Open access

Fiber and Insulin Sensitivity

Written By

Kevin C. Maki and Tia M. Rains

Submitted: 16 November 2010 Published: 04 November 2011

DOI: 10.5772/21963

From the Edited Volume

Topics in the Prevention, Treatment and Complications of Type 2 Diabetes

Edited by Mark B. Zimering

Chapter metrics overview

2,631 Chapter Downloads

View Full Metrics

1. Introduction

The prevalence of type 2 diabetes mellitus (T2DM) continues to increase at an alarming rate. Approximately 18.8 million people in the United States have diagnosed diabetes, whereas 7.0 million people are estimated to be living with the disease undiagnosed (Centers for Disease Control and Prevention [CDC], 2011). Another 79 million adults 20 years and older have pre-diabetes: impaired glucose tolerance (IGT) and/or impaired fasting glucose (IFG) (CDC, 2011). Approximately 20-30% of individuals with pre-diabetes progress to T2DM within 3-4 years (DeFronzo et al., 2011; Knowler et al., 2002).

The progression from normal glucose tolerance to the onset of T2DM is protracted and preceded by metabolic abnormalities that ultimately lead to hyperglycemia. Early in the disease process, individuals typically exhibit resistance to insulin-stimulated glucose uptake at the cellular level (Reaven et al., 2005). Insulin resistance is also associated with a cluster of metabolic disorders including central obesity, dyslipidemia and hypertension that are risk factors for T2DM and atherosclerotic cardiovascular disease (Alexander et al., 2000). The aggregation of these disorders is often referred to as metabolic syndrome or cardiometabolic syndrome (Reaven et al., 2005).

Insulin resistance manifests as decreased insulin-stimulated glucose uptake at adipose and skeletal muscle tissues, as well as impaired suppression of hepatic glucose output by a given circulating level of insulin (DeFronzo, 2009; Goldstein 2003). Normal glucose tolerance is maintained via compensatory hyperinsulinemia, thus preventing hyperglycemia in the earliest stages (Reaven et al., 2005). Over time, the pancreatic beta-cell response becomes inadequate to maintain normoglycemia, and hyperglycemia ensues. It is unclear whether there is an exhaustion of the beta-cells, or if the beta-cells become progressively less responsive to the changes in circulating glucose, or a combination of these defects (Ferannini et al., 2005; Butler et al., 2003; Khan, 2001). Regardless, progressive beta-cell dysfunction ultimately leads to an inability to secrete sufficient insulin to maintain normoglycemia after a carbohydrate load. In frank T2DM, insulin secretion becomes sufficiently impaired to result in hyperglycemia in the fasting state (Stolar, 2010). By the time T2DM is diagnosed, the insulin secretory response is generally 70-80% below that which would be appropriate for the prevailing level of insulin resistance (Ferannini et al., 2005; Maki et al., 2009). The interplay between insulin resistance and beta-cell dysfunction in the development of T2DM (DeFronzo, 2009; Khan 2001) and methods of assessing insulin sensitivity in clinical research (Muniyappa et al., 2008; Singh 2010) have been reviewed in detail elsewhere.

Advertisement

2. Dietary patterns and diabetes risk

Diabetes prevention trials have shown that interventions which increase insulin sensitivity significantly reduce the rate of conversion to diabetes in high risk individuals (Knowler et al., 2002; Tuomilehto et al., 2001; Lindstrom et al., 2003; Pan et al., 1997; Zinman et al., 2010; DeFronzo et al., 2011). In the Diabetes Prevention Program, a lifestyle intervention with targets of 150 minutes per week of moderate intensity physical activity and weight loss of 7% reduced the rate of progression to diabetes by 58% relative to a group that received placebo without lifestyle intervention (Knowler et al., 2002), which was greater than the 31% reduction in new-onset diabetes with metformin treatment. Other lifestyle intervention studies of weight loss and enhanced physical activity have shown reductions in the incidence of new-onset type 2 diabetes of 25-60% over 3-6 year timeframes in individuals with pre-diabetes (Lindstrom et al., 2003; Pan et al., 1997). Both weight loss and increased physical activity enhance insulin sensitivity, which results in a reduced requirement for insulin secretion, thus “unloading” the beta-cells. In turn, this may extend the time during which the available insulin secretory response can maintain normoglycemia. In addition, there is evidence that some interventions that improve insulin sensitivity may arrest, or even partially reverse, the progression of beta-cell dysfunction (Utzschneider et al., 2008; Gastaldelli et al., 2007).

Although weight loss and increased physical activity have received the most attention, particularly in clinical intervention trials, a number of other lifestyle factors may have important influences on the risk for T2DM. Dietary patterns characterized by high intakes of fruits and vegetables, whole grains, low-fat dairy products, and a low glycemic load have been inversely associated with T2DM risk (Figure). In contrast, dietary patterns characterized by high intakes of processed meats, refined grains, and foods containing high

Figure 1.

