp.
The Kissinger method is based on the plot of ln (β/Tp2) vs. 1/Tp. Activation energy is calculated from the slope of the curve using the following equation:
Once time E is known the values of pre-exponential factor, A, are calculated with the equation:
The temperature dependence of the specific rate constant k is described by the Arrhenius equation:
The kinetic Shimadzu software, based on the Ozawa method, feed with the exothermic peak temperatures and the heating rate data, gives the Arrhenius kinetic parameters (Ea, A) relative to the thermal decomposition of composite and, consequently, with the eq. (5) the overall rate constant can be calculated.
There’s also a possibility of using Flynn and Wall methodology with TGA analysis (constant heating rate TGA) [17], once it requires less experimental time, although this method is limited to single-step decompositions and first order kinetics. The approaches are the following:
This first approach requires at least three determinations at different heating rates (Fig. 4 below), following the Arrhenius equation:
Re-arranging, the equation turns to:
Constant heating rate TGA plots – Flynn & Wall method [20]
From this curve is possible to construct a ln β vs 1/T plot. The slope of this new curve is used to calculate the activation energy.
The activation energy and kinetic parameters of thermal decomposition of propellant samples were calculated by Ozawa method using DSC curves at different heating rates: 10.0, 15.0, 20.0, 30.0, 35.0, 40.0 and 45.0 K min-1 for the non-aged ones and 30.0, 35.0 and 40.0 K min-1 for the aged ones.
DSC curves of thermal decomposition of non-aged composite samples, AP/HTPB, at the heating rates: 10, 20, 30, 35 and 40 K min–1 and TG curve with a heating rate of 30 K min–1
DSC curves of thermal decomposition of aged composite samples, AP/HTPB, at the heating rates: 30, 35 and 40 K min–1
The exothermic events have different maximum temperatures in both cases; the higher the heating rate, higher is the maximum temperature of the peak.
Ozawa plot for AP/HTPB samples at 10, 15, 20, 30, 35, 40 and 45 K min–1
Ozawa plot for aged AP/HTPB samples at 30, 35 and 40 K min–1
The DSC curves are presented in Figs. 5 and 6. The DSC curves show that the first stage is endothermic and the second stage is exothermic. The endothermic event is quite similar for the different heating rates used and it shows the same peak temperature. This event occurs around 520 K and it was not considered because it represents a phase transition of ammonium perchlorate (AP) from the orthorhombic to the cubic form [21,22]. Together with DSC curves obtained for different heating rates (non-aged samples), Fig. 1, the TG curve for 30.0 K min-1 was included to show that in the region corresponding to the endothermic peak (DSC curves) there is no any weight loss or, at least, it is imperceptible and, the same behavior was observed in all of other TG curves for different heating rates.
Figures 7 and 8 show the plot of log β vs the reciprocal of the absolute temperature relative to each maximum of the exothermic stage. The values of the activation energy were found to be 134.5 kJ mol-1 (non-aged samples) and 79.0 kJ mol-1 (aged samples). Sell et al.[23] using thermogravimetry at heating rates between 0.5 and 10 K min-1 studied the decomposition kinetics of the AP/HTPB propellant samples with isoconversional method and the calculated activation energies are between 100 and 230 kJ mol-1.
From the slope of Kissinger plot (ln (β/Tp2) vs. 1/Tp) and eq. (3) the activation energy was also calculated and is 126.2 kJ mol-1 for the non-aged samples, therefore quite similar to that obtained using the Ozawa method.
The thermal decomposition of solid composite propellant is a multistep process and the reaction mechanism changes with the temperature and, consequently, the activation energy varies with the extent of the reaction. DSC data are used to estimate the activation energies of thermal decomposition of propellant samples because the global decomposition reaction is taken in account. Implicit in any discussion about the decomposition is the fact that the overall process is complex, and any derived rate parameters do not correspond to an elementary single step. TG/DTG results are in agreement with this assumption.
The pre-exponential factor was found to be 2.04 1010 min-1 (non-aged samples) and 1.29.106 min-1 (aged samples) and the reaction orders for the global composite decomposition were estimated in 0.7 (non-aged) and 0.6 (aged) by the kinetic Shimadzu software based in the Ozawa method. This value is quite different from the Arrhenius assumption where the reaction order is always considered as 1.0. For practical purposes the Arrhenius parameters, like the corrected reaction order, can be used to estimate the overall rate constant (k) for thermal decomposition using the eq. (5).
