Comparison of bat detection rates between continuous versus point count sampling along 26 transects using the EM3 bat detector.
\\n\\n
Released this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\\n\\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\\n"}]',published:!0,mainMedia:null},components:[{type:"htmlEditorComponent",content:'IntechOpen is proud to announce that 191 of our authors have made the Clarivate™ Highly Cited Researchers List for 2020, ranking them among the top 1% most-cited.
\n\nThroughout the years, the list has named a total of 261 IntechOpen authors as Highly Cited. Of those researchers, 69 have been featured on the list multiple times.
\n\n\n\nReleased this past November, the list is based on data collected from the Web of Science and highlights some of the world’s most influential scientific minds by naming the researchers whose publications over the previous decade have included a high number of Highly Cited Papers placing them among the top 1% most-cited.
\n\nWe wish to congratulate all of the researchers named and especially our authors on this amazing accomplishment! We are happy and proud to share in their success!
Note: Edited in March 2021
\n'}],latestNews:[{slug:"intechopen-partners-with-ehs-for-digital-advertising-representation-20210416",title:"IntechOpen Partners with EHS for Digital Advertising Representation"},{slug:"intechopen-signs-new-contract-with-cepiec-china-for-distribution-of-open-access-books-20210319",title:"IntechOpen Signs New Contract with CEPIEC, China for Distribution of Open Access Books"},{slug:"150-million-downloads-and-counting-20210316",title:"150 Million Downloads and Counting"},{slug:"intechopen-secures-indefinite-content-preservation-with-clockss-20210309",title:"IntechOpen Secures Indefinite Content Preservation with CLOCKSS"},{slug:"intechopen-expands-to-all-global-amazon-channels-with-full-catalog-of-books-20210308",title:"IntechOpen Expands to All Global Amazon Channels with Full Catalog of Books"},{slug:"stanford-university-identifies-top-2-scientists-over-1-000-are-intechopen-authors-and-editors-20210122",title:"Stanford University Identifies Top 2% Scientists, Over 1,000 are IntechOpen Authors and Editors"},{slug:"intechopen-authors-included-in-the-highly-cited-researchers-list-for-2020-20210121",title:"IntechOpen Authors Included in the Highly Cited Researchers List for 2020"},{slug:"intechopen-maintains-position-as-the-world-s-largest-oa-book-publisher-20201218",title:"IntechOpen Maintains Position as the World’s Largest OA Book Publisher"}]},book:{item:{type:"book",id:"5720",leadTitle:null,fullTitle:"Failure Analysis and Prevention",title:"Failure Analysis and Prevention",subtitle:null,reviewType:"peer-reviewed",abstract:"This book covers recent advancement methods used in analysing the root cause of engineering failures and the proactive suggestion for future failure prevention. The techniques used especially non-destructive testing such X-ray are well described. The failure analysis covers materials for metal and composites for various applications in mechanical, civil and electrical applications. The modes of failures that are well explained include fracture, fatigue, corrosion and high-temperature failure mechanisms. The administrative part of failures is also presented in the chapter of failure rate analysis. The book will bring you on a tour on how to apply mechanical, electrical and civil engineering fundamental concepts and to understand the prediction of root cause of failures. The topics explained comprehensively the reliable test that one should perform in order to investigate the cause of machines, component or material failures at the macroscopic and microscopic level. I hope the material is not too theoretical and you find the case study, the analysis will assist you in tackling your own failure investigation case.",isbn:"978-953-51-3714-6",printIsbn:"978-953-51-3713-9",pdfIsbn:"978-953-51-3972-0",doi:"10.5772/65149",price:119,priceEur:129,priceUsd:155,slug:"failure-analysis-and-prevention",numberOfPages:216,isOpenForSubmission:!1,isInWos:1,hash:"f79dd2c5b85e97fc2d94924ff4931bb1",bookSignature:"Aidy Ali",publishedDate:"December 20th 2017",coverURL:"https://cdn.intechopen.com/books/images_new/5720.jpg",numberOfDownloads:15517,numberOfWosCitations:7,numberOfCrossrefCitations:10,numberOfDimensionsCitations:14,hasAltmetrics:1,numberOfTotalCitations:31,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 5th 2016",dateEndSecondStepPublish:"November 9th 2016",dateEndThirdStepPublish:"September 15th 2017",dateEndFourthStepPublish:"October 15th 2017",dateEndFifthStepPublish:"December 15th 2017",currentStepOfPublishingProcess:5,indexedIn:"1,2,3,4,5,6,7",editedByType:"Edited by",kuFlag:!1,editors:[{id:"13626",title:"Prof.",name:"Aidy",middleName:null,surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali",profilePictureURL:"https://mts.intechopen.com/storage/users/13626/images/5273_n.jpg",biography:"Dr. Aidy Ali is a professor of Mechanical Engineering at the National Defence University of Malaysia (NDUM) or known as the Universiti Pertahanan Nasional Malaysia (UPNM). He received his first degree in Mechanical Engineering from the Universiti Putra Malaysia in 1999. He pursued his PhD degree in the year 2003 with his research on 'Improving the Fatigue Life of Aircraft Components by Using Surface Engineering” at Sheffield University. He was then appointed as a lecturer at the Universiti Putra Malaysia in 2006, was rapidly promoted to senior lecturer in 2008 and to associate professor in 2010 and was rapidly appointed as a professor in 2012, all within a 6-year period of time. Professor Aidy has more than 17 years of experience in research and teaching in the field of mechanical engineering, especially in mechanical fatigue and fracture of materials. He has published more than 140 journals in Scopus and ISI and 19 books and secured more than 24 research grants. He supervised 16 PhD degree students, 36 master’s students and 30 bachelor’s degree students. His expertise is related to mechanical materials for defence applications, fatigue, fracture of materials, failure assessment, failure prevention analysis, reliability engineering prediction and crash analysis.",institutionString:null,position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"National Defence University of Malaysia",institutionURL:null,country:{name:"Malaysia"}}}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"828",title:"Reliability Engineering",slug:"reliability-engineering"}],chapters:[{id:"56973",title:"Fatigue Failure Analysis of a Centrifugal Pump Shaft",doi:"10.5772/intechopen.70672",slug:"fatigue-failure-analysis-of-a-centrifugal-pump-shaft",totalDownloads:1975,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Mohd Nasir Tamin and Mohammad Arif Hamzah",downloadPdfUrl:"/chapter/pdf-download/56973",previewPdfUrl:"/chapter/pdf-preview/56973",authors:[{id:"196884",title:"Prof.",name:"Mohd Nasir",surname:"Tamin",slug:"mohd-nasir-tamin",fullName:"Mohd Nasir Tamin"}],corrections:null},{id:"57634",title:"Slope Failure Analysis Using Chromaticity Variables",doi:"10.5772/intechopen.71248",slug:"slope-failure-analysis-using-chromaticity-variables",totalDownloads:1004,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Rashidi Othman and Mohd Shah Irani Hasni",downloadPdfUrl:"/chapter/pdf-download/57634",previewPdfUrl:"/chapter/pdf-preview/57634",authors:[{id:"196634",title:"Mr.",name:"R",surname:"O",slug:"r-o",fullName:"R O"},{id:"221825",title:"Dr.",name:"Mohd Shah Irani",surname:"Hasni",slug:"mohd-shah-irani-hasni",fullName:"Mohd Shah Irani Hasni"}],corrections:null},{id:"56115",title:"Mixed-Mode Delamination Failures of Quasi-Isotropic Quasi- Homogeneous Carbon/Epoxy Laminated Composite",doi:"10.5772/intechopen.69440",slug:"mixed-mode-delamination-failures-of-quasi-isotropic-quasi-homogeneous-carbon-epoxy-laminated-composi",totalDownloads:849,totalCrossrefCites:4,totalDimensionsCites:4,signatures:"Mahzan Johar, King Jye Wong and Mohd Nasir Tamin",downloadPdfUrl:"/chapter/pdf-download/56115",previewPdfUrl:"/chapter/pdf-preview/56115",authors:[{id:"196884",title:"Prof.",name:"Mohd Nasir",surname:"Tamin",slug:"mohd-nasir-tamin",fullName:"Mohd Nasir Tamin"},{id:"197028",title:"Dr.",name:"King Jye",surname:"Wong",slug:"king-jye-wong",fullName:"King Jye Wong"},{id:"203971",title:"Dr.",name:"Mahzan",surname:"Johar",slug:"mahzan-johar",fullName:"Mahzan Johar"}],corrections:null},{id:"58170",title:"Failure Analysis of High Pressure High Temperature Super- Heater Outlet Header Tube in Heat Recovery Steam Generator",doi:"10.5772/intechopen.72116",slug:"failure-analysis-of-high-pressure-high-temperature-super-heater-outlet-header-tube-in-heat-recovery-",totalDownloads:1262,totalCrossrefCites:0,totalDimensionsCites:1,signatures:"Ainul Akmar Mokhtar and Muhammad Kamil Kamarul Bahrin",downloadPdfUrl:"/chapter/pdf-download/58170",previewPdfUrl:"/chapter/pdf-preview/58170",authors:[{id:"219461",title:"Associate Prof.",name:"Ainul Akmar",surname:"Mokhtar",slug:"ainul-akmar-mokhtar",fullName:"Ainul Akmar Mokhtar"},{id:"219472",title:"Mr.",name:"Muhammad Kamil",surname:"Kamarul Bahrin",slug:"muhammad-kamil-kamarul-bahrin",fullName:"Muhammad Kamil Kamarul Bahrin"}],corrections:null},{id:"55876",title:"Thick‐Film Resistor Failure Analysis Based on Low‐Frequency Noise Measurements",doi:"10.5772/intechopen.69442",slug:"thick-film-resistor-failure-analysis-based-on-low-frequency-noise-measurements",totalDownloads:901,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Ivanka Stanimirović",downloadPdfUrl:"/chapter/pdf-download/55876",previewPdfUrl:"/chapter/pdf-preview/55876",authors:[{id:"3420",title:"Dr.",name:"Ivanka",surname:"Stanimirović",slug:"ivanka-stanimirovic",fullName:"Ivanka Stanimirović"},{id:"3421",title:"Dr.",name:"Zdravko",surname:"Stanimirović",slug:"zdravko-stanimirovic",fullName:"Zdravko Stanimirović"}],corrections:null},{id:"57842",title:"Failure Concepts in Fiber Reinforced