Relative risks for the associations between cereal fiber, fruit fiber, and vegetable fiber with risk of type 2 diabetes mellitus. Adapted from Schulze et al. 2007. CI = confidence interval.

amounts of added sugars have been associated with increased T2DM risk (Heidemann et al., 2005; Montonen et al., 2005; Fung et al., 2007; Gittelsohn et al., 1998; van Dam et al., 2002; Hodge et al., 2007; Montonen et al., 2005; Brunner et al., 2008; Williams et al., 2000). In particular, an inverse association with T2DM risk has been identified for higher consumption of whole-grain foods (Liu et al., 2000; Murtaugh et al, 2003). Prospective studies have shown that consumption of approximately 3 servings per day of whole grain foods is associated with a reduced risk for T2DM by 20-30% versus consumption of <3 servings of whole grain foods per week (de Munter et al., 2007; Kastorini & Panagiotakos, 2009).

Whole grains contain a number of constituents that may influence T2DM risk, including fibers, vitamins, minerals, lignans, and phytochemicals. The focus of this review is on the potential influences of dietary fibers on risk for T2DM, and the mechanisms that may account for these associations. Nevertheless, the reader should keep in mind that dietary fiber intake correlates with a number of other dietary and lifestyle factors that may influence risk for T2DM, thus fiber intake is likely only one component of the apparent protective effect of a low-risk eating pattern.

Advertisement

3. Intakes of dietary fibers and risk for T2DM

Greater consumption of dietary fiber is associated with lower risk for the development of T2DM, and this may explain, at least in part, the relationship between consumption of whole grains and diabetes risk (Björck& Elmståhl, 2003). Previously, it was thought the reduction in risk might be attributable to the consumption of viscous soluble fibers such as beta-glucan, psyllium, and pectin. Such fibers form viscous solutions when mixed with fluid in the gastrointestinal (GI) tract, creating a physical barrier to digestive enzymes and through which simple sugars must travel to reach the intestinal brush border for absorption (Dikeman & Fahey, 2006; Wolever, 1991; Jenkins et al., 1978). As such, postprandial glucose responses are attenuated when viscous fibers are consumed as part of carbohydrate-rich meals, effectively lowering the glycemic index of such foods (Jenkins et al., 2000, Maki et al., 2007). Prospective epidemiological and observational studies have shown associations between intakes of high-glycemic index foods and high-glycemic load diets and a greater risk of T2DM, consistent with this potential mechanism (Biesalski 2004, Salmeron et al., 1997a, 1997b).

However, results from prospective cohort studies have shown that consumption of insoluble cereal fibers is more strongly inversely associated with risk of T2DM than consumption of soluble fibers (McKeown et al., 2004; Schulze et al., 2007; Weickert & Pfeiffer, 2008). For example, in a cohort of ~25,000 men and women ages 35 to 65 years, greater intake of cereal fibers, but not fruit or vegetable fibers, was inversely associated with developing diabetes over an 11 year period after adjusting for lifestyle and dietary confounders (Schulze et al., 2007). Similarly, a meta-analysis of nine cohort studies on fiber also showed an inverse association for cereal fiber and T2DM risk, but not other fibers (Schulze et al., 2007). Most sources of dietary fiber contain both soluble and insoluble fiber in varying amounts, but whole grain products generally contain a high proportion of insoluble cereal fiber (Weickert & Pfeiffer, 2008; McKee & Latner, 2000). In the U.S. diet, the main sources of soluble fiber are fruits and vegetables, and to a smaller extent, oats and barley (McKee & Latner, 2000).

Advertisement

4. Dietary fiber, colonic fermentation and T2DM risk

Results from several recent studies suggest that fermentability may be a more important factor in the association between dietary fiber intake and T2DM risk than solubility or viscosity. In particular, there is accumulating evidence for a metabolic link between consumption of fibers which are fermented in the lower intestine and insulin sensitivity. This relationship appears likely to be mediated, at least in part, by the inverse association between short chain fatty acid (SCFA) and free fatty acid (FFA) levels in circulation (Robertson et al, 2003, 2005).

Elevated levels of circulating FFA are associated with insulin resistance and it is thought that they contribute to reduced insulin action in the skeletal muscle and liver (Kim et al, 2007). FFA disrupt glucose metabolism by enhancing beta-oxidation in peripheral tissues and by competing with glucose for oxidation, resulting in a reduction of peripheral glucose uptake (Tarini & Wolever, 2010). Sustained elevation of FFA, induced through intravenous infusion of a lipid emulsion, down regulates glycogen storage and leads to a reduction of non-oxidative glucose disposal, thus reducing insulin sensitivity (Ferrannini et al., 1983; Kashyap et al., 2003; Homko et al., 2003). Potential mechanisms by which FFA might affect glycogen regulation include increased expression and activation of glucose-6-phosphatase (Clore et al., 2000; Van de Werve et al., 2000). Conversely, suppression of FFA levels with an infusion of acipimox, a niacin derivative that inhibits hormone sensitive lipase, improves glucose tolerance and peripheral insulin sensitivity (Ferrannini et al., 1983).

