Fish-processing by-products of freshwater fish including giant catfish, striped catfish, and Nile tilapia.
\r\n\t
",isbn:"978-1-83969-642-8",printIsbn:"978-1-83969-641-1",pdfIsbn:"978-1-83969-643-5",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"5d7f2aa74874444bc6986e613ccebd7c",bookSignature:"Prof. Antonio Morata, Dr. Iris Loira and Prof. Carmen González",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10901.jpg",keywords:"Grape, Wine, Vine Biotechnology, Plant Disease, Vine Physiology, Wine Technology, Winemaking, Fungal Disease, Biological Control, Vigor Management, Aroma Compound, Polysaccharide",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"March 4th 2021",dateEndSecondStepPublish:"April 1st 2021",dateEndThirdStepPublish:"May 31st 2021",dateEndFourthStepPublish:"August 19th 2021",dateEndFifthStepPublish:"October 18th 2021",remainingDaysToSecondStep:"22 days",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"Prof. Morata is the Spanish delegate at the group of experts in wine microbiology and wine technology of the International Organisation of Vine and Wine (OIV). His team won the international Enoforum award 2019 by the application of UHPH in wines and was among the 5 finalists in 2020 by using PL.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"180952",title:"Prof.",name:"Antonio",middleName:null,surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata",profilePictureURL:"https://mts.intechopen.com/storage/users/180952/images/system/180952.jpg",biography:"Antonio Morata is a professor of Food Science and Technology at the Universidad Politécnica de Madrid (UPM), Spain, specializing in wine technology. He is the coordinator of the Master in Food Engineering Program at UPM, and a professor of enology and wine technology in the European Master of Viticulture and Enology, Euromaster Vinifera-Erasmus+. He is the Spanish delegate at the group of experts in wine microbiology and wine technology of the International Organisation of Vine and Wine (OIV). He is the author of more than 70 research articles, 3 books, 4 edited books, 6 special issues and 16 book chapters.",institutionString:"Technical University of Madrid",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"6",totalChapterViews:"0",totalEditedBooks:"3",institution:{name:"Technical University of Madrid",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:{id:"186423",title:"Dr.",name:"Iris",middleName:null,surname:"Loira",slug:"iris-loira",fullName:"Iris Loira",profilePictureURL:"https://mts.intechopen.com/storage/users/186423/images/system/186423.jpg",biography:"Iris Loira is an assistant professor of Food Science and Technology at the Universidad Politécnica de Madrid (UPM), Spain. She is the author of 46 research articles, 3 books and 11 book chapters.",institutionString:"Technical University of Madrid",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Technical University of Madrid",institutionURL:null,country:{name:"Spain"}}},coeditorTwo:{id:"201384",title:"Prof.",name:"Carmen",middleName:null,surname:"González",slug:"carmen-gonzalez",fullName:"Carmen González",profilePictureURL:"https://mts.intechopen.com/storage/users/201384/images/system/201384.jpg",biography:"Dr González-Chamorro has worked as a professor at the UPM since 1993. She has dedicated her teaching work to food technology and applications in the fruit and vegetable industries and fermented meat products. From 2004 until 2016 she held management positions in the university (Ombudsman and Deputy Director of University extension and International Relations). Her research activity has focused on the field of oenological biotechnology and on the selection of microorganisms (yeasts and BAL) that are of special interest in wine making processes. She has extensive experience in the use of instrumental and sensory tests to assess the quality of alcoholic beverages (wine and beer) and meat products. She has participated in different educational innovation projects and coordinated three of them. These projects have made it possible to coordinate working groups for the implementation of degrees in the EEES, and apply new teaching methodologies that allow the acquisition of horizontal competences by students. She has also evaluated research projects and national and international degrees (different Quality Agencies).",institutionString:"Technical University of Madrid",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"4",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Technical University of Madrid",institutionURL:null,country:{name:"Spain"}}},coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"5",title:"Agricultural and Biological Sciences",slug:"agricultural-and-biological-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"347258",firstName:"Marica",lastName:"Novakovic",middleName:null,title:"Ms.",imageUrl:"//cdnintech.com/web/frontend/www/assets/author.svg",email:"marica@intechopen.com",biography:null}},relatedBooks:[{type:"book",id:"5253",title:"Grape and Wine Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"5626f83050894f6dfc5640fa908dc920",slug:"grape-and-wine-biotechnology",bookSignature:"Antonio Morata and Iris Loira",coverURL:"https://cdn.intechopen.com/books/images_new/5253.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6293",title:"Yeast",subtitle:"Industrial Applications",isOpenForSubmission:!1,hash:"46632cf5c744c601f5c36175e8dc8dc4",slug:"yeast-industrial-applications",bookSignature:"Antonio Morata and Iris Loira",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8054",title:"Advances in Grape and Wine Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"f6b9b3b3d887ed9e7c0ad09cb07edf2b",slug:"advances-in-grape-and-wine-biotechnology",bookSignature:"Antonio Morata and Iris Loira",coverURL:"https://cdn.intechopen.com/books/images_new/8054.jpg",editedByType:"Edited by",editors:[{id:"180952",title:"Prof.",name:"Antonio",surname:"Morata",slug:"antonio-morata",fullName:"Antonio Morata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6418",title:"Hyperspectral Imaging in Agriculture, Food and Environment",subtitle:null,isOpenForSubmission:!1,hash:"9005c36534a5dc065577a011aea13d4d",slug:"hyperspectral-imaging-in-agriculture-food-and-environment",bookSignature:"Alejandro Isabel Luna Maldonado, Humberto Rodríguez Fuentes and Juan Antonio Vidales Contreras",coverURL:"https://cdn.intechopen.com/books/images_new/6418.jpg",editedByType:"Edited by",editors:[{id:"105774",title:"Prof.",name:"Alejandro Isabel",surname:"Luna Maldonado",slug:"alejandro-isabel-luna-maldonado",fullName:"Alejandro Isabel Luna Maldonado"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"14888",title:"Reputation-Based Neural Network Combinations",doi:"10.5772/16194",slug:"reputation-based-neural-network-combinations",body:null,keywords:null,chapterPDFUrl:"https://cdn.intechopen.com/pdfs/14888.pdf",chapterXML:null,downloadPdfUrl:"/chapter/pdf-download/14888",previewPdfUrl:"/chapter/pdf-preview/14888",totalDownloads:2175,totalViews:182,totalCrossrefCites:0,totalDimensionsCites:0,hasAltmetrics:0,dateSubmitted:"July 