Plastics",doi:"10.5772/intechopen.71822",slug:"failure-concepts-in-fiber-reinforced-plastics",totalDownloads:1092,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Roselita Fragoudakis",downloadPdfUrl:"/chapter/pdf-download/57842",previewPdfUrl:"/chapter/pdf-preview/57842",authors:[{id:"220155",title:"Dr.",name:"Roselita",surname:"Fragoudakis",slug:"roselita-fragoudakis",fullName:"Roselita Fragoudakis"}],corrections:null},{id:"58187",title:"Failure Rate Analysis",doi:"10.5772/intechopen.71849",slug:"failure-rate-analysis",totalDownloads:2506,totalCrossrefCites:2,totalDimensionsCites:3,signatures:"Fatemeh Afsharnia",downloadPdfUrl:"/chapter/pdf-download/58187",previewPdfUrl:"/chapter/pdf-preview/58187",authors:[{id:"219079",title:"Dr.",name:"Fatemeh",surname:"Afsharnia",slug:"fatemeh-afsharnia",fullName:"Fatemeh Afsharnia"}],corrections:null},{id:"55734",title:"General Perspectives on Seismic Retrofitting of Historical Masonry Structures",doi:"10.5772/intechopen.69439",slug:"general-perspectives-on-seismic-retrofitting-of-historical-masonry-structures",totalDownloads:1105,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Baris Sayin, Baris Yildizlar, Cemil Akcay and Tarik Serhat Bozkurt",downloadPdfUrl:"/chapter/pdf-download/55734",previewPdfUrl:"/chapter/pdf-preview/55734",authors:[{id:"200271",title:"Dr.",name:"Baris",surname:"Sayin",slug:"baris-sayin",fullName:"Baris Sayin"},{id:"200273",title:"Dr.",name:"Cemil",surname:"Akcay",slug:"cemil-akcay",fullName:"Cemil Akcay"},{id:"200275",title:"Dr.",name:"Baris",surname:"Yildizlar",slug:"baris-yildizlar",fullName:"Baris Yildizlar"},{id:"200276",title:"MSc.",name:"Tarik Serhat",surname:"Bozkurt",slug:"tarik-serhat-bozkurt",fullName:"Tarik Serhat Bozkurt"}],corrections:null},{id:"58137",title:"Common Case Studies of Marine Structural Failures",doi:"10.5772/intechopen.72789",slug:"common-case-studies-of-marine-structural-failures",totalDownloads:1586,totalCrossrefCites:1,totalDimensionsCites:2,signatures:"Goran Vukelić and Goran Vizentin",downloadPdfUrl:"/chapter/pdf-download/58137",previewPdfUrl:"/chapter/pdf-preview/58137",authors:[{id:"228423",title:"Associate Prof.",name:"Goran",surname:"Vukelić",slug:"goran-vukelic",fullName:"Goran Vukelić"},{id:"228426",title:"MSc.",name:"Goran",surname:"Vizentin",slug:"goran-vizentin",fullName:"Goran Vizentin"}],corrections:null},{id:"58172",title:"X-Ray Techniques",doi:"10.5772/intechopen.72447",slug:"x-ray-techniques",totalDownloads:1608,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Clementina Dilim Igwebike-Ossi",downloadPdfUrl:"/chapter/pdf-download/58172",previewPdfUrl:"/chapter/pdf-preview/58172",authors:[{id:"219931",title:"Dr.",name:"Clementina",surname:"Igwebike-Ossi",slug:"clementina-igwebike-ossi",fullName:"Clementina Igwebike-Ossi"}],corrections:null},{id:"57433",title:"Damage Detection and Critical Failure Prevention of Composites",doi:"10.5772/intechopen.71245",slug:"damage-detection-and-critical-failure-prevention-of-composites",totalDownloads:879,totalCrossrefCites:1,totalDimensionsCites:1,signatures:"Mark Bowkett and Kary Thanapalan",downloadPdfUrl:"/chapter/pdf-download/57433",previewPdfUrl:"/chapter/pdf-preview/57433",authors:[{id:"219186",title:"Dr.",name:"Kary",surname:"Thanapalan",slug:"kary-thanapalan",fullName:"Kary Thanapalan"},{id:"219188",title:"Mr.",name:"Mark",surname:"Bowkett",slug:"mark-bowkett",fullName:"Mark Bowkett"}],corrections:null},{id:"57210",title:"Fracture Variation of Welded Joints at Various Temperatures in Liquid-Phase-Pulse-Impact Diffusion Welding of Particle Reinforcement Aluminum Matrix Composites",doi:"10.5772/intechopen.71249",slug:"fracture-variation-of-welded-joints-at-various-temperatures-in-liquid-phase-pulse-impact-diffusion-w",totalDownloads:759,totalCrossrefCites:0,totalDimensionsCites:0,signatures:"Kelvii Wei Guo",downloadPdfUrl:"/chapter/pdf-download/57210",previewPdfUrl:"/chapter/pdf-preview/57210",authors:[{id:"174473",title:"Dr.",name:"Kelvii Wei",surname:"Guo",slug:"kelvii-wei-guo",fullName:"Kelvii Wei Guo"}],corrections:null}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},relatedBooks:[{type:"book",id:"7231",title:"Advanced Engineering Testing",subtitle:null,isOpenForSubmission:!1,hash:"9283b3b88964a6fe002fa37431414ac7",slug:"advanced-engineering-testing",bookSignature:"Aidy Ali",coverURL:"https://cdn.intechopen.com/books/images_new/7231.jpg",editedByType:"Edited by",editors:[{id:"13626",title:"Prof.",name:"Aidy",surname:"Ali",slug:"aidy-ali",fullName:"Aidy Ali"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6024",title:"System Reliability",subtitle:null,isOpenForSubmission:!1,hash:"5cf0113f60979705f5b0b0ea0bac3028",slug:"system-reliability",bookSignature:"Constantin Volosencu",coverURL:"https://cdn.intechopen.com/books/images_new/6024.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6197",title:"System of System Failures",subtitle:null,isOpenForSubmission:!1,hash:"4ff73e8bf2376a39046fe3b26e18da0e",slug:"system-of-system-failures",bookSignature:"Takafumi Nakamura",coverURL:"https://cdn.intechopen.com/books/images_new/6197.jpg",editedByType:"Edited by",editors:[{id:"206988",title:"Dr.",name:"Takafumi",surname:"Nakamura",slug:"takafumi-nakamura",fullName:"Takafumi Nakamura"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5317",title:"Concise Reliability for Engineers",subtitle:null,isOpenForSubmission:!1,hash:"8dd29c0cfec89eb0c272c374e903b3da",slug:"concise-reliability-for-engineers",bookSignature:"Jaroslav Mencik",coverURL:"https://cdn.intechopen.com/books/images_new/5317.jpg",editedByType:"Authored by",editors:[{id:"142710",title:"Prof.",name:"Jaroslav",surname:"Menčík",slug:"jaroslav-mencik",fullName:"Jaroslav Menčík"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}},{type:"book",id:"7687",title:"Reliability and Maintenance",subtitle:"An Overview of Cases",isOpenForSubmission:!1,hash:"14790fdcb395faea44e1351e45cb20a5",slug:"reliability-and-maintenance-an-overview-of-cases",bookSignature:"Leo Kounis",coverURL:"https://cdn.intechopen.com/books/images_new/7687.jpg",editedByType:"Edited by",editors:[{id:"111582",title:"Dr.",name:"Leo",surname:"Kounis",slug:"leo-kounis",fullName:"Leo Kounis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9373",title:"Engineering Failure Analysis",subtitle:null,isOpenForSubmission:!1,hash:"c9ba52779a6412cacf546d387eb932f3",slug:"engineering-failure-analysis",bookSignature:"Kary Thanapalan",coverURL:"https://cdn.intechopen.com/books/images_new/9373.jpg",editedByType:"Edited by",editors:[{id:"219186",title:"Dr.",name:"Kary",surname:"Thanapalan",slug:"kary-thanapalan",fullName:"Kary Thanapalan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],ofsBooks:[]},correction:{item:{id:"74918",slug:"corrigendum-to-a-hybrid-control-approach-based-on-the-combination-of-pid-control-with-lqr-optimal-co",title:"Corrigendum to: A Hybrid Control Approach Based on the Combination of PID Control with LQR Optimal Control",doi:null,correctionPDFUrl:"https://cdn.intechopen.com/pdfs/74918.pdf",downloadPdfUrl:"/chapter/pdf-download/74918",previewPdfUrl:"/chapter/pdf-preview/74918",totalDownloads:null,totalCrossrefCites:null,bibtexUrl:"/chapter/bibtex/74918",risUrl:"/chapter/ris/74918",chapter:{id:"74293",slug:"a-hybrid-control-approach-based-on-the-combination-of-pid-control-with-lqr-optimal-control",signatures:"Ibrahim K. Mohammed",dateSubmitted:"July 8th 2020",dateReviewed:"November 4th 2020",datePrePublished:"December 3rd 2020",datePublished:null,book:{id:"9887",title:"Advance Innovation and Expansion of PID Controllers",subtitle:null,fullTitle:"Advance Innovation and Expansion of PID Controllers",slug:null,publishedDate:null,bookSignature:"Prof. Wei Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9887.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"101176",title:"Prof.",name:"Wei",middleName:null,surname:"Wang",slug:"wei-wang",fullName:"Wei Wang"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null}},chapter:{id:"74293",slug:"a-hybrid-control-approach-based-on-the-combination-of-pid-control-with-lqr-optimal-control",signatures:"Ibrahim K. Mohammed",dateSubmitted:"July 8th 2020",dateReviewed:"November 4th 2020",datePrePublished:"December 3rd 2020",datePublished:null,book:{id:"9887",title:"Advance Innovation and Expansion of PID Controllers",subtitle:null,fullTitle:"Advance Innovation and Expansion of PID Controllers",slug:null,publishedDate:null,bookSignature:"Prof. Wei Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9887.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"101176",title:"Prof.",name:"Wei",middleName:null,surname:"Wang",slug:"wei-wang",fullName:"Wei Wang"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}},authors:null},book:{id:"9887",title:"Advance Innovation and Expansion of PID Controllers",subtitle:null,fullTitle:"Advance Innovation and Expansion of PID Controllers",slug:null,publishedDate:null,bookSignature:"Prof. Wei Wang",coverURL:"https://cdn.intechopen.com/books/images_new/9887.jpg",licenceType:"CC BY 3.0",editedByType:null,editors:[{id:"101176",title:"Prof.",name:"Wei",middleName:null,surname:"Wang",slug:"wei-wang",fullName:"Wei Wang"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"}}},ofsBook:{item:{type:"book",id:"10358",leadTitle:null,title:"Silage - Recent Advances and New Perspectives",subtitle:null,reviewType:"peer-reviewed",abstract:"\r\n\tThis book aims to investigate the recent advances in the ensilage technologies through the results obtained for several forage crops used around the world as well as to bring the new perspectives for using chemical and microbial additives to making silages well preserved. It will present new additives with great potential to be used in many types of silages. Chemical and microbial additives have been widely used to control undesirable fermentation, as well as to ensure high aerobic stability. However, some new additives are being studied with great expectations. We intend to describe the different types of silos used in all conditions both in large and in small scale and how to control the losses during the fermentation process and after silos opening.