The differences found in the kinetics parameters between the original and the aged samples, specially the activation energy (Ea), confirm the practical observation that energetic materials like the composites used in solid propellant rocket motors require less energy to start the combustion process as they age. Besides, considering the heating rate of 40 K min-1 for the original and for the aged samples, a reduction in the enthalpy of the decomposition’s exothermic phase was observed (2.56 to 1.15 J g-1).
Cohen [24] studied the kinetics of the surface pyrolysis of HTPB and, assuming zero-order kinetics, they found the activation energy of 71 kJ mol-1. Comparison between the activation energies for the propellant decomposition and the activation energies for decomposition of individual ammonium perchlorate (AP) or/and HTPB binder suggests that the overall kinetics of the mass loss is determined by the reaction between the binder and the decomposition products of AP [24].
Ammonium perchlorate is widely used as an oxidizer in energetic composites and it is one of the most important raw materials in propellant formulations where it represents at least 80 % of total mass of composite solid propellants, so its contribution on the thermal decomposition behavior of propellant samples is always very important. The addition of burning rates catalysts like Fe2O3 on the propellant formulation alters the thermal decomposition behavior of AP, and consequently the thermal decomposition behavior of the propellant. Shin-Ming [22] showed that the presence of these catalysts compounds reduce the maximum decomposition reaction temperature in AP samples.
Another important aspect of DSC curves is the correlation of maximum temperature of exothermic peak obtained for each heating rate applied to the composite sample during the experiments. This correlation can be used to determine the burning rate characteristics of a composite solid propellant with a specific formulation. The burning rate characteristics are an important ballistic parameter of the energetic composite like solid propellant. Xiao-Bin [25] showed that the burning rates of propellants were very closely related to the exothermic peak temperature of ammonium nitrate (AN) that is used as an oxidizer in smokeless propellant formulation.
In the present work, the DSC curves at different heating rates were obtained for original and synthetically aged samples that have the same raw materials and with the same manufacture process. These conditions are necessary because differences in the raw materials, as ammonium perchlorate (AP) particle size, can affect the thermal decomposition behavior of the composite. In other words, the decomposition mechanism of AP powder of fine particle size differs that of AP of larger particle size.
For energetic materials like composite solid propellant, it is critical to use the minimum sample size and low heating rates to avoid the risks to potential damage of the DSC cell resulting in DSC curves with a lot of interferences caused by the detonation behavior of composite samples. In opposition to this criteria, in this study, high heating rates were used (10.0 to 45.0 K min-1), but to compensate this condition very low sample sizes were used (≈ 1.5 mg). Despite these heating rates are not close to the rocket motor chamber conditions (heating rates estimated as 106 K s-1) the slower heating rates used in this work allow one to get a better insight into the reaction kinetics mechanisms.
The Ozawa and Kissinger methods demonstrated that differential scanning calorimetry technique, based on the linear relation between peak temperature and heating rate, can be used to determine the kinetics parameters of thermal decomposition reaction of energetic materials giving reproducible results.
The DSC curves do not show any interference and the kinetic data obtained using the maximum temperatures (reciprocal, in K-1) and the respective heating rates are very close to the results found in the literature, at very lower heating rates [26-29].
The authors gratefully acknowledge financial support from FAPESP (Fundação de Amparo à Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for the fundings and investiments.
Infertility is a disease of the reproductive system defined by the failure to achieve a clinical pregnancy after 12 months or more of regular unprotected sexual intercourse [1]. This disorder affects one in six couples [2]. Different factors including genetics, environmental factors, and anatomical defects have been illustrated to play a role in the fertility ability of individuals [3, 4].
After identifying the high capability of stem cells to produce different cell types, a number of scientists have proposed the use of stem cells and cell-based therapies as a possible new therapeutic choice for male infertility [5]. Stem cells are undifferentiated cell types that have two main characteristics, self-renewal with the production of identical daughter cells, and the ability to differentiate into more specialized cell types. The two main non-manipulated stem cell classes are embryonic (ESCs) and adult stem cells (ASCs) [5]. The next type of stem cells is induced pluripotent stem cells (iPSCs) which are genetically manipulated somatic cells [6]. The experimental platform for understanding the development of germ cells could be provided by the in vitro generation of male germ cells from stem cells [7, 8].
The ESCs, iPSCs, and spermatogonial stem cells (SSCs) are among the most investigated stem cells for the production of male germ cells in in vitro conditions [9, 10]. Application of these cell types has some limitations. ESCs present with some ethical problems and their sources are limited. iPSCs have both oncological and genetic instabilities. SSCs have low content in the testis, and their isolation, identification, and culturing are difficult in vitro.