The release of FFA shows diurnal variation and is correlated with hepatic glucose output during sleep (Morgan et al., 1999, Kim et al., 2007). In normal weight individuals the fall of hepatic glucose output during sleep is highly synchronized with a decrease in FFA levels (Clore et al., 1989). Conversely, T2DM subjects have an increased rate of FFA appearance at night and elevated plasma FFA levels that are correlated with increased overnight hepatic glucose output (Miles et al., 2003; Taskinen et al., 1989). This increase in FFA levels and release of insulin can be acutely reduced with a pharmacological block of lipoloysis, suggesting that a reduction in FFA release may lead to improved glucose homeostasis (Andreotti et al., 1994). In the canine model of moderate obesity, an increase in nocturnal FFA levels and reduced insulin sensitivity occurred after 6 weeks of high-fat feeding, despite no changes in fasting FFA, fasting glucose or postprandial glucose levels, providing further support that the overnight period may be particularly important (Kim et al., 2007). Given the known diurnal fluctuations of FFA observed in overweight and obese subjects, and in the moderately obese canine model, it is likely that the nocturnal increase in FFA is a key factor in the development of insulin resistance and may play a significant role in the risk for T2DM.

Consumption of indigestible fibers provides available substrate for resident microbiota in the large intestine, which form fermentation products, particularly SCFA (acetate, butyrate, and propionate). Upon absorption into the circulation, SCFA suppress the release of FFA from adipose tissue, thus lowering the concentrations of FFA in circulation, which, in turn, could lead to improved insulin sensitivity and concomitant reduced risk for T2DM (Tarini & Wolever, 1991).

Feeding studies in humans support this proposed relationship between colonic fermentation and peripheral metabolic effects (Table). Nilsson et al. (2008) provided healthy subjects evening meals containing a variety of cereal-based foods with varying levels of resistant starch and fermentable fiber. They demonstrated a relationship between colonic fermentation, as measured by breath hydrogen, and glucose tolerance at the subsequent breakfast meal more than nine hours later (Nilsson et al., 2008). Compared to white bread in the evening, consumption of bread made with barley kernels, high beta-glucan barley, or white bread supplemented with resistant starch and barley fiber all reduced the postprandial curves for glucose and insulin after a subsequent standard breakfast, consistent with improved insulin sensitivity. Additionally, the glucose response was inversely associated with SCFA concentrations (butyrate and acetate) and was positively correlated with FFA during the postprandial period.

Several studies have demonstrated enhanced insulin sensitivity, measured with the euglycemic clamp (the reference standard method) or other methods, after consumption of fermentable fibers or resistant starches over periods ranging from several hours to several weeks (Landin et al., 1988; Robertson et al., 2003, 2005; Maki et al., 2011). Landin et al. (1988) showed improved insulin sensitivity in healthy, nonobese men measured by euglycemic-clamp following intake of 30 g/d guar gum. More recently, Robertson et al (2003) examined the role of resistant starch (RS) on insulin sensitivity in healthy subjects following a 60 g load of RS consumed over the course of one day. Increased insulin sensitivity was positively associated with fasting breath hydrogen levels and lower FFA levels in the late postprandial period (Robertson et al., 2003). In a subsequent study comparing 30 g RS/day for four weeks versus a control starch, insulin sensitivity during a meal tolerance test was 33% higher and glucose clearance adjusted for insulin concentration was 44% higher following RS intake compared with the control condition. Insulin sensitivity, as measured by the euglycemic-hyperinsulinemic clamp, was also higher following RS (Robertson et al., 2005). In a chronic (12-week) study in insulin resistant subjects, 40 g RS/day (supplied in sachets to mix into their daily foods) was associated with improved insulin sensitivity compared to placebo (Johnston et al., 2010). Insulin sensitivity was also correlated with changes in waist circumference, however there was no difference in body mass index, total adipose tissue content or regional distribution between the groups suggesting the observed improvement in insulin sensitivity is not directly attributable to changes in body composition (Johnston et al., 2010). In a study of overweight and obese subjects with normal glucose metabolism, Weikert et al. (2006) reported a 13% improvement in insulin sensitivity in subjects who consumed white bread supplemented with 31.2 g/d insoluble fiber fraction from oat fiber over 72 hours, compared to a white bread control.