",isbn:"978-1-83969-114-0",printIsbn:"978-1-83969-113-3",pdfIsbn:"978-1-83969-115-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"1e33f63e9311af352daf51d49f0a3aef",bookSignature:"Dr. Juliana Oliveira and Dr. Edson Mauro Santos",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10358.jpg",keywords:"Corn, Legume, Sorghum, Grass, Chemical Additives, Antimicrobial, Fermentation Stimulating, Microbial Additives, Lactic Bacteria, Homofermentative, Heterofermentative, Types of Silos",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"October 15th 2020",dateEndSecondStepPublish:"November 30th 2020",dateEndThirdStepPublish:"January 29th 2021",dateEndFourthStepPublish:"April 19th 2021",dateEndFifthStepPublish:"June 18th 2021",remainingDaysToSecondStep:"5 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Associate professor at the Federal University of Paraíba (UFPB) and research productivity fellow at the National Council for Scientific and Technological Development (CNPq). She has been working for more than fifteen years in the use of forages in the diet of ruminant animals.",coeditorOneBiosketch:"Edson Santos is a researcher of the Brazilian Research National Councill – CNPq. During his research career, he has authored and co-authored more than 170 articles in peer-reviewed international journals.",coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"180036",title:"Dr.",name:"Juliana",middleName:null,surname:"Oliveira",slug:"juliana-oliveira",fullName:"Juliana Oliveira",profilePictureURL:"https://mts.intechopen.com/storage/users/180036/images/system/180036.png",biography:"Juliana Oliveira is graduate in Animal Science and Doctor in Animal Science by Viçosa Federal University. She is specialized in animal feed and use of forage for small ruminants in the tropics. Your researches are based in using forage conservation to improve animal performance associated with using adapted crops in semiarid regions. She is Associate Professor at Paraiba Federal University since 2008.",institutionString:"Federal University of Paraíba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Paraíba",institutionURL:null,country:{name:"Brazil"}}}],coeditorOne:{id:"139631",title:"Dr.",name:"Edson Mauro",middleName:null,surname:"Santos",slug:"edson-mauro-santos",fullName:"Edson Mauro Santos",profilePictureURL:"https://mts.intechopen.com/storage/users/139631/images/3204_n.jpg",biography:"Dr. Santos is a professor of Forage Crops and Pastures and Beef Cattle at the Federal University of Paraiba. Dr. Santos received his PhD in Animal Science (forage crops and ruminant nutrition) from the Federal University of Vicosa, a master’s degree in Animal Science (forage crops and ruminant nutrition), and a BS degree in Animal Science from the Federal Rural University of Rio de Janeiro. Dr. Santos’ areas of interest include silage microbiology, cultivation and conservation of forage crops in semiarid regions, alternative feeds for ruminants, and pasture management.",institutionString:"Federal University of Paraíba",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Federal University of Paraíba",institutionURL:null,country:{name:"Brazil"}}},coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"205697",firstName:"Kristina",lastName:"Kardum Cvitan",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/205697/images/5186_n.jpg",email:"kristina.k@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"60155",title:"Comparison of Driving Transect Methods for Acoustic Monitoring of Bats",doi:"10.5772/intechopen.75834",slug:"comparison-of-driving-transect-methods-for-acoustic-monitoring-of-bats",body:'Bats are an extremely important part of ecosystems across the globe, providing a variety of ecological services such as pollination, seed dispersal, and regulation of insect populations [1, 2, 3]. Their role in many ecosystems is so vital that some have suggested using bats as bio-indicators [4]. As most bats are insectivorous, one of their most significant contributions lies in reducing vegetation damage from insect herbivory in native ecosystems [2, 5, 6]. This has profound economic and social ramifications for human civilization as well. One of the biggest challenges faced by humanity in the coming decades will be the production of enough food to feed a growing population without dramatic losses in habitat and biodiversity [7]. While bats alone will not solve this problem, by devouring large numbers of agricultural pests, these small flying mammals reduce crop losses, thereby enhancing food production on existing agricultural lands [3, 8]. This, in turn, provides significant economic benefits by saving farmers billions of dollars (in US dollars, [9, 10]).
In light of the value bats have to ecosystems and modern civilization, it should be of great concern that they face a growing array of threats. These include persecution, hibernacula damage and disturbance, loss of foraging and roosting habitat, pesticide exposure, and many others [4, 11]. The net effect of all these threats is that roughly a quarter of all bat species are threatened [12]. In North America, aside from habitat loss, two of the biggest emerging threats are White Nose Syndrome (WNS) and wind turbine facilities. WNS is caused by a fungal infection spread among bats in their winter hibernacula [13]. First observed at a hibernaculum in New York in 2006, WNS has since spread across eastern North America, killing millions of bats and wiping out entire populations in some cases [14, 15]. Similar threats may be posed by wind power. With the recent push toward renewable energy, many countries have seen a tremendous growth in the number of wind power facilities. While wind turbines vary widely in their impact on bats depending on their geographic location, in some parts of North American, turbine facilities are estimated to be killing bats in the hundreds of thousands annually [16, 17]. With the slow rate at which bats reproduce [18], these numbers could be devastating to bat populations over the long term. For these and many other reasons, extensive monitoring of the status of bat populations in all affected areas is needed. Given the highly variable and broad geographic distribution of these threats, effective techniques for systematically surveying bats across large geographic areas are needed.
As nocturnal, flying mammals, bats are uniquely challenging animals to study. However, a variety of survey techniques have been developed to overcome many of these challenges, including mist nets, radio telemetry, and ultrasonic detectors [19, 20, 21]. While each technique has its own benefits and drawbacks, ultrasonic detectors (also known as “bat detectors”) have proven to be a powerful tool for examining insectivorous bat species composition and habitat use, and are among the most widely utilized tools for these purposes [22, 23].
Aerial-foraging insectivorous bats, which constitute the majority of species globally, use echolocation to navigate and find insect prey [24]. They do so by periodically emitting a sequence of ultrasonic calls (sounds above the limit of human hearing, roughly 20 kHz) and listening for the echo [25]. Information provided in the returning echoes of these call sequences enable bats to discern a variety of factors such as size, shape, location, and movement of objects in the environment, all of which are crucial for navigation and acquiring prey [26]. Another important aspect of bat calls is that they typically differ between species, likely to ensure species have their own “bandwidth” to facilitate effective communication among conspecifics [27]. These differences between species mean ultrasonic detectors are not only valuable in recording the presence of bats, but also in enabling investigators to determine which species are present. Bat detectors offer many other advantages as well. They are also easily deployed, they do not disturb bats, they can be used in areas where mist netting is difficult or marginally effective, and if financial resources permit multiple detectors, they can be used to survey many sites simultaneously with limited personnel [22, 23, 28]. For these reasons, among many others, bat detectors remain one of the most popular tools for studying bats.
However, these devices are not without limitations. For instance, an individual detector placed at a single location can only provide data for one site. If one wishes to survey a large area or multiple habitats each night, numerous detectors would be needed. This can dramatically increase the cost of a project, placing it out of reach for many investigators [29].
One technique that may help overcome this problem is the use of transects [19, 30, 31]. By moving a single detector through different habitats, a larger area can be sampled each night compared to stationary approaches. While most transect studies have employed walking transects, they are constrained in the amount of area that can be sampled by the slow pace of walking. As bats can typically fly faster than a walking observer, no two call sequences recorded along a given transect can be viewed as independent of each other. Additionally, randomly and systematically sampling across numerous habitat types on a large geographic scale becomes exceedingly difficult in areas where most properties are privately owned and require permission to sample. Driving transects solve these problems [31, 32, 33].
While driving transects represent an important addition to the tools available for studying bats in the wild, several questions remain. Most previous studies have used continuous sampling. Continuous sampling involves leaving the detector recording while driving along the transect. Although this allows for data collection along the entire length of each transect, there are potential problems. For example, if habitat types vary along each transect (which is often the case in many modern mosaic landscapes), the types of statistical techniques that can be used to test predictions about habitat use with data collected continuously are limited. In addition, sounds from vehicle movements, including airflow over the microphone, may cause significant problems with the resulting audio files. These include constantly triggering the detector to record in the absence of bats or producing extensive background noise that prevents call sequences from being detectable or making it impossible for call analysis software to identify the species emitting the calls. One possible solution to these problems would be to restrict sampling to specific points along each transect at established intervals (point count sampling). While the latter have been used extensively in bird research [34, 35], they are rare for bats. Moreover, the absence of direct comparisons of these two methods makes it difficult to determine which sampling methodology is superior. The purpose of this study was to fill this void by comparing continuous versus point count sampling along the same driving transects using two detectors varying in microphone sensitivity. In particular, we assess whether the two types of detectors and methods are comparable in number of bat passes recorded per unit of time, percent of recorded bat passes able to be identified to species, and total number of species identified.
We recorded bats using an EM3 EchoMeter (Wildlife Acoustics Inc., Maynard, MA, USA) fitted with a Garmin GPS device that stamps all call sequence recordings with the coordinates. Since the calls of most aerial foraging insectivorous bats are above 20 kHz [36], we set the minimum frequency to begin recording (trigger threshold) to 20 kHz. This minimizes false triggers by insects, road noise and other sounds. As bat call sequences typically last only few seconds, maximum time length for individual recordings was set to 3 s to ensure file sizes of recordings were easily managed by the call-analysis software (see below). To minimize triggering by indiscernible, distant, low intensity sounds, we set the threshold amplitude to 18 db. Lastly, to determine if detector microphone sensitivity influences whether, and to what extent, background noise during driving adversely impacts the number and quality of bat passes recorded, we decided to add a second detector known for being highly sensitive. We selected the miniMIC ultrasonic microphone (Binary Acoustic Technology Inc. Tucson, Arizona, USA). The miniMIC was connected to a Dell Venue tablet via USB and call sequences were recorded using Spectral Analysis, digital Tuning and Recording Software (SPECT’R, Binary Acoustic Technology Inc. Tucson, Arizona, USA). Settings were as described for the EM3.
The study was conducted in the states of Maryland and Delaware on the Delmarva Peninsula, which is located along the mid-Atlantic coast of the United States between the Atlantic Ocean and the Chesapeake Bay. The peninsula consists primarily of a mosaic of agriculture (48%) and forests (37%, mostly mixed hardwood-pine and loblolly pine—
We established 28 transects that were evenly spaced across the Delmarva Peninsula as described by McGowan and Hogue [38]. Each transect contained 10 sampling points spaced 2 km apart (in straight line distance) for a total of 280 sites. We restricted transects to 2 lane roads, and sampling points to the nearest safe roadside location to stop for sampling. We sampled each transect once between June and August of 2014, yielding a total of 28 sampling nights. Transects were selected randomly for sampling without replacement using the random number generator in R Statistical Software [39]. The direction of travel along each transect was also randomly chosen. Unfortunately, due to equipment failure, two transects had to be excluded from analyses, dropping our total sampling nights (and transects) to 26.
We sampled each transect for bats using two approaches: point count and continuous sampling. Point count sampling occurred for 12 min at each of the 10 sampling points along each transect. Continuous sampling was carried out by leaving the detectors to operate as we drove the vehicle at speeds of 32–48 km/h along the transect between point count sites. We sampled each transect during peak bat activity, beginning 30 min after sunset and continuing until the transect was completed several hours later. For the continuous approach, we allowed the EM3 and miniMIC to operate atop a telescoping pole connected to the vehicle at a height of 2 m while we drove between sampling points. This allowed the detectors to be at a moderately elevated height while preventing damage from overlying bridges and road signs. Upon arriving at sampling points, we stopped the vehicle and extended the pole to 4 m and recorded for 12 min. We then collapsed the pole and drove the transect until reaching the next sampling point, repeating the process until all 10 points were sampled. In all cases, the detectors were pointed toward the immediately adjacent habitat to the right the road. Following recommendations of previous studies, we restricted sampling to nights without rain, temperatures above 10°C, and wind speeds less than 20 km/h [21, 40]. Call sequences recorded while driving were allocated to the continuous sampling data pool. Those recorded within the 12 min at each site were allocated to the point count sample. In total, we logged 52 h of recording time at stationary sampling points and just over 27 h from continuous sampling.