16th 2010",dateReviewed:"November 2nd 2010",datePrePublished:null,datePublished:"April 11th 2011",dateFinished:null,readingETA:"0",abstract:null,reviewType:"peer-reviewed",bibtexUrl:"/chapter/bibtex/14888",risUrl:"/chapter/ris/14888",book:{slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications"},signatures:"Mohammad Nikjoo, Azadeh Kushki, Joon Lee, Catriona Steele and Tom Chau",authors:[{id:"5960",title:"Dr.",name:"Tom",middleName:null,surname:"Chau",fullName:"Tom Chau",slug:"tom-chau",email:"tom.chau@utoronto.ca",position:null,institution:null},{id:"23592",title:"PhD.",name:"Mohammad",middleName:null,surname:"Nikjoo",fullName:"Mohammad Nikjoo",slug:"mohammad-nikjoo",email:"m.nikjoo@utoronto.ca",position:null,institution:null},{id:"29754",title:"PhD.",name:"Azadeh",middleName:null,surname:"Kushki",fullName:"Azadeh Kushki",slug:"azadeh-kushki",email:"akushki@hollandbloorview.ca",position:null,institution:null},{id:"29755",title:"Dr.",name:"Catriona",middleName:"M",surname:"Steele",fullName:"Catriona Steele",slug:"catriona-steele",email:"steele.catriona@torontorehab.on.ca",position:null,institution:null}],sections:null,chapterReferences:null,footnotes:null,contributors:null,corrections:null},book:{id:"117",title:"Artificial Neural Networks",subtitle:"Methodological Advances and Biomedical Applications",fullTitle:"Artificial Neural Networks - Methodological Advances and Biomedical Applications",slug:"artificial-neural-networks-methodological-advances-and-biomedical-applications",publishedDate:"April 11th 2011",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/117.jpg",licenceType:"CC BY-NC-SA 3.0",editedByType:"Edited by",isbn:null,printIsbn:"978-953-307-243-2",pdfIsbn:"978-953-51-4498-4",editors:[{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"14881",title:"Introduction to the Artificial Neural Networks",slug:"introduction-to-the-artificial-neural-networks",totalDownloads:25718,totalCrossrefCites:51,signatures:"Andrej Krenker, Janez Bešter and Andrej Kos",authors:[{id:"21859",title:"Dr.",name:"Andrej",middleName:null,surname:"Kos",fullName:"Andrej Kos",slug:"andrej-kos"},{id:"62151",title:"Dr.",name:"Andrej",middleName:null,surname:"Krenker",fullName:"Andrej Krenker",slug:"andrej-krenker"}]},{id:"14882",title:"Review of Input Variable Selection Methods for Artificial Neural Networks",slug:"review-of-input-variable-selection-methods-for-artificial-neural-networks",totalDownloads:8954,totalCrossrefCites:106,signatures:"Robert May, Graeme Dandy and Holger Maier",authors:[{id:"22868",title:"Dr.",name:"Robert",middleName:"James",surname:"May",fullName:"Robert May",slug:"robert-may"},{id:"23014",title:"Dr.",name:"Holger",middleName:null,surname:"Maier",fullName:"Holger Maier",slug:"holger-maier"},{id:"26897",title:"Prof.",name:"Graeme",middleName:null,surname:"Dandy",fullName:"Graeme Dandy",slug:"graeme-dandy"}]},{id:"14883",title:"Artificial Neural Networks and Efficient Optimization Techniques for Applications in Engineering",slug:"artificial-neural-networks-and-efficient-optimization-techniques-for-applications-in-engineering",totalDownloads:5240,totalCrossrefCites:4,signatures:"Rossana M. S. Cruz, Helton M. Peixoto and Rafael M. Magalhães",authors:[{id:"20227",title:"Dr.",name:"Rossana",middleName:null,surname:"Moreno Santa Cruz",fullName:"Rossana Moreno Santa Cruz",slug:"rossana-moreno-santa-cruz"},{id:"23214",title:"MSc.",name:"Helton",middleName:null,surname:"Maia