On the other hand, mesenchymal stem cells (MSCs) do not have such problems in applications. MSCs are a group of ASCs which are available in most tissues. These cells were separated from the bone marrow [11], adipose tissue [12, 13, 14], hair follicle [15], endometrium [16, 17], dental pulp [18], nose [19], umbilical cord [20], and menstrual blood [21]. The MSCs in bone marrow stromal comprise a restricted area; but it can be easily proliferated [22]. These cells have the potential to proliferate and differentiate into other cells such as osteoblast [23, 24], adipocyte [25], chondroblasts [26], and neuron-like cells [27, 28] which can be a good candidate for treatment of male infertility. MSCs contains heterogeneous population of cells and contain pluripotent stem cells, namely multilineage-differentiating stress-enduring cells, which is the same as ESCs, which has the ability to differentiate into all cells from three germ layers spontaneously [29, 30].
Several animal studies have been conducted to investigate the effect of MSC transplantation on azoospermia. The effect of bone marrow-derived MSCs (BM-MSCs) and adipose tissue-derived MSCs (AD-MSCs) in induced azoospermia rodents was explored [11, 12, 24, 26, 31, 32]. After busulfan injection for azoospermia induction [33], the rats were injected with the MSCs into rete testes. After 2 months, testes treated with MSCs appeared morphologically normal. Spermatogenesis was detected, not in every but in some tubules of cell-treated testes. The trans-differentiation of MSCs into spermatogenetic cells in the appropriate microenvironment has been shown in some studies [32]. To demonstrate the entire recovery of spermatogenesis, rats, which were under cell treatment, were mated, and consequently next generations were obtained. The GFP expression was identified in the MSCs derived from the bone marrow and adipose tissue and in the sperm of offsprings as well [32].
Numerous in vivo research surveys have been conducted to assess the spermatogenesis induction potential of mesenchymal stem cells in mouse and rat animal models. In the mentioned study groups, bone marrow-derived mesenchymal stem cells have been used for the induction of spermatogenesis. There are some disputes, in mice model, regarding advisability of bone marrow-derived mesenchymal stem cell transplantation in azoospermic mice, for example, there was a report that bone marrow-derived mesenchymal stem cells could not differentiate into sperm [34], but other studies confirmed the generation of germ cells in vivo in BM-MSC-transplanted mice [35, 36]. At the same time, in azoospermic rat model, BM-MSC allotransplantation amplified endogenous fertility recovery in both testicular torsion model and busulfan-induced model of azoospermia induction [26, 37, 38, 39, 40]. The potential of BM-MSCs to differentiate or trans-differentiate into multi-lineage cells, secrete paracrine factors to recruit the resident stem cells to participate in tissue regeneration, or fuse with the local cells in the affected region has been demonstrated [39].
The next group used AT-MSCs for induction of spermatogenesis. Intra-tubal injection of AT-MSCs in rat model of busulfan-treated azoospermia led to recovery of fertility [12, 32]. The last group of studies induces spermatogenesis using xenotransplantation of human umbilical cord MSCs in immunodeficient mice seminiferous tubule [41] or a combination of in vitro differentiation of induced pluripotent stem cells from mice and humans into germ cells, and also their transplantation was performed to obtain advanced differentiated spermatozoa [42]. Interestingly, the capability of human umbilical cord MSCs (UC-MSCs) for differentiation into germ cells in the lumen of seminiferous tubules of immunocompetent mice has been shown [41, 43]. Furthermore, the therapeutic effects of BM-MSCs against toxic effects of lead (Pb) in the male gonads of rats have been shown [44].
MSC transplantation may induce reconstitution of the tubular microenvironment in azoospermic hamster which helps the remaining inactivated germinal cells to proliferate in the host seminiferous tubules. Sertoli cells play a major role in cooperation with seminiferous tubules, providing cyclic and dynamic regulation of spermatogenesis. In recent time, it has been demonstrated that in in vitro co-culture system, there is an availability of Sertoli cells to mediate differentiation of male germ cell-like cells, which were derived from human umbilical cord mesenchymal stem cells [45]. Moreover, Sertoli cells are considered as immune tolerant cells [46], and they can cause protection and survival of the allotransplanted donor AT-MSCs against inflammatory or immune reaction. In contrast, the hypoimmunogenic character of mesenchymal stem cells makes them appropriate for allogenic transplantation [47]. Nevertheless, mesenchymal stem cells generate immunosuppression or immunosurveillance upon transplantation [48]. It is interesting to mention that, related to the treatment of azoospermia, IV allogenic bone marrow-derived mesenchymal stem cell transfusion encourages the production of antisperm antibody modulated by immune system, after testis rupture in mice [49], which illustrates the other therapeutic potential of mesenchymal stem cells in the treatment of infertility. In fact, the possible mechanisms of azoospermia healing by mesenchymal stem cells are unclear; three main mechanisms could be responsible for the recovering of testicular function during the tissue regeneration process period by mesenchymal stem cells. The first option of mesenchymal stem cells differentiation into the spermatozoa via appropriate induction conditions as it has been demonstrated in rats models [32]. Another mechanism which is not confirmed yet is that secretion of growth factors by mesenchymal stem cells stimulates the restoration of spermatogenesis in the inactivated spermatogonia stem cells or Sertoli cells. And the last one is that mesenchymal stem cells merged with the endogenous spermatogonia stem cells recover the spermatogenesis, which is also needed to be further studied deeply.