We defined a bat pass as a sequence of one or more echolocation calls with <1 s between sequential calls [24]. Based on currently available technology, researchers are not able to distinguish individual bats of the same species from their calls. As a result, it is not possible to determine the absolute number of bats at a given location with bat detectors [19, 41]. Instead, the number of bat passes may be viewed as a measure of overall bat activity rather than number of individuals [19, 41]. We attempted to identify all bat passes to species using Sonobat 3.2 automated classifier (SonoBat, Arcata, CA, USA). As recommended by official Sonobat Guidelines, a probability threshold of 90% was set for accurate species identification.
For comparisons between continuous versus point count methods (EM3 detector only, see Section 3), we tallied the total number of bat passes recorded along each transect while continuously sampling and separately for point count sampling. We then divided these numbers by the amount of time spent recording using each method to yield passes per minute. Since the data were not normally distributed, we compared passes per minute between the two methods at the 26 transects using a two-tailed Wilcoxon signed-rank test (N = 26, α = 0.05) in R Statistical Software [39].
For reasons discussed below (Section 3), comparisons between the two detectors were not possible using continuously sampled data. We therefore limited analyses to the point count data. Since these data were recorded at 260 discrete sampling points, each sampled simultaneously by both detectors for 12 min, we were able to treat each site as a separate data point. Specifically, we compared total bat passes recorded at each site between the two detectors. Since the data were not normally distributed, we used a two-tailed Wilcoxon signed-rank test (N = 260, α = 0.05) in R Statistical Software [39] to test for statistically significant differences. We also compared data on percent of bat passes identified to species and total number of species identified between the different detectors and sampling methodologies.
The concern that the more sensitive bat detector (miniMIC) would be more adversely impacted by road noise or airflow was fully realized. The detector was sensitive to wind resistance at speeds over 10 km/h, recording tens of thousands of audio files, all obscured with background noise. This made analysis of these data impossible. Therefore, comparisons of continuous and point count sampling results could only be performed with data obtained from the EM3 detector.
Average passes per minute recorded along the 26 transects was not significantly different between continuous sampling versus point count sampling (0.076 vs. 0.067 passes/min, respectively, P = 0.097, Table 1). Comparisons of the proportion of bat passes identified to species and total number of species documented using the two approaches revealed largely similar results as well. Of all the passes recorded for the entire sample during continuous sampling, 20% were able to be identified to species, yielding an overall rate of 0.015 passes per minute identified to species (Table 1). At point count sites, 24.5% of passes were able to be identified to species, yielding a rate of 0.016 passes per minute identified to species (Table 1). Both approaches also documented the same four species: big brown bat (
Continuous sampling | Point count sampling | |
---|---|---|
Mean (SD) passes/minute | 0.076 (0.073) | 0.067 (0.128) |
Percent passes identified to species | 20.0% | 24.5% |
Passes/minute identified to species | 0.015 | 0.016 |
Total number of species identified | 4 | 4 |
Comparison of bat detection rates between continuous versus point count sampling along 26 transects using the EM3 bat detector.
Passes per minute were not statistically different between the two approaches (Wilcoxon test, N = 26, P = 0.097).
Since data obtained with the more sensitive miniMIC detector during continuous sampling could not be analyzed, comparisons of the two detectors were restricted to point count sampling. Here, considerable differences were uncovered. The average number of bat passes recorded at each site were significantly higher using the miniMIC detector compared to the less sensitive EM3 detector (mean = 13.17 vs. 0.812 bat passes per site, respectively, N = 260, P < 0.001, Table 2). This translates to an average of 1.098 passes per minute for the miniMIC versus 0.067 for the EM3 (Table 2). Magnified over 52 hours of recording at the 260 sites, this resulted in a considerably higher number of total bat passes recorded with the miniMIC (3550) compared to the EM3 (211) (Table 2). Furthermore, due to the superior resolution of the audio files obtained with the miniMIC, a considerably higher proportion of bat passes were able to be identified to species (64.1% vs. 24.5%, Table 2). The combination of a higher number of calls recorded with a higher proportion identified to species meant that the miniMIC obtained vastly more calls identified to species throughout the study compared to the EM3 (2276 vs. 52, respectively, Table 2). Lastly, the miniMIC not only documented the four species found with the EM3 (see above), but it also uncovered three additional species: hoary bat (
EM3 detector | miniMIC detector | |
---|---|---|
Mean (SD) passes at each site | 0.812 (5.15) | 13.17 (24.24) |
Mean passes/minute | 0.067 | 1.098 |
Total passes recorded | 211 | 3550 |
Percent passes identified to species | 24.5% | 64.1% |
Passes/minute identified to species | 0.016 | 0.724 |
Total passes identified to species | 52 | 2276 |
Total number of species identified | 4 | 7 |
Comparison of bat detection rates between the two different bat detectors at 260 point count sampling sites.
The miniMIC documented significantly more calls than the EM3 (Wilcoxon test, N = 260, P < 0.001).
Bats face a growing array of threats. Many of these threats have complex and overlapping geographic distributions. Given the uncertainty of how these threats interact and impact bats across the landscape, it is becoming increasingly important to monitor populations across large geographic areas. Driving transects offer one the most cost effective and least labor-intensive tools for doing this. However, driving transects can be implemented in different ways and it is important to determine which approach is superior in terms of the amount and quality of data obtained.
When comparing results from a single detector capable of yielding analyzable audio files from both continuous and point count sampling, these two methods appear comparable. Specifically, mean number of passes per minute, percent of passes identified to species, passes per minute identified to species, and number of species identified were similar between the two approaches (Table 1). They also documented the same four species. If this holds with other detectors that are similarly unaffected by airflow or driving noises, we conclude that either driving transect technique can be a viable option. With such detectors, the needs of the particular project should dictate which option is selected. For example, if one seeks to test hypotheses about habitat use or other factors, the ability to use a variety of standard statistical techniques such as ANOVA (or nonparametric equivalents) for data from discrete sampling points may indicate the point count method is preferable. If, on the other hand, one simply seeks to document the bat fauna of an area, particularly in places it may not be safe to stop and record for extended periods, continuous sampling might be preferable.
The above conclusions are based on the use of a detector capable of operating while driving at speeds above 10 km/h without significant airflow or driving noise interference. We recommend testing any detectors intended for continuous sampling on driving transects to ensure they yield audio files of adequate quality for extracting bat passes and identifying them to species. Data obtained from the miniMIC suggests not all bat detectors may be capable of this. It remains unclear whether other high-sensitivity detectors are similarly affected, or whether accessory devices such as wind screens can mitigate these issues. Future work should test a variety of high sensitivity bat detectors with different types of wind screens to determine if it is possible to use these devices for continuous sampling. If not, our data suggest overall detector sensitivity is vastly more important than driving transect sampling design.
Overall, the more sensitive miniMIC recorded nearly 17 times more bat passes than the EM3 (Table 2). Factoring in that nearly 3 times as many of the miniMIC passes could be identified to species, this yielded nearly 44 times more calls identified to species and nearly twice as many bat species identified (Table 2). These differences are substantial and have profound implications for the types of conclusions that can be drawn from comparably designed studies. The failure of the less sensitive detector to record numerous bat passes at each site lowers the power of a study. It means any differences that may exist in activity among species or habitats may fail to be detected or may not be identified as significantly different due to the small amount of resulting data. Perhaps even more importantly, the fact that nearly half the species present were effectively missed by the less sensitive detector could alter conclusions about species presence, distribution, habitat associations, and many other ecological questions. The findings from the lower sensitivity detector are particularly troubling for research related to species conservation, as the very species typically of greatest concern (rare and threatened species) are the ones most likely to be missed. All three of the additional species recorded with the miniMIC are uncommon or rare in the sampled area [38]. This is especially true of the genus
It is important to note that even with a high sensitivity detector operated at point count sites, driving transects have limitations. Some areas or habitats may lack adequate road access. Depending on how limited road access is, this may put analysis of certain habitats off limits, or cause them to be significantly underrepresented in the sample. In such cases, the use of other techniques such as walking transects, mist nets, or unmanned stationary bat detectors may be indicated. Roads are also, by definition, human-altered environments. Their presence and usage can have a variety of impacts on adjacent environments [43]. Even if much of the surrounding habitat is largely intact, the presence of roads effectively creates a habitat edge. Some species are adapted to interior habitat conditions and avoid or are otherwise negatively impacted by edge conditions [44]. While this is often not a significant problem with insectivorous bats, since many species prefer edges like forest edges [30, 45, 46, 47], if there is reason to believe research questions about focal species in the study area might be adversely impacted by sampling at habitat edges, driving transects may not be appropriate. For the region sampled in the present study, driving transects have proven comparable in documenting the bat fauna to unmanned stationary bat detectors placed in both interior and edge conditions of different habitats [38].
Like many mammals, bats across the globe face a variety of threats that imperil their very existence. In North America, many of these threats are both increasing and span large geographic areas. The growing and expansive nature of these threats requires the urgent development and deployment of sampling techniques capable of effectively and efficiently documenting changes in the status of bat populations across large areas. Driving transects have been proposed and implemented as a tool for doing precisely that. Unfortunately, previous studies failed to examine the implications of using different sampling methodologies or detectors on the results obtained.
In this study we showed that, with a lower sensitivity detector that is unaffected by wind and driving noise, sampling continuously while driving yields similar results to sampling at discrete sampling points. However, detector sensitivity proved to be much more important than sampling technique in terms of the amount and quality of data obtained. That is, the higher sensitivity detector documented substantially higher numbers of bat passes and species than the lower sensitivity detector. The downside to the former is that data obtained while driving could not be analyzed due to significant interference from driving noise and airflow over the microphone at speeds above 10 km/h. Based on our findings, for most studies using driving transects to study bat populations, we suggest detector sensitivity should take priority over sampling design. If future studies are unable to resolve the problems of using high sensitivity detectors while continuously sampling along driving transects, this would necessitate using point count sampling instead. We recommend selecting the detector capable of obtaining the greatest amount and quality of call sequence recordings under a given research design, then conducting preliminary trials with continuous and point count sampling. If airflow or driving noises significantly diminish the data available with continuous sampling, as in the current study, point count sampling would be the more appropriate sampling regime to use for most applications.
We thank Dr. P. Anderson for help with statistics and programming and Dr. K. Vulinec for helpful editorial comments and input on the project. We thank the Eastern Shore Regional GIS Cooperative for their help in gathering and creating satellite imagery of the peninsula. Lastly, thanks to all the undergraduate students who helped with various aspects of this project, particularly E. Fare, A. Hollins, A. Davis, and C. Chikwere. This work was funded in part by the American Society of Mammalogists’ Grants-In-Aid of Research and several Salisbury University grants (Graduate Research and Presentation Grant, Henson Undergraduate Research Grant, and University Student Academic Research Award).