Not all studies have shown favorable effects of fermentable fibers on insulin sensitivity. Ebeling et al. (1988) studied the effects of 5 g/d guar gum for 4 weeks in individuals with type 1 diabetes mellitus and showed that guar gum lowered the postprandial glucose response and reduced insulin requirements, suggesting an improvement in hepatic insulin sensitivity. However, there was no measurable effect on peripheral insulin sensitivity, as measured by euglycemic insulin clamp. Given that this study was small (n = 9), a type II error (lack of power) cannot be ruled out. A study in 21 men with metabolic syndrome also failed to show differences in insulin sensitivity measured by euglycemic insulin clamp following a 5-week dietary intervention with 28 g/day of acacia gum and pectin (Pouteau et al., 2010).

Authors Study Population Design Study Products Results
Andersson et al., 2007 Healthy volunteers (n=30)
Age (y): 59+5
BMI (kg/m2): 28.3+2.0
Randomized crossover 6-week study of diet rich in whole grains vs. diet containing equal amount of refined grain
Whole grain diet contained 112 g/d of whole grain, 18 g fiber
Refined grain diet contained 6 g/d fiber
No effect of whole grains on insulin sensitivity
Ebeling et al., 1988 Type 1 diabetics (n=9)
Age (y): 27+2
Body Weight (kg): 71+3
Double-blind crossover with two 4-week study periods 5 g/d granulated guar

Control- 0 g/d
No effect on insulin sensitivity
Johnston et al., 2010 Insulin resistant subjects (n=20)
Age (y):
Resistant starch- 45.2+3.55
BMI (kg/m2):
Resistant starch- 31.3+1.70
Placebo- 30.4+1.15
Single-blind, randomized, parallel 12-week intervention Resistant starch supplement -40 g/d

Control- 0 g/d
Improved insulin sensitivity with resistant starch
Landin et al., 1992 Healthy, nonobese middle –aged men (n=25)
Age (y): 52.0+5.2
BMI (kg/m2): 24.6+1.6
Double-blind placebo-controlled, cross-over with two 6-week interventions 30 g/d granulated guar, given in 3-10 g doses
30 g/d granulated gelling starch (control), given in 3-10 g doses
Improved insulin sensitivity with guar diet
Maki et al., 2011 Healthy subjects with increased waist circumference (n = 33)
Age (y): 49.5 ± 1.6
BMI (kg/m2 ): 30.6 ± 0.5
Double-blind crossover with two 4-week interventions. High-resistant starch diet- 30 g/d
Low-resistant starch diet- 15 g/d
Control- 0 g/d
Improved insulin sensitivity with both resistant starch diets, but effect only reached statistical significance for men.
Nilsson et al., 2008 Healthy volunteers (n=15)
Age (y): 25.9+3.2
BMI (kg/m2 ):
22.5+2.1
Crossover of cereal-based evening test meals with varying GI and amount of resistant starch Cereal-based meals:

White bread (control)
White bread enriched with barley fiber and 8 g resistant starch
Barley kernel based bread
Improved glucose tolerance with resistant starch
Pouteau et al., 2010 Men with metabolic syndrome (n=21)
Age (y): 47+12
BMI (kg/m2): 33.4+3.0
Double-blind crossover with two 5-week interventions. Beverages:
28 g/d acetogenic fibers (acacia gum and pectin)
Control
No effect on insulin sensitivity
Robertson et al., 2003 Healthy subjects (n=10)
Age (y): 23-65
BMI: (kg/m2): 20.3-35.9
Single-blind crossover with two 24-hour interventions High-resistant starch diet- 60 g/d
Low-resistant starch diet- 0 g/d
Improved insulin sensitivity with resistant starch.
Robertson et al., 2005 Healthy subjects (n=10)
Age (y):
48.5+3.4
BMI (kg/ m2): 23.4+1.4
Single-blind, crossover with two 4-week interventions Resistant starch diet-30 g /d
Control-0 g/d
Improved insulin sensitivity with resistant starch.
Weickert et al., 2006 Overweight and obese subjects with normal glucose metabolism (n=17)
Age (y): 52.9+8.7
BMI (kg/ m2):
30.4+2.0
Single-blind crossover with two 72-hour interventions Macronutrient-matched breads

Fiber-enriched with 31.2 g insoluble fiber
Control (white bread)
Improved insulin sensitivity with increased insoluble fiber

Table 1.