The necessity for consideration of another point in cell therapy of azoospermia was illustrated by histomorphometric analysis of the treated seminiferous tubules [31]. The increase of the area of the seminiferous tubules before transplantation caused the decline of the number of tubes per unit area in azoospermia. This pathological condition may be created due to decrease of cellular layers which caused the reduction of the tubal structure and collapsing of several tubules under the pressure of intratubular hydrostatic pressure of hamster seminiferous tubules. The growth of the amount of the spaces in testis may result in rise of the other tubes’ diameter and also decrease in intratubular hydrostatic pressure. It is necessary to mention that the role of this pressure in the mechanism of spermatogenesis has not been clarified, but it could be the one reason for the increase of diameter of cellular layer in mesenchymal stem cell-treated tubes. Next, histomorphometric analysis with the increase of the number of tubules per unit area in mesenchymal stem cells treated tubes has been obtained [31]. This alteration may be caused by the decline of the volumes of intertubular spaces or by the busulfan therapy complications. Moreover, the increase of the whole area of tubes during azoospermia induction could reduce the ability of contraction of contractile myofibroblast cells, in which the decrease of intratubular hydrostatic pressure in peritubular layer probably resulted in the reduction of spermatozoa concentration in epididymis after mesenchymal stem cell therapy.
The obtained results of performed research trials on animal models provide a better and deeper overview of MSC therapy in male infertility conditions. The demonstrated results of used options in the treatment of these conditions revealed that methods using the MSCs derived from umbilical cord, adipose tissue, and the bone marrow appear more appropriate to recover the fertility due to better results. Although a case report is available for treatment of azoospermia in man [50], applying those methods into the human practice seems to be investigated before introducing this method into clinic.
The authors declare no conflict of interest.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5766},{group:"region",caption:"Middle and South America",value:2,count:5228},{group:"region",caption:"Africa",value:3,count:1717},{group:"region",caption:"Asia",value:4,count:10370},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15791}],offset:12,limit:12,total:118192},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:16},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:4},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:19},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:24},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5240},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9671",title:"Macrophages",subtitle:null,isOpenForSubmission:!1,hash:"03b00fdc5f24b71d1ecdfd75076bfde6",slug:"macrophages",bookSignature:"Hridayesh Prakash",coverURL:"https://cdn.intechopen.com/books/images_new/9671.jpg",editors:[{id:"287184",title:"Dr.",name:"Hridayesh",middleName:null,surname:"Prakash",slug:"hridayesh-prakash",fullName:"Hridayesh Prakash"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10432",title:"Casting Processes and Modelling of Metallic Materials",subtitle:null,isOpenForSubmission:!1,hash:"2c5c9df938666bf5d1797727db203a6d",slug:"casting-processes-and-modelling-of-metallic-materials",bookSignature:"Zakaria Abdallah and Nada Aldoumani",coverURL:"https://cdn.intechopen.com/books/images_new/10432.jpg",editors:[{id:"201670",title:"Dr.",name:"Zak",middleName:null,surname:"Abdallah",slug:"zak-abdallah",fullName:"Zak Abdallah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7841",title:"New Insights Into Metabolic Syndrome",subtitle:null,isOpenForSubmission:!1,hash:"ef5accfac9772b9e2c9eff884f085510",slug:"new-insights-into-metabolic-syndrome",bookSignature:"Akikazu