Cereals play a pivotal role to satisfy the global food demand of growing population, particularly in developing nations where cereal-based production system is the only predominant source of nutrition and calorie intake [1, 2]. The nutri-rich cereal is grown in diversified environments; globally wheat occupies around 217 million hectares holding the position of highest acreage among all crops with an annual production hovering around 731 million tonnes [3]. Wheat (
India, being blessed and enriched with a diverse agroecological condition, ensuring food and nutrition security to a majority of the Indian population through production and steady supply particularly in the recent past, is the second largest producer of wheat worldwide [4, 5, 6]. The crop has been under cultivation in about 30 million hectares (14% of global area) to produce the all-time highest output of 99.70 million tonnes of wheat (13.64% of world production) with a record average productivity of 3371 kg/ha [7]. Having a significant share in consumption of food basket with a 36% share in the total food grains produced from India and ensuring not only food security but also nutrition security, wheat is extensively procured by the government and distributed to a majority of the population; it ensures not only food security but also nutrition security. The cereal is one of the cheapest sources of energy, provides a major share of protein (20%) and calorie intake (19%) from consumption. Wheat is accessible across the country and consumed as various processed forms from prehistoric times [4].
After independence, India was net deficit in food production and had to import wheat for domestic consumption. During 1966–1967, India adopted new strategy which led the ‘Green Revolution’, especially in the production of wheat and rice. Coordinated research and several developmental and food security-based programmes in various phases have made the nation to progress closer towards ‘food and nutrition for all’ by achieving record and surplus production of wheat. After the Green Revolution, the nation has maintained strategic distance from famine even during unfavorable weather conditions. The impact of the All India Coordinated Research Project (AICRP) on wheat improvement is explicit and contributed significantly to the nation’s food security [8].
The All India Coordinated Wheat Improvement Project (AICWIP) was started in 1965 at the Indian Agricultural Research Institute (IARI), New Delhi, the nodal centre of the coordinated research. The AICWIP is one of the largest crop improvement network projects which set the dawn for the ‘Green Revolution’ in India. Under this project, several high-yielding wheat varieties have been developed which became extensively popular and adopted by the farming community. For instance, C 306, HD 2009, WL 711, UP 262, HUW 234, HD 2189, WH 147, Lok 1, HI 617 (Sujata), HD 2285, HD 2329, PBW 343, Raj 3765, PBW 502, HD 2733, HD 2967, HD 3086, DBW 17, PBW 550, GW 273, GW 322 and GW 496 in bread wheat and Raj 1555, PBW 34, HI 8498 and PDW 233 in durum wheat were developed and became the popular deliverables of the project. Apart from the aforementioned varieties, viz., NP 4, Kalyansona, Sonalika, Sharbati Sonora, WL 711, HD 1220, HD 1931 ‘SIB’, HD 2009, HD 2172, UP 262, etc., developed through the AICWIP were also cultivated beyond national borders. Several changes happened post inception of the AICWIP, and during 2017, the project has been renamed as the All India Coordinated Research Project (AICRP) on Wheat and Barley with ICAR-Indian Institute of Wheat and Barley Research as its headquarter based at Karnal (Haryana). It is a premier organization under the aegis of ICAR coordinating the multidisciplinary and multilocation testing of varieties in different AICRP centres across the different ecosystems for enhancing and sustaining the wheat production [8]. At present, there are 29 funded centres located in different agroclimatic regions across the country supporting the multidisciplinary research. The project, hitherto, has contributed in the release of around 448 high-yielding improved wheat varieties comprising bread, durum and dicoccum wheat. Over the years, prominent improvements have been made in the development arena post inception of the coordinated project (Figure 1).
Major developments in the country post inception of the AICRP.
Since the establishment of the AICRP, the productivity of wheat has increased by 2.5-folds (308%: +2.54 tonnes/ha) as furnished in Figure 2. A decadal analysis of productivity growth across major food commodities indicates that wheat production growth has outperformed rice and pulses for the past 5 decades since 1950. Overall scenario indicated that wheat production has grown at 4.72 percent per annum since 1950, the highest among other food grains [9].
Productivity trend in Indian wheat pre- and post-AICRP.
In India wheat crop is cultivated in
State/UT | Area (million ha) | Change (%) | Production (million tonnes) | Change (%) | ||
---|---|---|---|---|---|---|
2008–2009 to 2012–2013 | 2013–2014 to 2017–2018 | 2008–2009 to 2012–2013 | 2013–2014 to 2017–2018 | |||
Assam | 0.05 | 0.02 | −52.35 | 0.06 | 0.03 | −43.40 |
Bihar | 2.16 | 2.08 | −3.57 | 4.63 | 4.86 | 4.98 |
Chhattisgarh | 0.10 | 0.10 | 0.59 | 0.12 | 0.14 | 13.22 |
Gujarat | 1.12 | 1.09 | −2.85 | 3.20 | 3.22 | 0.60 |
Haryana | 2.50 | 2.55 | 2.21 | 11.35 | 11.24 | −0.93 |
Himachal Pradesh | 0.36 | 0.34 | −4.26 | 0.53 | 0.66 | 24.79 |
Jammu and Kashmir | 0.29 | 0.29 | 1.83 | 0.44 | 0.48 | 10.52 |
Jharkhand | 0.12 | 0.19 | 50.99 | 0.22 | 0.38 | 70.04 |
Karnataka | 0.25 | 0.19 | −25.30 | 0.23 | 0.20 | −13.23 |
Madhya Pradesh | 4.52 | 5.73 | 26.76 | 9.45 | 16.32 | 72.72 |
Maharashtra | 1.01 | 1.05 | 4.79 | 1.61 | 1.48 | −8.27 |
Punjab | 3.52 | 3.51 | −0.40 | 16.25 | 16.61 | 2.21 |
Rajasthan | 2.63 | 2.98 | 12.99 | 8.12 | 9.31 | 14.62 |
Uttar Pradesh | 9.66 | 9.75 | 0.94 | 29.33 | 27.93 | −4.77 |
Uttarakhand | 0.38 | 0.34 | −9.89 | 0.85 | 0.81 | −4.64 |
West Bengal | 0.32 | 0.29 | −8.33 | 0.85 | 0.80 | −5.94 |
Others | 0.04 | 0.04 | −20.64 | 0.12 | 0.12 | −3.54 |
All India | 29.04 | 30.54 | 5.16 | 87.39 | 94.57 | 8.22 |
Statewise quinquennial average of area and production of wheat.
State/UT | 2008–2009 to 2012–2013 | 2013–2014 to 2017–2018 | Change (%) |
---|---|---|---|
India | 3009 | 3100 | 3.03 |
Punjab | 4617 | 4738 | 2.61 |
Haryana | 4544 | 4407 | −3.01 |
Others | 3083 | 3331 | 8.05 |
Rajasthan | 3038 | 3133 | 3.12 |
Gujarat | 2845 | 2922 | 2.69 |
Uttar Pradesh | 2724 | 2867 | 5.23 |
Madhya Pradesh | 2698 | 2843 | 5.38 |
West Bengal | 2241 | 2754 | 22.90 |
Uttarakhand | 2144 | 2375 | 10.76 |
Bihar | 2091 | 2339 | 11.87 |
Jharkhand | 1790 | 2005 | 12.01 |
Himachal Pradesh | 1602 | 1911 | 19.28 |
Jammu and Kashmir | 1511 | 1656 | 9.58 |
Maharashtra | 1466 | 1400 | −4.53 |
Assam | 1180 | 1373 | 16.39 |
Chhattisgarh | 1149 | 1328 | 15.59 |
Karnataka | 914 | 1057 | 15.64 |
Statewise quinquennial average of wheat yield (kg/ha).
The production of wheat has also showed an increasing trend, from 87.39 to 94.57 million tonnes from 2012–2013 to 2017–2018 with a magnitude of 7.18 million tonnes (8.22%). The major source of this increase in production is mainly attributed to expansion in area followed by marginal increase in productivity. Uttar Pradesh still holds the position of largest producer in the country accounting for about 28 million tonnes which is roughly 30% of the total production. Around 85 million tonnes (90%) of wheat has been produced from traditional wheat-growing regions such as Uttar Pradesh, Punjab, Haryana, Madhya Pradesh, Bihar and Rajasthan [10]. The maximum quantum jump has been noticed in Madhya Pradesh and Jharkhand which almost doubled their production from 9.45–16.32 million tonnes to 0.22–0.38 million tonnes. However, 1.4 million tonnes reduction was noticed in Uttar Pradesh during the same period which is a matter of serious concern.
The national productivity trend for wheat showed a marginal improvement, which has increased from 3009 kg/ha to 3100 kg/ha from 2012–2013 to 2017–2018 (Table 2). This rise in productivity is due to adoption of high-yielding varieties coupled with other inputs. The traditional wheat-growing states Punjab and Haryana have highest productivity than the national productivity [10]. The maximum increase in productivity has been observed in nontraditional wheat-growing states like West Bengal (23%), Himachal Pradesh (19.28%) and Assam (16.39%). However, the productivity of Haryana has declined which pose a serious matter of concern.
Quinquennial data on wheat area, production and yield for India indicates that there is a variation in crop acreage that declined to 29.58 million hectare (Figure 3). However, the production of wheat has increased significantly from 95.85 to 99.70 million tonnes. Increase in production was largely attributed to rise in productivity levels registered across the wheat-growing regions.
Quinquennial scenario in area, production and yield of wheat.
Wheat is one of the predominant staple foods and a main cereal crop of many diets around the world. Table 3 furnishes the current scenario of area, production and yield of wheat in the world. Globally wheat is cultivated in an area about 220 million hectares with a record production of 763.06 million tonnes of grain. Maximum area under wheat is in India (14%), followed by Russia (12.43%), China (11.14%) and the USA (6.90%) which altogether accounts for about 45% of global area. However, China is the major producer of wheat with a record production of 136 million tonnes, followed by India (98.51mt), Russia (85mt) and the USA (47.35mt). Around 449 million tonnes (58%) of wheat has been produced from traditional wheat-growing countries like China, India, Russia, the USA, Canada, Ukraine and Pakistan. The average yield per hectare is maximum in New Zealand (10 tonnes/ha), followed by Zambia (7 tonnes/ha) and Mexico (6 tonnes/ha). However, the average wheat yield in major wheat-growing countries is significantly low, and only China has maximum yield (5.48 tonnes/ha) followed by Ukraine, India and the USA. Despite India’s productivity being on par with the world average, the per day productivity is relatively high (20 kg/day) in comparison to other countries, viz. the USA, Uzbekistan, Hungary, Poland, Italy, Bulgaria and Romania, which predominantly cultivates winter wheat with crop cycle hovering around 275 days. However, in India, in comparison to its competing country, China, the per day productivity is almost the same. It should be noted that the winter wheat-cultivating countries do not deal with any other crop in a year, while in India, in which spring wheat cultivation occurs around 150 days duration, farmers has the choice to grow at the maximum two sole crops apart from wheat [8].
Countries | Area (million ha) | Production (million tonnes) | Yield (tonnes/ha) |
---|---|---|---|
China | 24.51 (11.14) | 134.33 (17.60) | 5.48 |
India | 29.58 (14.00) | 99.70 (12.91) | 3.37 |
Russia | 27.34 (12.43) | 84.99 (11.14) | 3.11 |
USA | 15.19 (6.90) | 47.35 (6.21) | 3.12 |
Canada | 8.98 (4.08) | 29.98 (3.93) | 3.34 |
Ukraine | 6.64 (3.02) | 26.98 (3.54) | 4.06 |
Pakistan | 8.97 (4.08) | 26.67 (3.50) | 2.97 |
Australia | 12.25 (5.57) | 21.30 (2.79) | 1.74 |
Turkey | 7.8 (3.55) | 21.00 (2.75) | 2.69 |
Kazakhstan | 11.91 (5.41) | 14.80 (1.93) | 1.24 |
World | 220 | 763.06 | 3.47 |
Area, production and yield of major wheat-producing countries (2017–2018).