Peixoto",fullName:"Helton Maia Peixoto",slug:"helton-maia-peixoto"},{id:"23215",title:"Prof.",name:"Rafael",middleName:null,surname:"Marrocos Magalhães",fullName:"Rafael Marrocos Magalhães",slug:"rafael-marrocos-magalhaes"}]},{id:"14884",title:"Pixel-Based Artificial Neural Networks in Computer-Aided Diagnosis",slug:"pixel-based-artificial-neural-networks-in-computer-aided-diagnosis",totalDownloads:3631,totalCrossrefCites:2,signatures:"Kenji Suzuki",authors:[{id:"3095",title:"Prof.",name:"Kenji",middleName:null,surname:"Suzuki",fullName:"Kenji Suzuki",slug:"kenji-suzuki"}]},{id:"14885",title:"Applied Artificial Neural Networks: from Associative Memories to Biomedical Applications",slug:"applied-artificial-neural-networks-from-associative-memories-to-biomedical-applications",totalDownloads:3815,totalCrossrefCites:0,signatures:"Mahmood Amiri and Katayoun Derakhshandeh",authors:[{id:"20356",title:"Dr.",name:"Mahmood",middleName:null,surname:"Amiri",fullName:"Mahmood Amiri",slug:"mahmood-amiri"},{id:"22988",title:"Dr.",name:"Katayoun",middleName:null,surname:"Derakhshandeh",fullName:"Katayoun Derakhshandeh",slug:"katayoun-derakhshandeh"}]},{id:"14886",title:"Medical Image Segmentation Using Artificial Neural Networks",slug:"medical-image-segmentation-using-artificial-neural-networks",totalDownloads:7872,totalCrossrefCites:3,signatures:"Mostafa Jabarouti Moghaddam and Hamid Soltanian-Zadeh",authors:[{id:"23180",title:"PhD.",name:"Hamid",middleName:null,surname:"Soltanian-Zadeh",fullName:"Hamid Soltanian-Zadeh",slug:"hamid-soltanian-zadeh"},{id:"23181",title:"PhD.",name:"Mostafa",middleName:null,surname:"Jabarouti Moghaddam",fullName:"Mostafa Jabarouti Moghaddam",slug:"mostafa-jabarouti-moghaddam"}]},{id:"14887",title:"Artificial Neural Networks and Predictive Medicine: a Revolutionary Paradigm Shift",slug:"artificial-neural-networks-and-predictive-medicine-a-revolutionary-paradigm-shift",totalDownloads:3169,totalCrossrefCites:4,signatures:"Enzo Grossi",authors:[{id:"22119",title:"Dr.",name:"Enzo",middleName:null,surname:"Grossi",fullName:"Enzo Grossi",slug:"enzo-grossi"}]},{id:"14888",title:"Reputation-Based Neural Network Combinations",slug:"reputation-based-neural-network-combinations",totalDownloads:2175,totalCrossrefCites:0,signatures:"Mohammad Nikjoo, Azadeh Kushki, Joon Lee, Catriona Steele and Tom Chau",authors:[{id:"5960",title:"Dr.",name:"Tom",middleName:null,surname:"Chau",fullName:"Tom Chau",slug:"tom-chau"},{id:"23592",title:"PhD.",name:"Mohammad",middleName:null,surname:"Nikjoo",fullName:"Mohammad Nikjoo",slug:"mohammad-nikjoo"},{id:"29754",title:"PhD.",name:"Azadeh",middleName:null,surname:"Kushki",fullName:"Azadeh Kushki",slug:"azadeh-kushki"},{id:"29755",title:"Dr.",name:"Catriona",middleName:"M",surname:"Steele",fullName:"Catriona Steele",slug:"catriona-steele"}]},{id:"14889",title:"Prioritising Genes with an Artificial Neural Network Comprising Medical Documents to Accelerate Positional Cloning in Biological Research",slug:"prioritising-genes-with-an-artificial-neural-network-comprising-medical-documents-to-accelerate-posi",totalDownloads:2124,totalCrossrefCites:1,signatures:"Norio Kobayashi and Tetsuro Toyoda",authors:[{id:"23334",title:"Dr.",name:"Tetsuro",middleName:null,surname:"Toyoda",fullName:"Tetsuro Toyoda",slug:"tetsuro-toyoda"},{id:"27263",title:"Dr.",name:"Norio",middleName:null,surname:"Kobayashi",fullName:"Norio Kobayashi",slug:"norio-kobayashi"}]},{id:"14890",title:"Artificial Neural