Clinical trials on the effects of fermentable fibers on insulin sensitivity

Advertisement

5. Conclusion

A dietary pattern characterized by high intakes of whole grains, fruits and vegetables, low-fat dairy products, and a low glycemic load has been associated with lower T2DM risk. Whole grains possess a number of constituents that may influence T2DM risk, including vitamins, minerals, lignans and phytochemicals. Greater dietary fiber intake is also associated with lower risk for the development of T2DM, and this may explain, at least in part, the relationship between consumption of whole grains and reduced diabetes risk. Results from recent intervention studies suggest that fermentability may be the key characteristic of fibers associated with improved insulin sensitivity, providing a metabolic link between dietary fiber intake and reduction in T2DM risk. Future studies on the relationships between dietary fiber, production of SCFAs, circulating FFA release, and physiological mediators such as incretins (glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide), and inflammatory markers (e.g., interleukin-6, adiponectin), are warranted. There is also a need for longer-term intervention trials to determine the mechanisms by which dietary fibers, particularly fermentable fibers, influence health and T2DM risk.

References

  1. 1. Alexander C. M. Landsman P. B. Teutsch S. M. 2000 Diabetes mellitus, impaired fasting glucose, atherosclerotic risk factors, and prevalence of coronary heart disease. American Journal of Cardiology, 86 9 897 902 . 0002-9149
  2. 2. Andersson A. Tengblad S. Karlström B. Kamal-Eldin A. Landberg R. Basu S. Åman P. Vessby B. 2007 Whole-grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects, The Journal of Nutrition, 137 6 1401 1407 . 0022-3166
  3. 3. Andreotti A. C. Lanzi R. Manzoni M. F. Caumo A. Moreschi A. Pontiroli A. E. 1994 Acute pharmacologic blockade of lipolysis normalizes nocturnal growth hormone levels and pulsatility in obese subjects. Metabolism, 43 10 1207 1213 . 0026-0495
  4. 4. Bergman R. N. Kim S. P. Hsu I. R. Catalano K. J. Chiu J. D. Kabir M. Richey J. M. Ader M. 2007 Abdominal obesity role in the pathophysiology of metabolic disease and cardiovascular risk. The American Journal of Medicine, 120 2A S3 S8 . 0002-9343
  5. 5. Biesalski H.K. 2004 Diabetes preventive components in the Mediterranean diet. European Journal of Nutrition., 43 1 l/26 30. 1436-6207
  6. 6. Björck I. Elmståhl H. L. 2003 The glycaemic index: importance of dietary fibre and other food properties. Proceedings of the Nutrition Society, 62 1 201 206 . 0029-6651
  7. 7. Brunner E. J. Mosdøl A. Witte D. R. Martikainen P. Stafford M. Shipley M. J. Marmot M. G. 2008 Dietary patterns and 15-y risks of major coronary events, diabetes, and mortality. American Journal of Clinical Nutrition. 87 5 1414 1421 . 0002-9165
  8. 8. Butler A. E. Janson J. Bonner-Weir S. Ritzel R. Rizza R. A. Butler P. C. 2003 Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52 1 102 110 . 0012-1797
  9. 9. Center for Disease Control and Prevention. National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011 Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention
  10. 10. Clore J. N. Nestler J. E. Blackard W. G. 1989 Sleep-associated fall in glucose disposal and hepatic glucose output in normal humans. Putative signaling mechanism linking peripheral and hepatic events. Diabetes, 38 3 285 290 . 0012-1797
  11. 11. Clore J. N. Stillman J. Sugerman H. 2000 Glucose-6-phosphatase flux in vitro is increased in type 2 diabetes. Diabetes , 49 6 969 974 . 0012-1797
  12. 12. Defronzo R.A. 2009 Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 58 773 795 . 0012-1797
  13. 13. De Fronzo R. A. Tripathy D. Schwenke D. C. Banerji M. Bray G. A. Buchanan T. A. Clement S. C. Henry R. R. Hodis H. N. Kitabchi A. E. Mack W. J. Mudaliar S. Ratner R. E. Williams K. Stentz F. B. Musi N. Reaven P. 2011 Pioglitazone for diabetes prevention in impaired glucose tolerance. New England Journal of Medicine, 364 12 1104 1115 . 0028-4793