Note: Figure within parenthesis indicates the percent to world.
The global wheat production has increased around 7 million tonnes (0.9%) in the year 2017–2018 in comparison to its past. The major source for the increase in production is mainly attributed to increase in productivity followed by marginal increase in area in major wheat-growing countries (Figure 4).
Annual growth in area, production and yield (2017–2018 over 2016–2017).
At the national level, there is a shift in area, production and yield under wheat during 2008–2009 to 2012–2013 vis-à-vis 2013–2014 to 2017–2018. Currently, wheat acreage is around 30 million hectares. Comparing the past two periods, the change was more prominent in wheat production, followed by area and yield (Tables 1 and 2). The average change in production was around 9%. The country on an average produced 7.3 million tonnes more than the past period. The major wheat-growing states like Punjab, Madhya Pradesh and Rajasthan have witnessed positive change in area and yield and production [6]. Surprisingly, Jharkhand registered positive change in area, yield and production, while Haryana and Uttar Pradesh, the major traditional wheat-growing states, witnessed a negative change in production due to negative change in yield. Regional disparities in area and yield had a significant impact on the wheat production. Average production in Madhya Pradesh showed an increase by 6.87 million tonnes, followed by Rajasthan (1.2 million tonnes). However, the production has declined in Uttar Pradesh (1.41 million tonnes) and Haryana (0.11 million tonnes).
Statewise comparison of area and production for 2017–2018 shows that Uttar Pradesh, Punjab, Madhya Pradesh and Haryana were the major contributors to the national production (Figure 5). However, Punjab, Haryana and Uttar Pradesh retained the status of higher productivity for many years. The scope for additional production of these states has been limited due to stagnation of wheat acreage and yield. This indicates that these states almost reached their saturation in wheat cultivation and production. Potential exists for states like Rajasthan and Madhya Pradesh to explore for additional wheat production in the coming years. Area under these states has to increase in yield at farmers’ field so as to attain higher production. The current production from these states is around 29 million tonnes which has to be doubled by 2050 with an overall production target of 140 million tonnes [11, 12, 13].
Statewise comparison of wheat area and production (2017–2018).
Production constraints are manifold and vary from crop to crop and between regions. Burgeoning population vis-à-vis increasing demand for food; growing competition for cultivable land, irrigation water and energy; intensive cropping especially in the Indo-Gangetic Plains resulting in irrational use of resources; pest-environment interaction; reduction of natural resource base; declining total factor productivity; and yield plateau (Figure 6) are the prominent challenges put forth against crop production [11, 12, 13, 14]. Wheat production not only faces the above routine challenges, but the intensity gets magnified in the context of climate change owing to its vulnerability [15, 16, 17, 18].
Production challenges in Indian setting.
In India a significant part of wheat area is under heat stress, and Gangetic plains and central and peninsular India are the most heat-stressed regions, whereas it is moderate in northwestern parts of Indo-Gangetic Plains [19]. Variability in climate is also one of the biggest environmental threats to Indian agriculture, potentially impacting the wheat production and security. In India, it has been predicted that with every rise in 1°C temperature, the wheat production will be decreased by 4–6 million tonnes. Rainfed wheat will experience a reduction in yield with 9–25% profit loss for every 2–3.5°C rise in temperature [20].
After the Green Revolution, the productivity of wheat has been significantly increased with the increase in input usage, plant protection chemicals and irrigated areas. The excessive use of fertilizer, chemicals and irrigation has degraded the fertility of the soil and also caused a reduction in groundwater table. The monocropping system led to deterioration in soil quality. If the current trend continues, the country will face a serious problem in utilization of scarce natural resources.
In India about 4.5 million hectares salt affected area is under wheat cultivation posing a major problem for canal irrigated areas [21]. Even though soil amendments and proper drainage are the more constructive solution, pace of reclamation is not substantial. This will significantly reduce the wheat yield.
As year passes, the pests of wheat have developed some resistance even though controlled under contingent situation. If not, a new range of pests and diseases have been emerging putting a serious constraint on the wheat productivity.
Adoption system and germplasm dissemination in India have been made in formal (organized) and informal (unorganized) ways [22]. Even though new improved varieties are developed and made available to farmers by NARS around, 80% of all seeds are saved by the farmers [19]. Further, a majority of farmers in India have lack of awareness of improved wheat varieties due to weak linkages [19]. The development and diffusion of improved varieties are crucial for achieving target production of wheat.
Volatility in prices of agricultural commodities has received considerable attention in the recent past among producers, consumers and policy makers. Price fluctuations create an uncertain farming situation threatening wheat production and have a negative impact on the welfare of wheat growers. Further, volatility in prices of wheat in international market hinders the smooth flow of trade across nations.
Over the years, a visible declining trend in farm holding size has been observed and is another major concern for the nation as a whole. This is caused by fragmentation of farmland owing to nuclear family system and decline in cultivable area due to urbanization. Estimate from the agricultural census (2010–2011) reports that the average operational holding in India was 1.16 ha. Among major wheat-growing states, average operational holding was highest in the case of Punjab (3.77 ha) and lowest in Bihar (0.39 ha). Declining farm size and conversion of farmland to residential area are the major setbacks with respect to food production in general and wheat production in particular.
A major concern among policy makers is the declining total factor productivity over the years owing to stagnating yield levels with increased use of inputs and resource services. It is a major concern in the intensive cropping areas wherein rice-wheat is widely under cultivation. This can be countered by adoption of improved technologies coupled with the use of optimal resources.
The constraints in wheat production are region-specific (Table 4), and it requires setting research priorities to address them. Rust, infestation of weeds such as
Zone | Major production constraints |
---|---|
Northern hills zone | Lack of accessibility of seed of newly released variety, |
Northwestern plains zone | High cost of inputs, low price of wheat, erratic power supply, |
Northeastern plains zone | Small land holdings, inadequacy of seeds of newly released variety, lack of information among the farmers about recently developed new technologies, late sowing, temperature fluctuations during growth, high-priced inputs, poor quality of seeds, non-availability of labour, low organic matter in the soil, non-availability of farm machinery |
Central zone | Non-availability of labour, imbalanced use of fertilizer, high temperature at maturity, limited accessibility to seed of newly released variety, temperature fluctuation during crop growth, high cost of inputs, lack of irrigation facilities, small land holding, decline in water table, untimely rain |
Peninsular zone | Low price of wheat, irregular power supply, high cost of inputs, non-availability of labour, non-availability of electricity, higher rate of custom hiring, untimely rain, lack of facilities of canal irrigation, poor accessibility to seeds of newly released variety, temperature fluctuation during crop growth |
Zone-wise production constraints in wheat.
With a limited scope for increasing the crop acreage besides the production threats and challenges at the forefront [12, 13], the production target has been fixed at 140 mt by 2050 (Figure 7) [11]. Under stable wheat acreage and given the optimistic production target, the existing average yield has to be increased from 33 to 47 Qtls/ha by 2050. Concerted research should focus to break the yield barriers in gradual manner and develop genotypes tailored for specific wheat-growing regions.
Existing production and target for 2050.
The following are the strategies set for increasing the crop productivity to achieve the set target of 140 million tonnes [9, 23, 24]:
Improvement of wheat under conventional methods
Exploitation of heterosis for developing the hybrids
Pre-breeding programme by broadening the varieties’ genetic base
Capitalizing exotic germplasm and extensive utilization
Precision phenotyping of germplasm
Mining novel alleles for genes of known function
Production of segregating populations for lines of interest identified in primary germplasm screens
Use of existing landrace x elite segregating populations to identify QTL controlling traits of interest
Production of NILs for QTL and allelic variants
Assessing agronomic performance of NILs
Development of informative genetic markers and their use in commercial wheat breeding programmes
Development of new plant types
Desired canopy structure
Rapid leaf area development
Rapid nutrient uptake
Increasing lodging resistance (robust stem)
Biotechnological interventions
Marker-assisted breeding
Wheat genome sequence and associated genomic tools
Allele mining on the basis of probing germplasm sets for specific gene sequences
Innumerable new molecular markers in genomic regions of choice to facilitate large-scale cloning of new genes
A plethora of approaches for understanding the function of each and every gene
Understanding temporal and tissue-specific gene expression in response to developmental and environmental cues
Uncovering molecular basis of complex adaptation syndromes including tolerance to various abiotic stresses
Designing of a genome-wide perfect marker system based on SNPs in entire gene space of the species
Potential of wheat transgenics and possibilities of greater public acceptance
Functional characterization of genome
Tackling disease resistance
Tackling abiotic stress-climate change
Resource management
Quality improvement
Policy reorientation [6]
Price policy
Seed policy
Credit policy
Institutional innovations like e-National Agriculture Market
Extension: transfer of technology
Economic assessment of various improved technologies for upscaling and outscaling
Promotion of resource conservation technologies [25]
Awareness among farmers of new improved varieties and production technologies for yield as well as income enhancement [26, 27]
Wheat atlas: creation and updating regional-level database on parameters like area, production, yield, yield gaps and input usage.
Analysis of benefit-cost ratio (BCR) in wheat production and development
Access to critical inputs for timely sowing like improved seeds particularly in eastern UP, Bihar, Jharkhand and Chhattisgarh; access to fertilizers, irrigation water and farm machinery [28]
Infrastructure development (roads, storage structures, market)
Agriculture transformation is of utmost importance for regional development. Cutting-edge research involving multidiscipline is the need of the hour and is expected to develop superior genotypes breaking the yield barrier. Despite being cost-intensive, development is mandatory which warrants for higher public and private investment in R&D. In addition, productivity has to be increased through massive efforts from extension personnel who serve as change agents among the farming community. A reorientation in price policy (fair price system benefiting both producers and consumers, deficient payment system to producers for difference between the market and procurement price and cash transfers to producers under colossal loss), seed policy (quality seed production and ensuring its availability for all) and credit policy (timely distribution with minimum administrative work) is highly required to support the existing production system and to carry forward. Increased access to input and output markets, revamped distributions systems, investment in rural infrastructures and skilling of the rural labour force will help immensely to increase the crop productivity. On the whole, a synergy between research-extension-policy-institutions will play an impending role to achieve the desired level of production as well as to ensure food security for future generation. The realization of the expected increase in production in agriculture will only be possible with high efficiency, high quality, resistance to biotic and abiotic stresses and by offering them to the service of the farmer by improving the stable varieties in breeding programmes.
General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed.
',metaTitle:"Horizon 2020 Compliance",metaDescription:"General requirements for Open Access to Horizon 2020 research project outputs are found within Guidelines on Open Access to Scientific Publication and Research Data in Horizon 2020. The guidelines, in their simplest form, state that if you are a Horizon 2020 recipient, you must ensure open access to your scientific publications by enabling them to be downloaded, printed and read online. Additionally, said publications must be peer reviewed. ",metaKeywords:null,canonicalURL:null,contentRaw:'[{"type":"htmlEditorComponent","content":"Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\\n\\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\\n\\nIn other words, publishing with IntechOpen guarantees compliance.
\\n\\nRead more about Open Access in Horizon 2020 here.
\\n\\nWhich scientific publication to choose?