Networks Technology to Model and Predict Plant Biology Process",slug:"artificial-neural-networks-technology-to-model-and-predict-plant-biology-process",totalDownloads:4307,totalCrossrefCites:6,signatures:"Pedro P. Gallego, Jorge Gago and Mariana Landín",authors:[{id:"19226",title:"Prof.",name:"Pedro",middleName:"Pablo",surname:"Gallego",fullName:"Pedro Gallego",slug:"pedro-gallego"},{id:"23361",title:"Prof.",name:"Mariana",middleName:null,surname:"Landín",fullName:"Mariana Landín",slug:"mariana-landin"},{id:"23362",title:"Dr.",name:"Jorge",middleName:null,surname:"Gago",fullName:"Jorge Gago",slug:"jorge-gago"}]},{id:"14891",title:"The Usefulness of Artificial Neural Networks in Predicting the Outcome of Hematopoietic Stem Cell Transplantation",slug:"the-usefulness-of-artificial-neural-networks-in-predicting-the-outcome-of-hematopoietic-stem-cell-tr",totalDownloads:3028,totalCrossrefCites:0,signatures:"Giovanni Caocci, Roberto Baccoli and Giorgio La Nasa",authors:[{id:"22963",title:"Dr.",name:"Giovanni",middleName:null,surname:"Caocci",fullName:"Giovanni Caocci",slug:"giovanni-caocci"},{id:"22965",title:"Dr.",name:"Roberto",middleName:null,surname:"Baccoli",fullName:"Roberto Baccoli",slug:"roberto-baccoli"},{id:"22966",title:"Dr.",name:"Giorgio",middleName:null,surname:"La Nasa",fullName:"Giorgio La Nasa",slug:"giorgio-la-nasa"}]},{id:"14892",title:"Artificial Neural Networks and Retinal Ganglion Cell Responses",slug:"artificial-neural-networks-and-retinal-ganglion-cell-responses",totalDownloads:2495,totalCrossrefCites:0,signatures:"María P. Bonomini, José M. Ferrández and Eduardo Fernández",authors:[{id:"22652",title:"Prof.",name:"José M.",middleName:null,surname:"Ferrández",fullName:"José M. Ferrández",slug:"jose-m.-ferrandez"},{id:"22982",title:"Dr.",name:"María P.",middleName:null,surname:"Bonomini",fullName:"María P. Bonomini",slug:"maria-p.-bonomini"},{id:"22983",title:"Prof.",name:"Eduardo",middleName:null,surname:"Fernández",fullName:"Eduardo Fernández",slug:"eduardo-fernandez"}]},{id:"14893",title:"Diagnosing Skin Diseases Using an Artificial Neural Network",slug:"diagnosing-skin-diseases-using-an-artificial-neural-network",totalDownloads:4963,totalCrossrefCites:6,signatures:"Bakpo, F. S. and Kabari, L. G",authors:[{id:"20357",title:"Dr.",name:"Francis",middleName:null,surname:"Bakpo",fullName:"Francis Bakpo",slug:"francis-bakpo"}]},{id:"14894",title:"Artificial Neural Networks Used to Study the Evolution of the Multiple Sclerosis",slug:"artificial-neural-networks-used-to-study-the-evolution-of-the-multiple-sclerosis",totalDownloads:2744,totalCrossrefCites:0,signatures:"Tabares Ospina and Hector Anibal",authors:[{id:"19213",title:"Dr.",name:"Héctor",middleName:"Anibal",surname:"Tabares Ospina",fullName:"Héctor Tabares Ospina",slug:"hector-tabares-ospina"}]},{id:"14895",title:"Estimation the Depth of Anesthesia by the Use of Artificial Neural Network",slug:"estimation-the-depth-of-anesthesia-by-the-use-of-artificial-neural-network",totalDownloads:3044,totalCrossrefCites:5,signatures:"Hossein Rabbani, Alireza Mehri Dehnavi and Mehrab Ghanatbari",authors:[{id:"19794",title:"Dr.",name:"Hossein",middleName:null,surname:"Rabbani",fullName:"Hossein Rabbani",slug:"hossein-rabbani"},{id:"19795",title:"Dr.",name:"Alireza",middleName:null,surname:"Mehri Dehnavi",fullName:"Alireza Mehri Dehnavi",slug:"alireza-mehri-dehnavi"},{id:"23086",title:"Dr.",name:"Mehrab",middleName:null,surname:"Ghanatbari",fullName:"Mehrab