  14. 14. de Munter J. S. Hu F. B. Spiegelman D. Franz M. van Dam R. M. 2007 Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systemic review. PLoS Medicine, 4 8 e261 1549-1277
  15. 15. Dikeman C.L. Fahey G.C. Viscosity as related to dietary fiber: a review. 2006 Critical Reviews in Food Science and Nutrition, 46 8 649 663 . 1040-8398
  16. 16. Ebeling P. Yki-Järvinen H. Aro A. Helve E. Sinisalo M. Koivisto V. A. 1988 Glucose and lipid metabolism and insulin sensitivity in type 1 diabetes: the effect of guar gum. The American Journal of Clinical Nutrition, 48 1 98 103 . 0002-9165
  17. 17. Ferrannini E. Gastaldelli A. Miyazaki Y. Matsuda M. Mari A. De Fronzo R. A. 2005 beta-Cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: a new analysis. Journal of Clinical Endocrinology and Metabolism. 90 1 493 500 . 0002-1972X
  18. 18. Ferrannini E. Barrett E. J. Bevilacqua S. De Fronzo R. A. 1983 Effect of fatty acids on glucose production an utilization in man. Journal of Clinical Investigation, 72 5 1737 1747 . 0021-9738
  19. 19. Fung T. T. Mc Cullough M. van Dam R. M. Hu F. B. 2008 A prospective study of overall diet quality and risk of type 2 diabetes in women. Diabetes Care. 30 7 1753 1757 . 0149-5992
  20. 20. Gastaldelli A. Ferrannini E. Miyazaki Y. Matsuda M. Mari A. De Fronzo R. A. 2007 Thiazolidinediones improve beta-cell function in type 2 diabetic patients. American Journal of Physiology- Endocrinology and Metabolism, 292 3 E871 E883 . 0193-1849
  21. 21. Gittelsohn J. Wolever T. M. Harris S. B. Harris-Giraldo R. Hanley A. J. Zinman B. 1998 Specific patterns of food consumption and preparation are associated with diabetes and obesity in a Native Canadian community. Journal of Nutrition, 128 3 541 547 . 0022-3166
  22. 22. Goldstein B.B. 2003 Insulin resistance: from benign to type 2 diabetes mellitus. Reviews Cardiovascular Medicine, 4 6 S3 S10 1530-6550
  23. 23. Heidemann C. Hoffmann K. Spranger J. Klipstein-Grobusch K. Möhlig M. Pfeiffer A. F. Boeing H. 2005 A dietary pattern protective against type 2 diabetes in the European Prospective Investigation into Cancer and Nutrition (EPIC)- Potsdam Study cohort. Diabetologia, 48 6 1126 1134 . 0001-2186X
  24. 24. Hodge A. M. English D. R. O’Dea K. Giles G. G. Dietary patterns and diabetes incidence in the Melbourne Collaborative Cohort Study. 2007 American Journal of Epidemiology, 165 6 603 610 . 0002-9262
  25. 25. Homko C. J. Cheung P. Boden G. 2003 Effects of free fatty acids on glucose uptake and utilization in healthy women. Diabetes, 52 2 487 491 . 0012-1797
  26. 26. Jenkins D. J. Wolever T. M. Leeds A. R. Gassull M. A. Haisman P. Dilawari J. Goff D. V. Metz G. L. Alberti K. G. 1978 Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. British Medical Journal, 27 1 1392 1394 . 0959-8138
  27. 27. Jenkins D. J. Axelsen M. Kendall C. W. Augustin L. S. Vuksan V. Smith U. 2000 Dietary fibre, lente carbohydrates and the insulin-resistant diseases. British Journal of Nutrition, 83 1 S157 S163 . 0007-1145
  28. 28. Johnston K. L. Thomas E. L. Bell J. D. Frost G. S. Robertson M. D. 2010 Resistant starch improves insulin sensitivity in metabolic syndrome, Diabetic Medicine, 27 4 391 397 . 0742-3071
  29. 29. Kastorini C.M. Panagiotakos D.B. 2009 Dietary patterns and prevention of type 2 diabetes: from research to clinical practice: a systematic review. Current Diabetes Reviews, 5 4 221 227 . 1573-3998
  30. 30. Kashyap S. Belfort R. Gastaldelli A. Pratipanawatr T. Berria R. Pratipanawatr W. Bajaj M. Mandarino L. De Fronzo R. Cusi K. 2003 A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes, 52 10 2461 2474 . 0012-1797
  31. 31. Khan S. E. 2001 The importance of beta-cell failure in the development and progression of type 2 diabetes. Journal of Clinical Endocrinology & Metabolism, 86 9 4047 4058 . 0002-1972X
  32. 32. Kim S. P. Catalano K. J. Hsu I. R. Chiu J. D. Richey J. M. Bergman R. N. 2007 Nocturnal free fatty acids are uniquely elevated in the longitudinal development of diet-induced insulin resistance and hyperinsulinemia. American Journal of Physiology- Endocrinology and Metabolism, 292 6 E1590 E1598 . 0193-1849