Takada",coverURL:"https://cdn.intechopen.com/books/images_new/7841.jpg",editors:[{id:"248459",title:"Dr.",name:"Akikazu",middleName:null,surname:"Takada",slug:"akikazu-takada",fullName:"Akikazu Takada"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"168",title:"Biomedical Engineering",slug:"medicine-biomedical-engineering",parent:{title:"Medicine",slug:"medicine"},numberOfBooks:23,numberOfAuthorsAndEditors:789,numberOfWosCitations:1214,numberOfCrossrefCitations:521,numberOfDimensionsCitations:1306,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"medicine-biomedical-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9406",title:"Clinical Implementation of Bone Regeneration and Maintenance",subtitle:null,isOpenForSubmission:!1,hash:"875a140c01518fa7a9bceebd688b0147",slug:"clinical-implementation-of-bone-regeneration-and-maintenance",bookSignature:"Mike Barbeck, Nahum Rosenberg, Patrick Rider, Željka Perić Kačarević and Ole Jung",coverURL:"https://cdn.intechopen.com/books/images_new/9406.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9477",title:"Muscular Dystrophy",subtitle:"Research Updates and Therapeutic Strategies",isOpenForSubmission:!1,hash:"dd601de843019d51e1769a26cf7e1acc",slug:"muscular-dystrophy-research-updates-and-therapeutic-strategies",bookSignature:"Gisela Gaina",coverURL:"https://cdn.intechopen.com/books/images_new/9477.jpg",editedByType:"Edited by",editors:[{id:"242747",title:"Dr.",name:"Gisela",middleName:null,surname:"Gaina",slug:"gisela-gaina",fullName:"Gisela Gaina"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8134",title:"Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"2189275afd996cab432c0f5f7c5869f3",slug:"regenerative-medicine",bookSignature:"Mahmood S Choudhery",coverURL:"https://cdn.intechopen.com/books/images_new/8134.jpg",editedByType:"Edited by",editors:[{id:"187822",title:"Dr.",name:"Mahmood S",middleName:null,surname:"Choudhery",slug:"mahmood-s-choudhery",fullName:"Mahmood S Choudhery"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8093",title:"Xenotransplantation",subtitle:"Comprehensive Study",isOpenForSubmission:!1,hash:"16d2b84272592afd80dd2575eff0546b",slug:"xenotransplantation-comprehensive-study",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/8093.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7898",title:"Cartilage Tissue Engineering and Regeneration Techniques",subtitle:null,isOpenForSubmission:!1,hash:"cb87bdbe93f1269aae5c6c678c598ce7",slug:"cartilage-tissue-engineering-and-regeneration-techniques",bookSignature:"Dimitrios D. Nikolopoulos, George K. Safos and Kalpaxis Dimitrios",coverURL:"https://cdn.intechopen.com/books/images_new/7898.jpg",editedByType:"Edited by",editors:[{id:"228477",title:"Dr.",name:"Dimitrios D.",middleName:null,surname:"Nikolopoulos",slug:"dimitrios-d.-nikolopoulos",fullName:"Dimitrios D. Nikolopoulos"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7926",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"8a84bfdf7cd30b440b339fc046b155f3",slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",bookSignature:"Mike Barbeck, Ole Jung, Ralf Smeets and Tadas Koržinskas",coverURL:"https://cdn.intechopen.com/books/images_new/7926.jpg",editedByType:"Edited by",editors:[{id:"204918",title:"Dr.",name:"Mike",middleName:null,surname:"Barbeck",slug:"mike-barbeck",fullName:"Mike Barbeck"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6609",title:"Muscle Cell and Tissue",subtitle:"Current Status of Research Field",isOpenForSubmission:!1,hash:"522e700080f9e908b6b330587f0f381d",slug:"muscle-cell-and-tissue-current-status-of-research-field",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/6609.jpg",editedByType:"Edited by",editors:[{id:"195829",title:"Prof.