\\n\\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\\n\\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\\n\\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\\n"}]'},components:[{type:"htmlEditorComponent",content:'Publishing with IntechOpen means that your scientific publications already meet these basic requirements. It also means that through our utilization of open licensing, our publications are also able to be copied, shared, searched, linked, crawled, and mined for text and data, optimizing our authors' compliance as suggested by the European Commission.
\n\nMetadata for all publications is also automatically deposited in IntechOpen's OAI repository, making them available through the Open Access Infrastructure for Research in Europe's (OpenAIRE) search interface further establishing our compliance.
\n\nIn other words, publishing with IntechOpen guarantees compliance.
\n\nRead more about Open Access in Horizon 2020 here.
\n\nWhich scientific publication to choose?
\n\nWhen choosing a publication, Horizon 2020 grant recipients are encouraged to provide open access to various types of scientific publications including monographs, edited books and conference proceedings.
\n\nIntechOpen publishes all of the aforementioned formats in compliance with the requirements and criteria established by the European Commission for the Horizon 2020 Program.
\n\nAuthors requiring additional information are welcome to send their inquiries to funders@intechopen.com
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15932}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"6"},books:[{type:"book",id:"10801",title:"Uric Acid",subtitle:null,isOpenForSubmission:!0,hash:"d947ab87019e69ab11aa597edbacc018",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10801.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10800",title:"Ligase",subtitle:null,isOpenForSubmission:!0,hash:"1f10ff112edb1fec24379dac85ef3b5b",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10800.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10837",title:"Peroxisomes",subtitle:null,isOpenForSubmission:!0,hash:"0014b09d4b35bb4d7f52ca0b3641cda1",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10837.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10841",title:"Hydrolases",subtitle:null,isOpenForSubmission:!0,hash:"64617cf21bf1e47170bb2bcf31b1fc37",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10841.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8977",title:"Protein Kinase - New Opportunities, Challenges and Future Perspectives",subtitle:null,isOpenForSubmission:!0,hash:"6d200cc031706a565b554fdb1c478901",slug:null,bookSignature:"Dr. Rajesh Kumar Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8977.jpg",editedByType:null,editors:[{id:"329385",title:"Dr.",name:"Rajesh",surname:"Singh",slug:"rajesh-singh",fullName:"Rajesh Singh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10797",title:"Cell Culture",subtitle:null,isOpenForSubmission:!0,hash:"2c628f4757f9639a4450728d839a7842",slug:null,bookSignature:"Prof. Xianquan Zhan",coverURL:"https://cdn.intechopen.com/books/images_new/10797.jpg",editedByType:null,editors:[{id:"223233",title:"Prof.",name:"Xianquan",surname:"Zhan",slug:"xianquan-zhan",fullName:"Xianquan Zhan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10799",title:"Phenolic Compounds",subtitle:null,isOpenForSubmission:!0,hash:"339199f254d2987ef3167eef74fb8a38",slug:null,bookSignature:"Prof. Farid A. Badria",coverURL:"https://cdn.intechopen.com/books/images_new/10799.jpg",editedByType:null,editors:[{id:"41865",title:"Prof.",name:"Farid A.",surname:"Badria",slug:"farid-a.-badria",fullName:"Farid A. Badria"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10741",title:"Synthetic Genomics - From Natural to Synthetic Genomes",subtitle:null,isOpenForSubmission:!0,hash:"eb1cebd0b9c4e7e87427003ff7196f57",slug:null,bookSignature:"Dr. Miguel Fernández-Niño and Dr. Luis H. Reyes",coverURL:"https://cdn.intechopen.com/books/images_new/10741.jpg",editedByType:null,editors:[{id:"158295",title:"Dr.",name:"Miguel",surname:"Fernández-Niño",slug:"miguel-fernandez-nino",fullName:"Miguel Fernández-Niño"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10886",title:"Genetic Polymorphisms - New Insights",subtitle:null,isOpenForSubmission:!0,hash:"a71558dd7dfd16ad140168409f887f7e",slug:null,bookSignature:"Prof. Mahmut Çalışkan",coverURL:"https://cdn.intechopen.com/books/images_new/10886.jpg",editedByType:null,editors:[{id:"51528",title:"Prof.",name:"Mahmut",surname:"Çalışkan",slug:"mahmut-caliskan",fullName:"Mahmut Çalışkan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10794",title:"Potassium in Human Health",subtitle:null,isOpenForSubmission:!0,hash:"0fbab5c7b5baa903a6426e7bbd9f99ab",slug:null,bookSignature:"Dr. Jie Tang",coverURL:"https://cdn.intechopen.com/books/images_new/10794.jpg",editedByType:null,editors:[{id:"181267",title:"Dr.",name:"Jie",surname:"Tang",slug:"jie-tang",fullName:"Jie Tang"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10803",title:"Reactive Oxygen Species",subtitle:null,isOpenForSubmission:!0,hash:"176adcf090fdd1f93cb8ce3146e79ca1",slug:null,bookSignature:"Prof. Rizwan Ahmad",coverURL:"https://cdn.intechopen.com/books/images_new/10803.jpg",editedByType:null,editors:[{id:"40482",title:"Prof.",name:"Rizwan",surname:"Ahmad",slug:"rizwan-ahmad",fullName:"Rizwan Ahmad"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10839",title:"Protein Detection",subtitle:null,isOpenForSubmission:!0,hash:"2f1c0e4e0207fc45c936e7d22a5369c4",slug:null,bookSignature:"Prof. Yusuf Tutar and Dr. Lütfi Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/10839.jpg",editedByType:null,editors:[{id:"158492",title:"Prof.",name:"Yusuf",surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:9},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:13},popularBooks:{featuredBooks:[],offset:0,limit:12,total:null},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"20",title:"Physics",slug:"physics",parent:{title:"Physical Sciences, Engineering and Technology",slug:"physical-sciences-engineering-and-technology"},numberOfBooks:143,numberOfAuthorsAndEditors:3401,numberOfWosCitations:3946,numberOfCrossrefCitations:1614,numberOfDimensionsCitations:3509,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"physics ",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"9984",title:"Geophysics and Ocean Waves Studies",subtitle:null,isOpenForSubmission:!1,hash:"271d086381f9ba04162b0dc7cd57755f",slug:"geophysics-and-ocean-waves-studies",bookSignature:"Khalid S. Essa, Marcello Di Risio, Daniele Celli and Davide Pasquali",coverURL:"https://cdn.intechopen.com/books/images_new/9984.jpg",editedByType:"Edited by",editors:[{id:"102766",title:"Prof.",name:"Khalid S.",middleName:null,surname:"Essa",slug:"khalid-s.-essa",fullName:"Khalid S. Essa"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10042",title:"Noise and Environment",subtitle:null,isOpenForSubmission:!1,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:"noise-and-environment",bookSignature:"Daniela Siano and Alice Elizabeth González",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:"Edited by",editors:[{id:"9960",title:"Dr.",name:"Daniela",middleName:null,surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10075",title:"Nonlinear Optics",subtitle:"From Solitons to Similaritons",isOpenForSubmission:!1,hash:"b034b2a060292c8511359aec0db1002c",slug:"nonlinear-optics-from-solitons-to-similaritons",bookSignature:"İlkay Bakırtaş and Nalan Antar",coverURL:"https://cdn.intechopen.com/books/images_new/10075.jpg",editedByType:"Edited by",editors:[{id:"186388",title:"Prof.",name:"İlkay",middleName:null,surname:"Bakırtaş",slug:"ilkay-bakirtas",fullName:"İlkay Bakırtaş"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editedByType:"Edited by",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10074",title:"Recent Techniques and Applications in Ionizing Radiation Research",subtitle:null,isOpenForSubmission:!1,hash:"129deeec2186f6392f154ed41f64477a",slug:"recent-techniques-and-applications-in-ionizing-radiation-research",bookSignature:"Ahmed M. Maghraby and Basim Almayyahi",coverURL:"https://cdn.intechopen.com/books/images_new/10074.jpg",editedByType:"Edited by",editors:[{id:"102209",title:"Dr.",name:"Ahmed M.",middleName:null,surname:"Maghraby",slug:"ahmed-m.-maghraby",fullName:"Ahmed M. Maghraby"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8679",title:"Inverse Heat Conduction and Heat Exchangers",subtitle:null,isOpenForSubmission:!1,hash:"a994b17ac471c6d414d63c74a7ab74de",slug:"inverse-heat-conduction-and-heat-exchangers",bookSignature:"Suvanjan Bhattacharya, Mohammad Moghimi Ardekani, Ranjib Biswas and R. C. Mehta",coverURL:"https://cdn.intechopen.com/books/images_new/8679.jpg",editedByType:"Edited by",editors:[{id:"233630",title:"Dr.",name:"Suvanjan",middleName:null,surname:"Bhattacharyya",slug:"suvanjan-bhattacharyya",fullName:"Suvanjan Bhattacharyya"}],equalEditorOne:{id:"56358",title:"Dr.",name:"R. C.",middleName:null,surname:"Mehta",slug:"r.-c.-mehta",fullName:"R. C. Mehta",profilePictureURL:"https://mts.intechopen.com/storage/users/56358/images/system/56358.jpeg",biography:"R. C. Mehta obtained his Ph.D. from the Indian Institute of Technology, Madras. He has worked as the Head of Aerodynamics\nDivision of Vikram Sarabhai Space Centre/Indian Space Research\nOrganization. He has participated in the design of launch and\nreentry vehicles. He has served as a Senior Fellow in the School\nof Mechanical and Aerospace Engineering at Nanyang Technological University, Singapore. He is the recipient of the Life Time\nAchievement Award from the Flow Physics Society of India. He is a senior member\nof AIAA. He has published over 120 papers in peer-reviewed national and international journals. He has published five chapters and co-authored two books. He is a\nreviewer for many international journals. He is presently Dean in the Noorul Islam\nCentre for Higher Education, Kumaracoil, India.",institutionString:"Noorul Islam University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"5",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Noorul Islam University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8490",title:"Selected Topics in Plasma Physics",subtitle:null,isOpenForSubmission:!1,hash:"0fe936bfad77ae70ad96c46de8b7730d",slug:"selected-topics-in-plasma-physics",bookSignature:"Sukhmander Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8490.jpg",editedByType:"Edited by",editors:[{id:"282807",title:"Dr.",name:"Sukhmander",middleName:null,surname:"Singh",slug:"sukhmander-singh",fullName:"Sukhmander Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9211",title:"Single Photon Manipulation",subtitle:null,isOpenForSubmission:!1,hash:"567ddcc14b68fa14e54df3bce2f51acc",slug:"single-photon-manipulation",bookSignature:"Keyu Xia",coverURL:"https://cdn.intechopen.com/books/images_new/9211.jpg",editedByType:"Edited by",editors:[{id:"210723",title:"Prof.",name:"Keyu",middleName:null,surname:"Xia",slug:"keyu-xia",fullName:"Keyu Xia"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10076",title:"Quantum Mechanics",subtitle:null,isOpenForSubmission:!1,hash:"78f2b316d6bb97464dbbf9b683164aff",slug:"quantum-mechanics",bookSignature:"Paul Bracken",coverURL:"https://cdn.intechopen.com/books/images_new/10076.