  33. 33. Knowler W. C. Barrett-Connor E. Fowler S. E. Hamman R. F. Lachin J. M. Walker E. A. Nathan D. M. 2002 Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. New England Journal of Medicine, 346 6 393 403 . 0028-4793
  34. 34. Landin K. Holm G. Tengborn L. Smith U. 1992 Guar gum improves insulin sensitivity, blood lipids, blood pressure, and fibrinolysis in healthy men. The American Journal of Clinical Nutrition, 56 6 1061 1065 . 0002-9165
  35. 35. Lindström J. Eriksson J. G. Valle T. T. Aunola S. Cepaitis Z. Hakumäki M. Hämäläinen H. Ilanne-Parikka P. Keinänen-Kiukaanniemi S. Laakso M. Louheranta A. Mannelin M. Martikkala V. Moltchanov V. Rastas M. Salminen V. Sundvall J. Uusitupa M. Tuomilehto J. 2003 Prevention of diabetes mellitus in subjects with impaired glucose tolerance in the Finnish Diabetes Prevention Study: results from a randomized clinical trial. Journal of the American Society of Nephrology, 14 7 Suppl 2 S108 S113 . 1046-6673
  36. 36. Liu S. Manson J. E. Stampfer M. J. Hu F. B. Giovannucci E. Colditz G. A. Hennekens C. H. Willett W. C. 2000 A prospective study of whole-grain intake and risk of type 2 diabetes mellitus in US women. American Journal of Public Health, 90 9 1409 1415 . 1541-0048
  37. 37. Maki K. C. Mc Kenney J. M. Farmer M. V. Reeves M. S. Dicklin M. R. 2009 Indices of insulin sensitivity and secretion from a standard liquid meal test in subjects with type 2 diabetes, impaired or normal fasting glucose. Nutrition Journal. 28 8 22 . 1475-2891
  38. 38. Maki K. C. Carson M. L. Miller M. P. Turowski M. Bell M. Wilder D. M. Reeves M. S. 2007 High-viscosity hydroxypropylmethylcellulose blunts postprandial glucose and insulin responses. Diabetes Care, 30 5 1039 1043 . 0149-5992
  39. 39. Maki K. C. Pelkman C. L. Kelley K. M. Lawless A. L. Schild A. Rains T. M. 2011 Effects of type 2 resistant starch consumption on insulin sensitivity in men and women. Experimental Biology. Abstract 2914
  40. 40. McKee L.H. Latner T.A. 2000 Underutilized sources of dietary fiber: a review. Plant Foods for Human Nutrition, 55 4 285 304 . 0921-9668
  41. 41. McKeown N.M. 2004 Whole grain intake and insulin sensitivity: evidence from observational studies. Nutrition Reviews, 62 7 Pt 1), 286 291 . 0029-6643
  42. 42. Miles J. M. Wooldridge D. Grellner W. J. Windsor S. Isley W. L. Klein S. Harris W. S. 2003 Nocturnal and postprandial free fatty acid kinetics in normal and type 2 diabetic subjects: effects of insulin sensitization therapy. Diabetes, 52 3 675 681 . 0012-1797
  43. 43. Montonen J. Knekt P. Härkänen T. Järvinen R. Heliövaara M. Aromaa A. Reunanen . A. 2005 Dietary patterns and the incidence of type 2 diabetes. American Journal of Epidemiology, 161 3 219 227 0002-9262
  44. 44. Morgan L. M. Aspostolakou F. Wright J. Gama R. 1999 Diurnal variations in peripheral insulin resistance and plasma non-esterified fatty acid concentrations: a possible link? Annals of Clinical Biochemistry, 36 4 447 450 . 0004-5632
  45. 45. Muniyappa R. Lee S. Chen H. Quon M. J. 2008 Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. American Journal of Physiology, Endocrinology, and Metabolism. 294 1 E15 E26 . 19318-4915
  46. 46. Murtaugh M. A. Jacobs D. R. Jr Jacob B. Steffen L. M. Marquart L. 2003 Epidemiological support for the protection of whole grains against diabetes. Proceedings of the Nutrition Society, 62 1 143 149 . 0029-6651
  47. 47. Nilsson A. C. Östman E. M. Holst J. J. Björck M. E. 2008 Including indigestible carbohydrates in the evening meal of healthy subjects improves glucose tolerance, lowers inflammatory markers, and increases satiety after a subsequent standardized breakfast. The Journal of Nutrition, 138 4 732 739 . 0022-3166
  48. 48. Pan X. R. Li G. W. Hu Y. H. Wang J. X. Yang W. Y. An Z. X. Hu Z. X. Lin J. Xiao J. Z. Cao H. B. Liu P. A. Jiang X. G. Jiang Y. Y. Wang J. P. Zheng H. Zhang H. Bennett P. H. Howard B. V. 1997 Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care, 20 4 537 544 . 0149-5992
  49. 49. Pouteau E. Ferchaud-Roucher V. Zair Y. Paintin M. Enslen M. Auriou N. Macé K. Godin J. P. Ballèvre O. Krempf M. 2010 Acetogenic fibers reduce fasting glucose turnover but not peripheral insulin resistance in metabolic syndrome patients. Clinical Nutrition, 29 6 801 807 . 1202-3884