Ghanatbari",slug:"mehrab-ghanatbari"}]},{id:"14896",title:"Artificial Neural Networks (ANN) Applied for Gait Classification and Physiotherapy Monitoring in Post Stroke Patients",slug:"artificial-neural-networks-ann-applied-for-gait-classification-and-physiotherapy-monitoring-in-post-",totalDownloads:2943,totalCrossrefCites:4,signatures:"Katarzyna Kaczmarczyk, Andrzej Wit, Maciej Krawczyk, Jacek Zaborski and Józef Piłsudski",authors:[{id:"20501",title:"Dr.",name:"Katarzyna",middleName:null,surname:"Kaczmarczyk",fullName:"Katarzyna Kaczmarczyk",slug:"katarzyna-kaczmarczyk"},{id:"23066",title:"Dr.",name:"Andrzej",middleName:null,surname:"Wit",fullName:"Andrzej Wit",slug:"andrzej-wit"},{id:"23067",title:"Dr.",name:"Maciej",middleName:null,surname:"Krawczyk",fullName:"Maciej Krawczyk",slug:"maciej-krawczyk"},{id:"23068",title:"Dr.",name:"Jacek",middleName:null,surname:"Zaborski",fullName:"Jacek Zaborski",slug:"jacek-zaborski"}]},{id:"14897",title:"Forcasting the Clinical Outcome: Artificial Neural Networks or Multivariate Statistical Models?",slug:"forcasting-the-clinical-outcome-artificial-neural-networks-or-multivariate-statistical-models-",totalDownloads:2419,totalCrossrefCites:1,signatures:"Ahmed Akl and Mohamed A Ghoneim",authors:[{id:"22724",title:"Dr.",name:"Mohamed A.",middleName:null,surname:"Ghoneim",fullName:"Mohamed A. Ghoneim",slug:"mohamed-a.-ghoneim"},{id:"25964",title:"Dr.",name:"Ahmed",middleName:null,surname:"Akl",fullName:"Ahmed Akl",slug:"ahmed-akl"}]},{id:"14898",title:"Telecare Adoption Model Based on Artificial Neural Networks",slug:"telecare-adoption-model-based-on-artificial-neural-networks",totalDownloads:2445,totalCrossrefCites:0,signatures:"Jui-Chen Huang",authors:[{id:"23163",title:"Prof.",name:"Jui-Chen",middleName:null,surname:"Huang",fullName:"Jui-Chen Huang",slug:"jui-chen-huang"}]},{id:"14899",title:"Effectiveness of Artificial Neural Networks in Forecasting Failure Risk for Pre-Medical Students",slug:"effectiveness-of-artificial-neural-networks-in-forecasting-failure-risk-for-pre-medical-students",totalDownloads:2457,totalCrossrefCites:0,signatures:"Jawaher K. Alenezi, Mohammed M. Awny and Maged M. M. Fahmy",authors:[{id:"22900",title:"PhD.",name:"Jawaher K.",middleName:null,surname:"Alenezi",fullName:"Jawaher K. Alenezi",slug:"jawaher-k.-alenezi"},{id:"22901",title:"Dr.",name:"Mohammed",middleName:null,surname:"Awny",fullName:"Mohammed Awny",slug:"mohammed-awny"},{id:"22902",title:"Dr.",name:"Maged M.M.",middleName:null,surname:"Fahmy",fullName:"Maged M.M. Fahmy",slug:"maged-m.m.-fahmy"}]}]},relatedBooks:[{type:"book",id:"1586",title:"Artificial Neural Networks",subtitle:"Industrial and Control Engineering Applications",isOpenForSubmission:!1,hash:"64fde94410f80afcb569fa85aad70473",slug:"artificial-neural-networks-industrial-and-control-engineering-applications",bookSignature:"Kenji Suzuki",coverURL:"https://cdn.intechopen.com/books/images_new/1586.jpg",editedByType:"Edited by",editors:[{id:"3095",title:"Prof.",name:"Kenji",surname:"Suzuki",slug:"kenji-suzuki",fullName:"Kenji Suzuki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"},chapters:[{id:"14727",title:"Review of Application of Artificial Neural Networks in Textiles and Clothing Industries over Last Decades",slug:"review-of-application-of-artificial-neural-networks-in-textiles-and-clothing-industries-over-last-de",signatures:"Chi Leung Parick Hui, Ng Sau Fun and Connie Ip",authors:[{id:"22866",title:"Dr.",name:"Chi Leung Patrick",middleName:null,surname:"Hui",fullName:"Chi Leung