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7965",title:"Liquid Crystals and Display Technology",subtitle:null,isOpenForSubmission:!1,hash:"eb83772cea6200bdd685b8a1b93ee35d",slug:"liquid-crystals-and-display-technology",bookSignature:"Morteza Sasani Ghamsari and Irina Carlescu",coverURL:"https://cdn.intechopen.com/books/images_new/7965.jpg",editedByType:"Edited by",editors:[{id:"64949",title:"Prof.",name:"Morteza",middleName:null,surname:"Sasani Ghamsari",slug:"morteza-sasani-ghamsari",fullName:"Morteza Sasani Ghamsari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9276",title:"Computational Fluid Dynamics Simulations",subtitle:null,isOpenForSubmission:!1,hash:"03a2501c6fc0ac90a8b328850b712da7",slug:"computational-fluid-dynamics-simulations",bookSignature:"Guozhao Ji and Jiujiang Zhu",coverURL:"https://cdn.intechopen.com/books/images_new/9276.jpg",editedByType:"Edited by",editors:[{id:"190139",title:"Dr.",name:"Guozhao",middleName:null,surname:"Ji",slug:"guozhao-ji",fullName:"Guozhao Ji"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10162",title:"A Diffusion Hydrodynamic Model",subtitle:null,isOpenForSubmission:!1,hash:"a8c90b653db4fa7a59132d39cca185d8",slug:"a-diffusion-hydrodynamic-model",bookSignature:"Theodore V. Hromadka II, Chung-Cheng Yen and Prasada Rao",coverURL:"https://cdn.intechopen.com/books/images_new/10162.jpg",editedByType:"Authored by",editors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"4",chapterContentType:"compact",authoredCaption:"Authored by"}}],booksByTopicTotal:143,mostCitedChapters:[{id:"32842",doi:"10.5772/34901",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:73518,totalCrossrefCites:29,totalDimensionsCites:58,book:{slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"49652",doi:"10.5772/61720",title:"Sample Preparations for Scanning Electron Microscopy – Life Sciences",slug:"sample-preparations-for-scanning-electron-microscopy-life-sciences",totalDownloads:8115,totalCrossrefCites:25,totalDimensionsCites:54,book:{slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mogana Das Murtey and Patchamuthu Ramasamy",authors:[{id:"176330",title:"Dr.",name:"Mogana",middleName:"Das",surname:"Murtey",slug:"mogana-murtey",fullName:"Mogana Murtey"},{id:"181159",title:"Mr.",name:"Patchamuthu",middleName:null,surname:"Ramasamy",slug:"patchamuthu-ramasamy",fullName:"Patchamuthu Ramasamy"}]},{id:"26791",doi:"10.5772/28067",title:"Optical Vortices in a Fiber: Mode Division Multiplexing and Multimode Self-Imaging",slug:"optical-vortices-in-a-fiber-mode-division-multiplexing-and-multimode-self-reproducing",totalDownloads:3952,totalCrossrefCites:18,totalDimensionsCites:39,book:{slug:"recent-progress-in-optical-fiber-research",title:"Recent Progress in Optical Fiber Research",fullTitle:"Recent Progress in Optical Fiber Research"},signatures:"S.N. Khonina, N.L. Kazanskiy and V.A. Soifer",authors:[{id:"72613",title:"Prof.",name:"Svetlana",middleName:null,surname:"Khonina",slug:"svetlana-khonina",fullName:"Svetlana Khonina"}]}],mostDownloadedChaptersLast30Days:[{id:"71926",title:"An Overview of Polymer-Dispersed Liquid Crystals Composite Films and Their Applications",slug:"an-overview-of-polymer-dispersed-liquid-crystals-composite-films-and-their-applications",totalDownloads:561,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"liquid-crystals-and-display-technology",title:"Liquid Crystals and Display Technology",fullTitle:"Liquid Crystals and Display Technology"},signatures:"Anuja Katariya Jain and Rajendra R. Deshmukh",authors:[{id:"34437",title:"Dr.",name:"Rajendrasing",middleName:"Rajesing",surname:"Deshmukh",slug:"rajendrasing-deshmukh",fullName:"Rajendrasing Deshmukh"},{id:"318245",title:"Dr.",name:"Anuja",middleName:null,surname:"Katariya-Jain",slug:"anuja-katariya-jain",fullName:"Anuja Katariya-Jain"}]},{id:"72824",title:"Applications of Diffusion Hydrodynamic Model",slug:"applications-of-diffusion-hydrodynamic-model",totalDownloads:312,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"a-diffusion-hydrodynamic-model",title:"A Diffusion Hydrodynamic Model",fullTitle:"A Diffusion Hydrodynamic Model"},signatures:"Theodore V. Hromadka II and Chung-Cheng Yen",authors:[{id:"181008",title:"Dr.",name:"Theodore V.",middleName:"V.",surname:"Hromadka II",slug:"theodore-v.-hromadka-ii",fullName:"Theodore V. Hromadka II"}]},{id:"49537",title:"Electron Diffraction",slug:"electron-diffraction",totalDownloads:8488,totalCrossrefCites:6,totalDimensionsCites:22,book:{slug:"modern-electron-microscopy-in-physical-and-life-sciences",title:"Modern Electron Microscopy in Physical and Life Sciences",fullTitle:"Modern Electron Microscopy in Physical and Life Sciences"},signatures:"Mohsen Asadi Asadabad and Mohammad Jafari Eskandari",authors:[{id:"176352",title:"Dr.",name:"Mohsen",middleName:null,surname:"Asadi Asadabad",slug:"mohsen-asadi-asadabad",fullName:"Mohsen Asadi Asadabad"},{id:"177600",title:"Dr.",name:"Mohammad",middleName:null,surname:"Jafari Eskandari",slug:"mohammad-jafari-eskandari",fullName:"Mohammad Jafari Eskandari"}]},{id:"32842",title:"Sterilization by Gamma Irradiation",slug:"sterilization-by-gamma-irradiation",totalDownloads:73518,totalCrossrefCites:29,totalDimensionsCites:58,book:{slug:"gamma-radiation",title:"Gamma Radiation",fullTitle:"Gamma Radiation"},signatures:"Kátia Aparecida da Silva Aquino",authors:[{id:"102109",title:"Dr.",name:"Katia",middleName:"Aparecida Da S.",surname:"Aquino",slug:"katia-aquino",fullName:"Katia Aquino"}]},{id:"71638",title:"Plasma Antennas",slug:"plasma-antennas",totalDownloads:300,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"selected-topics-in-plasma-physics",title:"Selected Topics in Plasma Physics",fullTitle:"Selected Topics in Plasma Physics"},signatures:"Theodore Anderson",authors:null},{id:"50866",title:"Effects of Different Laser Pulse Regimes (Nanosecond, Picosecond and Femtosecond) on the Ablation of Materials for Production of Nanoparticles in Liquid Solution",slug:"effects-of-different-laser-pulse-regimes-nanosecond-picosecond-and-femtosecond-on-the-ablation-of-ma",totalDownloads:4902,totalCrossrefCites:5,totalDimensionsCites:17,book:{slug:"high-energy-and-short-pulse-lasers",title:"High Energy and Short Pulse Lasers",fullTitle:"High Energy and Short Pulse Lasers"},signatures:"Abubaker Hassan Hamad",authors:[{id:"183494",title:"Dr.",name:"Abubaker",middleName:"Hassan",surname:"Hamad",slug:"abubaker-hamad",fullName:"Abubaker Hamad"}]},{id:"68746",title:"Optically Clear Adhesives for OLED",slug:"optically-clear-adhesives-for-oled",totalDownloads:1490,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"luminescence-oled-technology-and-applications",title:"Luminescence",fullTitle:"Luminescence - OLED Technology and Applications"},signatures:"Joel T. Abrahamson, Hollis Z. Beagi, Fay Salmon and Christopher J. Campbell",authors:null},{id:"59379",title:"Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors",slug:"graphene-transition-metal-dichalcogenides-and-perovskite-photodetectors",totalDownloads:1643,totalCrossrefCites:4,totalDimensionsCites:4,book:{slug:"two-dimensional-materials-for-photodetector",title:"Two-dimensional Materials for Photodetector",fullTitle:"Two-dimensional Materials for Photodetector"},signatures:"Zhi Yang, Jinjuan Dou and Minqiang Wang",authors:[{id:"225612",title:"Dr.",name:"Zhi",middleName:null,surname:"Yang",slug:"zhi-yang",fullName:"Zhi Yang"},{id:"238944",title:"MSc.",name:"Jinjuan",middleName:null,surname:"Dou",slug:"jinjuan-dou",fullName:"Jinjuan Dou"},{id:"238946",title:"Prof.",name:"Minqiang",middleName:null,surname:"Wang",slug:"minqiang-wang",fullName:"Minqiang Wang"}]},{id:"70578",title:"Gallium-68: Radiolabeling of Radiopharmaceuticals for PET Imaging - A Lot to Consider",slug:"gallium-68-radiolabeling-of-radiopharmaceuticals-for-pet-imaging-a-lot-to-consider",totalDownloads:717,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"medical-isotopes",title:"Medical Isotopes",fullTitle:"Medical Isotopes"},signatures:"Michael Meisenheimer, Yury Saenko and Elisabeth Eppard",authors:null},{id:"58452",title:"Transition Metal Dichalcogenide Photodetectors",slug:"transition-metal-dichalcogenide-photodetectors",totalDownloads:1545,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"two-dimensional-materials-for-photodetector",title:"Two-dimensional Materials for Photodetector",fullTitle:"Two-dimensional Materials for Photodetector"},signatures:"Inturu Omkaram, Young Ki Hong and Sunkook Kim",authors:[{id:"210186",title:"Dr.",name:"Inturu",middleName:null,surname:"Omkaram",slug:"inturu-omkaram",fullName:"Inturu Omkaram"}]}],onlineFirstChaptersFilter:{topicSlug:"physics ",limit:3,offset:0},onlineFirstChaptersCollection:[{id:"76308",title:"Quarks Mixing in Chiral Symmetries",slug:"quarks-mixing-in-chiral-symmetries",totalDownloads:0,totalDimensionsCites:null,doi:"10.5772/intechopen.95233",book:{title:"Quantum Chromodynamic"},signatures:"Zbigniew Szadkowski"},{id:"76271",title:"Double Pole Method in QCD Sum Rules for Vector Mesons",slug:"double-pole-method-in-qcd-sum-rules-for-vector-mesons",totalDownloads:3,totalDimensionsCites:0,doi:"10.5772/intechopen.97421",book:{title:"Quantum Chromodynamic"},signatures:"Mikael Souto Maior de Sousa and Rômulo Rodrigues da Silva"},{id:"76259",title:"Paramagnetic Transitions Ions as Structural Modifiers in Ferroelectrics",slug:"paramagnetic-transitions-ions-as-structural-modifiers-in-ferroelectrics",totalDownloads:1,totalDimensionsCites:0,doi:"10.5772/intechopen.95983",book:{title:"Paramagnetism - Fundamentals, New Perspectives and Applications"},signatures:"Veronica Lucero Villegas Rueda"}],onlineFirstChaptersTotal:35},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/bats/comparison-of-driving-transect-methods-for-acoustic-monitoring-of-bats",hash:"",query:{},params:{book:"bats",chapter:"comparison-of-driving-transect-methods-for-acoustic-monitoring-of-bats"},fullPath:"/books/bats/comparison-of-driving-transect-methods-for-acoustic-monitoring-of-bats",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()