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6475",title:"Tissue Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"d5ed06a80f0205146aa90d158facefd1",slug:"tissue-regeneration",bookSignature:"Hussein Abdel hay El-Sayed Kaoud",coverURL:"https://cdn.intechopen.com/books/images_new/6475.jpg",editedByType:"Edited by",editors:[{id:"265070",title:"Dr.",name:"Hussein Abdelhay",middleName:null,surname:"Essayed Kaoud",slug:"hussein-abdelhay-essayed-kaoud",fullName:"Hussein Abdelhay Essayed Kaoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6052",title:"Cartilage Repair and Regeneration",subtitle:null,isOpenForSubmission:!1,hash:"e4881b3685ffd70f3f4d3d2c49b1d7f6",slug:"cartilage-repair-and-regeneration",bookSignature:"Alessandro R. Zorzi and Joao Batista de Miranda",coverURL:"https://cdn.intechopen.com/books/images_new/6052.jpg",editedByType:"Edited by",editors:[{id:"80871",title:"M.D.",name:"Alessandro Rozim",middleName:null,surname:"Zorzi",slug:"alessandro-rozim-zorzi",fullName:"Alessandro Rozim Zorzi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5952",title:"Xenotransplantation",subtitle:"New Insights",isOpenForSubmission:!1,hash:"903df77921b8704466248d0ff5cbcdd9",slug:"xenotransplantation-new-insights",bookSignature:"Shuji Miyagawa",coverURL:"https://cdn.intechopen.com/books/images_new/5952.jpg",editedByType:"Edited by",editors:[{id:"73965",title:"Prof.",name:"Shuji",middleName:null,surname:"Miyagawa",slug:"shuji-miyagawa",fullName:"Shuji Miyagawa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4610",title:"Muscle Cell and Tissue",subtitle:null,isOpenForSubmission:!1,hash:"f2719cb06d2a1327298528772eacec55",slug:"muscle-cell-and-tissue",bookSignature:"Kunihiro Sakuma",coverURL:"https://cdn.intechopen.com/books/images_new/4610.jpg",editedByType:"Edited by",editors:[{id:"173502",title:"Dr.",name:"Kunihiro",middleName:null,surname:"Sakuma",slug:"kunihiro-sakuma",fullName:"Kunihiro Sakuma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4486",title:"Cells and Biomaterials in Regenerative Medicine",subtitle:null,isOpenForSubmission:!1,hash:"1c333e655d47208db36f2a886b49c160",slug:"cells-and-biomaterials-in-regenerative-medicine",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/4486.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",middleName:null,surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:23,mostCitedChapters:[{id:"19013",doi:"10.5772/21983",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9689,totalCrossrefCites:107,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"9798",doi:"10.5772/8581",title:"Biomaterial Scaffold Fabrication Techniques for Potential Tissue Engineering Applications",slug:"biomaterial-scaffold-fabrication-techniques-for-potential-tissue-engineering-applications",totalDownloads:14402,totalCrossrefCites:48,totalDimensionsCites:113,book:{slug:"tissue-engineering",title:"Tissue Engineering",fullTitle:"Tissue Engineering"},signatures:"B. Subia, J. Kundu and S. C. Kundu",authors:null},{id:"23660",doi:"10.5772/25476",title:"Scaffolds for Tissue Engineering Via Thermally Induced Phase Separation",slug:"scaffolds-for-tissue-engineering-via-thermally-induced-phase-separation",totalDownloads:6195,totalCrossrefCites:6,totalDimensionsCites:32,book:{slug:"advances-in-regenerative-medicine",title:"Advances in Regenerative Medicine",fullTitle:"Advances in Regenerative Medicine"},signatures:"Carlos A. Martínez-Pérez, Imelda Olivas-Armendariz, Javier S. Castro-Carmona and Perla E. García-Casillas",authors:[{id:"63450",title:"Dr.",name:"Carlos Alberto",middleName:null,surname:"Martínez-Pérez",slug:"carlos-alberto-martinez-perez",fullName:"Carlos Alberto Martínez-Pérez"},{id:"104636",title:"Dr.",name:"Perla E.",middleName:null,surname:"García Casillas",slug:"perla-e.-garcia-casillas",fullName:"Perla E. García Casillas"},{id:"138316",title:"Dr.",name:"Imelda",middleName:null,surname:"Olivas-Armendariz",slug:"imelda-olivas-armendariz",fullName:"Imelda Olivas-Armendariz"},{id:"138317",title:"Dr.",name:"Javier S.",middleName:null,surname:"Castro-Carmona",slug:"javier-s.