Patrick Hui",slug:"chi-leung-patrick-hui"},{id:"24402",title:"Ms.",name:"Connie",middleName:null,surname:"Ip",fullName:"Connie Ip",slug:"connie-ip"},{id:"32526",title:"Ms.",name:"Sau Fun",middleName:null,surname:"Ng",fullName:"Sau Fun Ng",slug:"sau-fun-ng"}]},{id:"14728",title:"Artificial Neural Network Prosperities in Textile Applications",slug:"artificial-neural-network-prosperities-in-textile-applications",signatures:"Mohammad Amani Tehran and Mahboubeh Maleki",authors:[{id:"22281",title:"PhD.",name:"Mohammad",middleName:null,surname:"Amani Tehran",fullName:"Mohammad Amani Tehran",slug:"mohammad-amani-tehran"},{id:"24764",title:"PhD.",name:"Mahboubeh",middleName:null,surname:"Maleki",fullName:"Mahboubeh Maleki",slug:"mahboubeh-maleki"}]},{id:"14729",title:"Modelling of Needle-Punched Nonwoven Fabric Properties Using Artificial Neural Network",slug:"modelling-of-needle-punched-nonwoven-fabric-properties-using-artificial-neural-network",signatures:"Sanjoy Debnath",authors:[{id:"23285",title:"Dr.",name:"Sanjoy",middleName:null,surname:"Debnath",fullName:"Sanjoy Debnath",slug:"sanjoy-debnath"}]},{id:"14730",title:"Artificial Neural Networks for Material Identification, Mineralogy and Analytical Geochemistry Based on Laser-Induced Breakdown Spectroscopy",slug:"artificial-neural-networks-for-material-identification-mineralogy-and-analytical-geochemistry-based-",signatures:"Alexander Koujelev and Siu-Lung Lui",authors:[{id:"19165",title:"Dr.",name:"Alexander",middleName:null,surname:"Koujelev",fullName:"Alexander Koujelev",slug:"alexander-koujelev"},{id:"21165",title:"Mr.",name:"Siu-Lung",middleName:null,surname:"Lui",fullName:"Siu-Lung Lui",slug:"siu-lung-lui"}]},{id:"14731",title:"Application of Artificial Neural Networks in the Estimation of Mechanical Properties of Materials",slug:"application-of-artificial-neural-networks-in-the-estimation-of-mechanical-properties-of-materials",signatures:"Seyed Hosein Sadati, Javad Alizadeh Kaklar and Rahmatollah Ghajar",authors:[{id:"1740",title:"PhD.",name:"Seyed Hosein",middleName:null,surname:"Sadati",fullName:"Seyed Hosein Sadati",slug:"seyed-hosein-sadati"},{id:"23140",title:"Prof.",name:"Javad Alizadeh",middleName:null,surname:"Kaklar",fullName:"Javad Alizadeh Kaklar",slug:"javad-alizadeh-kaklar"},{id:"23141",title:"Dr.",name:"Rahmatollah",middleName:null,surname:"Ghajar",fullName:"Rahmatollah Ghajar",slug:"rahmatollah-ghajar"}]},{id:"14732",title:"Optimum Design and Application of Nano-Micro-Composite Ceramic Tool and Die Materials with Improved Back Propagation Neural Network",slug:"optimum-design-and-application-of-nano-micro-composite-ceramic-tool-and-die-materials-with-improved-",signatures:"Chonghai Xu, Jingjie Zhang and Mingdong Yi",authors:[{id:"23577",title:"Prof.",name:"Chonghai",middleName:null,surname:"Xu",fullName:"Chonghai Xu",slug:"chonghai-xu"},{id:"23644",title:"PhD.",name:"Jingjie",middleName:null,surname:"Zhang",fullName:"Jingjie Zhang",slug:"jingjie-zhang"},{id:"23645",title:"PhD.",name:"Mingdong",middleName:null,surname:"Yi",fullName:"Mingdong Yi",slug:"mingdong-yi"}]},{id:"14733",title:"Application of Bayesian Neural Networks to Predict Strength and Grain Size of Hot Strip Low Carbon Steels",slug:"application-of-bayesian-neural-networks-to-predict-strength-and-grain-size-of-hot-strip-low-carbon-s",signatures:"Mohammad Reza Toroghinejad and Mohsen Botlani Esfahani",authors:[{id:"22485",title:"Dr.",name:"Mohammad Reza",middleName:null,surname:"Toroghinejad",fullName:"Mohammad Reza