  50. 50. Reaven G. M. 2005 The insulin resistance syndrome: definition and dietary approaches to treatment. Annual Reviews of Nutrition, 25 392 406 . 0199-9885
  51. 51. Robertson M. D. Bickerton A. S. Dennis A. L. Vidal H. Frayn K. N. 2005 Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. The American Journal of Clinical Nutrition, 82 3 559 567 . 0002-9165
  52. 52. Robertson M. D. Currie J. M. Morgan L. M. Jewell D. P. Frayn K. N. 2003 Prior short-term consumption of resistant starch enhances postprandial insulin sensitivity in healthy subjects. Diabetologia, 46 5 659 665 . 0001-2186X
  53. 53. Salmerón J. Ascherio A. Rimm E. B. Colditz G. A. Spiegelman D. Jenkins D. J. Stampfer M. J. Wing A. L. Willett W. C. 1997 aDietary fiber, glycemic load, and risk of NIDDM in men. Diabetes Care, 20 4 545 550 . 0149-5992
  54. 54. Salmerón J. Manson J. E. Stampfer M. J. Colditz G. A. Wing A. L. Willett W. C. 1997b Dietary fiber, glycemic load, and risk of non-insulin-dependent diabetes mellitus in women. Journal of the American Medical Association, 277 6 472 477 . 0098-7484
  55. 55. Schulze M. B. Schula M. Heidemann C. Schienkiewitz A. Hoffman K. Boeing H. 2007 Fiber and magnesium intake and incidence of type 2 diabetes: a prospective study and meta-analysis. Archives of Internal Medicine, 167 9 956 965 . 0003-9926
  56. 56. Singh B. Saxena A. 2010 Surrogate markers of insulin resistance: A review. World Journal of Diabetes. 1 2 36 47 . 1948-9358
  57. 57. Stolar M. 2010 Glycemic control and complications in type 2 diabetes mellitus. American Journal of Medicine, 123 3 S3 S11 . 0002-9343
  58. 58. Tarini J. Wolever T. M. S. 2010 The fermentable fibre inulin increases postprandial serum short-chain fatty acids and reduces free-fatty acids and ghrelin in healthy subjects. Applied Physiology Nutrition and Metabolism, 35 1 9 16 . 1715-5320
  59. 59. Taskinen M. R. Sane T. Helve E. Karonen S. L. Nikkila E. A. Yki-Jarvinen H. 1989 Bedtime insulin for suppression of overnight free-fatty acid, blood glucose, and glucose production in NIDDM. Diabetes, 38 5 580 588 . 0012-1797
  60. 60. Tuomilehto J. Lindström J. Eriksson J. G. Valle T. T. Hämäläinen H. Ilanne-Parikka P. Keinänen-Kiukaanniemi S. Laakso M. Louheranta A. Rastas M. Salminen V. Uusitupa M. 2001 Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England Journal of Medicine, 344 18 1343 1350 . 0028-4793
  61. 61. Utzschneider K. M. Tong J. Montgomery B. Udayasankar J. Gerchman F. Marcovina S. M. Watson C. E. Ligueros-Saylan M. A. Foley J. E. Holst J. J. Deacon C. F. Kahn S. E. 2008 The dipeptidyl peptidase-4 inhibitor vildagliptin improves beta-cell function and insulin sensitivity in subjects with impaired fasting glucose. Diabetes Care, 31 1 108 113 . 0022-3166
  62. 62. van Dam R. M. Willett W. C. Rimm E. B. Stampfer M. J. Hu F. B. 2002 Dietary fat and meat intake in relation to risk of type 2 diabetes in men. Diabetes Care, 25 3 417 424 . 0149-5992
  63. 63. Van de Werve W. G. Lange A. Newgard C. Mechin M. C. Li Y. Berteloot A. 2000 New lessons in the regulation of glucose metabolism taught by the glucose 6-phosphatase system. European Journal of Biochemistry, 267 1533 1549 . 0014-2956
  64. 64. Weickert M. O. Möhlig M. Schöfl C. Arafat A. M. Otto B. Viehoff H. Koebnick C. Kohl A. Spranger J. Pfeiffer A. F. H. 2006 Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care, 29 4 775 780 . 0149-5992
  65. 65. Weickert M.O. Pfeiffer A.F.H. 2008 Metabolic effects of dietary fiber consumption and prevention of diabetes. The Journal of Nutrition, 138 3 439 442 . 0022-3166
  66. 66. Williams D. E. Prevost A. T. Whichelow M. J. Cox B. D. Day N. E. Wareham N. J. 2000 A cross-sectional study of dietary patterns with glucose intolerance and other features of the metabolic syndrome. British Journal of Nutrition. 83 3 257 266 . 0007-1145
  67. 67. Wolever T.M. 1991 Small intestinal effects of starchy foods. Canadian Journal of Physiology and Pharmacology, 69 1 93 99 . 0008-4212

Written By

Kevin C. Maki and Tia M. Rains

Submitted: 16 November 2010 Published: 04 November 2011