-castro-carmona",fullName:"Javier S. Castro-Carmona"}]}],mostDownloadedChaptersLast30Days:[{id:"60312",title:"The Role of Extracellular Matrix in Tissue Regeneration",slug:"the-role-of-extracellular-matrix-in-tissue-regeneration",totalDownloads:2209,totalCrossrefCites:5,totalDimensionsCites:15,book:{slug:"tissue-regeneration",title:"Tissue Regeneration",fullTitle:"Tissue Regeneration"},signatures:"Dwi Liliek Kusindarta and Hevi Wihadmadyatami",authors:null},{id:"19013",title:"Cell Responses to Surface and Architecture of Tissue Engineering Scaffolds",slug:"cell-responses-to-surface-and-architecture-of-tissue-engineering-scaffolds",totalDownloads:9692,totalCrossrefCites:109,totalDimensionsCites:227,book:{slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering - Cells and Biomaterials"},signatures:"Hsin-I Chang and Yiwei Wang",authors:[{id:"45747",title:"Dr.",name:"Hsin-I",middleName:null,surname:"Chang",slug:"hsin-i-chang",fullName:"Hsin-I Chang"},{id:"53659",title:"Ms.",name:"Yiwei",middleName:null,surname:"Wang",slug:"yiwei-wang",fullName:"Yiwei Wang"}]},{id:"47782",title:"Mass Production of Mesenchymal Stem Cells — Impact of Bioreactor Design and Flow Conditions on Proliferation and Differentiation",slug:"mass-production-of-mesenchymal-stem-cells-impact-of-bioreactor-design-and-flow-conditions-on-prolife",totalDownloads:4515,totalCrossrefCites:8,totalDimensionsCites:15,book:{slug:"cells-and-biomaterials-in-regenerative-medicine",title:"Cells and Biomaterials in Regenerative Medicine",fullTitle:"Cells and Biomaterials in Regenerative Medicine"},signatures:"Valentin Jossen, Ralf Pörtner, Stephan C. Kaiser, Matthias Kraume,\nDieter Eibl and Regine Eibl",authors:[{id:"52441",title:"Prof.",name:"Dieter",middleName:null,surname:"Eibl",slug:"dieter-eibl",fullName:"Dieter Eibl"},{id:"171203",title:"Prof.",name:"Ralf",middleName:null,surname:"Pörtner",slug:"ralf-portner",fullName:"Ralf Pörtner"},{id:"171347",title:"Prof.",name:"Regine",middleName:null,surname:"Eibl",slug:"regine-eibl",fullName:"Regine Eibl"},{id:"171348",title:"M.Sc.",name:"Valentin",middleName:null,surname:"Jossen",slug:"valentin-jossen",fullName:"Valentin Jossen"}]},{id:"34830",title:"Augmentation and Preservation of the Alveolar Process and Alveolar Ridge of Bone",slug:"augmentation-and-preservation-of-the-alveolar-process-and-alveolar-ridge-of-bone",totalDownloads:7854,totalCrossrefCites:3,totalDimensionsCites:6,book:{slug:"bone-regeneration",title:"Bone Regeneration",fullTitle:"Bone Regeneration"},signatures:"Haim Tal, Zvi Artzi, Roni Kolerman, Ilan Beitlitum and Gal Goshen",authors:[{id:"97351",title:"Prof.",name:"Haim",middleName:null,surname:"Tal",slug:"haim-tal",fullName:"Haim Tal"},{id:"128141",title:"Prof.",name:"Zvi",middleName:null,surname:"Artzi",slug:"zvi-artzi",fullName:"Zvi Artzi"},{id:"129173",title:"Dr.",name:"Roni",middleName:null,surname:"Kolerman",slug:"roni-kolerman",fullName:"Roni Kolerman"},{id:"129175",title:"Dr.",name:"Ilan",middleName:null,surname:"Beitelthum",slug:"ilan-beitelthum",fullName:"Ilan Beitelthum"},{id:"129176",title:"Dr.",name:"Gal",middleName:null,surname:"Goshen",slug:"gal-goshen",fullName:"Gal Goshen"}]},{id:"9794",title:"High Resolution X-Ray Tomography - 3D Imaging for Tissue Engineering Applications",slug:"high-resolution-x-ray-tomography-3d-imaging-for-tissue-engineering-applications",totalDownloads:3678,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"tissue-engineering",title:"Tissue Engineering",fullTitle:"Tissue Engineering"},signatures:"Zehbe Rolf, Haibel Astrid, Schmidt Franziska, Riesemeier Heinrich, Kirkpatrick C. James, Schubert Helmut and Brochhausen Christoph",authors:null},{id:"44652",title:"Tissue Engineered Animal Sparing Models for the Study of Joint and Muscle Diseases",slug:"tissue-engineered-animal-sparing-models-for-the-study-of-joint-and-muscle-diseases",totalDownloads:1931,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"regenerative-medicine-and-tissue-engineering",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering"},signatures:"Ali Mobasheri and Mark Lewis",authors:[{id:"53525",title:"Prof.",name:"Ali",middleName:null,surname:"Mobasheri",slug:"ali-mobasheri",fullName:"Ali Mobasheri"},{id:"163371",title:"Prof.",name:"Mark",middleName:null,surname:"Lewis",slug:"mark-lewis",fullName:"Mark Lewis"}]},{id:"65590",title:"Current Tissue Engineering Approaches for Cartilage Regeneration",slug:"current-tissue-engineering-approaches-for-cartilage-regeneration",totalDownloads:1239,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"cartilage-tissue-engineering-and-regeneration-techniques",title:"Cartilage Tissue Engineering and Regeneration Techniques",fullTitle:"Cartilage Tissue Engineering and Regeneration Techniques"},signatures:"He Huang, Hongyao Xu and Jianying Zhang",authors:[{id:"274274",title:"Associate Prof.",name:"Jianying",middleName:null,surname:"Zhang",slug:"jianying-zhang",fullName:"Jianying Zhang"},{id:"290437",title:"Dr.",name:"He",middleName:null,surname:"Huang",slug:"he-huang",fullName:"He Huang"},{id:"290447",title:"Dr.",name:"Hongyao",middleName:null,surname:"Xu",slug:"hongyao-xu",fullName:"Hongyao Xu"}]},{id:"65513",title:"Innovative Biomaterials for Tissue Engineering",slug:"innovative-biomaterials-for-tissue-engineering",totalDownloads:942,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",fullTitle:"Biomaterial-supported Tissue Reconstruction or Regeneration"},signatures:"Anna Dolcimascolo, Giovanna Calabrese, Sabrina Conoci and Rosalba Parenti",authors:[{id:"272544",title:"Prof.",name:"Rosalba",middleName:null,surname:"Parenti",slug:"rosalba-parenti",fullName:"Rosalba Parenti"},{id:"273282",title:"Dr.",name:"Anna",middleName:null,surname:"Dolcimascolo",slug:"anna-dolcimascolo",fullName:"Anna Dolcimascolo"},{id:"273283",title:"Dr.",name:"Giovanna",middleName:null,surname:"Calabrese",slug:"giovanna-calabrese",fullName:"Giovanna Calabrese"},{id:"283275",title:"Dr.",name:"Sabrina",middleName:null,surname:"Conoci",slug:"sabrina-conoci",fullName:"Sabrina Conoci"}]},{id:"66180",title:"Application of Bone Substitutes and Its Future Prospective in Regenerative Medicine",slug:"application-of-bone-substitutes-and-its-future-prospective-in-regenerative-medicine",totalDownloads:898,totalCrossrefCites:1,totalDimensionsCites:3,book:{slug:"biomaterial-supported-tissue-reconstruction-or-regeneration",title:"Biomaterial-supported Tissue Reconstruction or Regeneration",fullTitle:"Biomaterial-supported Tissue Reconstruction or Regeneration"},signatures:"Ujjwal Ranjan Dahiya, Sarita Mishra and Subia Bano",authors:[{id:"126760",title:"Prof.",name:"Bano",middleName:null,surname:"Subia",slug:"bano-subia",fullName:"Bano Subia"},{id:"272470",title:"Dr.",name:"Ujjwal",middleName:null,surname:"Dahiya",slug:"ujjwal-dahiya",fullName:"Ujjwal Dahiya"},{id:"272471",title:"Dr.",name:"Sarita",middleName:null,surname:"Mishra",slug:"sarita-mishra",fullName:"Sarita Mishra"}]},{id:"44120",title:"Naturally Derived Biomaterials: Preparation and Application",slug:"naturally-derived-biomaterials-preparation-and-application",totalDownloads:5584,totalCrossrefCites:10,totalDimensionsCites:15,book:{slug:"regenerative-medicine-and-tissue-engineering",title:"Regenerative Medicine and Tissue Engineering",fullTitle:"Regenerative Medicine and Tissue Engineering"},signatures:"Tran Le Bao Ha, To Minh Quan, Doan Nguyen Vu and Do Minh Si",authors:[{id:"159197",title:"Ph.D.",name:"Tran",middleName:null,surname:"Le Bao Ha",slug:"tran-le-bao-ha",fullName:"Tran Le Bao Ha"},{id:"166753",title:"MSc.",name:"To Minh",middleName:null,surname:"Quan",slug:"to-minh-quan",fullName:"To Minh Quan"},{id:"166757",title:"BSc.",name:"Doan",middleName:null,surname:"Nguyen Vu",slug:"doan-nguyen-vu",fullName:"Doan Nguyen Vu"},{id:"166760",title:"Dr.",name:"Do",middleName:null,surname:"Minh Si",slug:"do-minh-si",fullName:"Do Minh Si"}]}],onlineFirstChaptersFilter:{topicSlug:"medicine-biomedical-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/boundary-layer-flows-theory-applications-and-numerical-methods",hash:"",query:{},params:{book:"boundary-layer-flows-theory-applications-and-numerical-methods"},fullPath:"/books/boundary-layer-flows-theory-applications-and-numerical-methods",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()