Toroghinejad",slug:"mohammad-reza-toroghinejad"},{id:"22806",title:"Mr.",name:"Mohsen",middleName:null,surname:"Botlani Esfahani",fullName:"Mohsen Botlani Esfahani",slug:"mohsen-botlani-esfahani"}]},{id:"14734",title:"Adaptive Neuro-Fuzzy Inference System Prediction of Calorific Value Based on the Analysis of U.S. Coals",slug:"adaptive-neuro-fuzzy-inference-system-prediction-of-calorific-value-based-on-the-analysis-of-u-s-coa",signatures:"F. Rafezi, E. Jorjani and Sh. Karimi",authors:[{id:"22037",title:"Associate Prof.",name:"Esmaeil",middleName:null,surname:"Jorjani",fullName:"Esmaeil Jorjani",slug:"esmaeil-jorjani"},{id:"23282",title:"Mr.",name:"Farid",middleName:null,surname:"Rafezi",fullName:"Farid Rafezi",slug:"farid-rafezi"},{id:"23283",title:"Mr.",name:"Shahab",middleName:null,surname:"Karimi",fullName:"Shahab Karimi",slug:"shahab-karimi"}]},{id:"14735",title:"Artificial Neural Network Applied for Detecting the Saturation Level in the Magnetic Core of a Welding Transformer",slug:"artificial-neural-network-applied-for-detecting-the-saturation-level-in-the-magnetic-core-of-a-weldi",signatures:"Klemen Deželak, Gorazd Štumberger, Drago Dolinar and Beno Klopčic",authors:[{id:"12968",title:"Prof.",name:"Gorazd",middleName:null,surname:"Štumberger",fullName:"Gorazd Štumberger",slug:"gorazd-stumberger"},{id:"12970",title:"Dr.",name:"Drago",middleName:null,surname:"Dolinar",fullName:"Drago Dolinar",slug:"drago-dolinar"},{id:"20832",title:"PhD.",name:"Klemen",middleName:null,surname:"Deželak",fullName:"Klemen Deželak",slug:"klemen-dezelak"},{id:"25127",title:"Dr.",name:"Beno",middleName:null,surname:"Klopčič",fullName:"Beno Klopčič",slug:"beno-klopcic"}]},{id:"14736",title:"Application of Artificial Neural Networks to Food and Fermentation Technology",slug:"application-of-artificial-neural-networks-to-food-and-fermentation-technology",signatures:"Madhukar Bhotmange and Pratima Shastri",authors:[{id:"22978",title:"Dr.",name:"Pratima",middleName:null,surname:"Shastri",fullName:"Pratima Shastri",slug:"pratima-shastri"}]},{id:"14737",title:"Application of Artificial Neural Networks in Meat Production and Technology",slug:"application-of-artificial-neural-networks-in-meat-production-and-technology",signatures:"Maja Prevolnik, Dejan Škorjanc, Marjeta Čandek-Potokar and Marjana Novic",authors:[{id:"19653",title:"Dr.",name:"Maja",middleName:null,surname:"Prevolnik",fullName:"Maja Prevolnik",slug:"maja-prevolnik"},{id:"23159",title:"Dr.",name:"Marjana",middleName:null,surname:"Novič",fullName:"Marjana Novič",slug:"marjana-novic"},{id:"23160",title:"Dr.",name:"Dejan",middleName:null,surname:"Škorjanc",fullName:"Dejan Škorjanc",slug:"dejan-skorjanc"},{id:"23161",title:"Dr.",name:"Marjeta",middleName:null,surname:"Čandek-Potokar",fullName:"Marjeta Čandek-Potokar",slug:"marjeta-candek-potokar"}]},{id:"14738",title:"State of Charge Estimation of Ni-MH battery pack by using ANN",slug:"state-of-charge-estimation-of-ni-mh-battery-pack-by-using-ann",signatures:"Chang-Hao Piao, Wen-Li Fu, Jin-Wang, Zhi-Yu Huang and Chongdu Cho",authors:[{id:"22909",title:"Prof.",name:"Chang Hao",middleName:null,surname:"Piao",fullName:"Chang Hao Piao",slug:"chang-hao-piao"}]},{id:"14739",title:"A Novel Frequency Tracking Method Based on Complex Adaptive Linear Neural Network State Vector in Power Systems",slug:"a-novel-frequency-tracking-method-based-on-complex-adaptive-linear-neural-network-state-vector-in-po",signatures:"M. Joorabian, I. Sadinejad and M. Baghdadi",authors:[{id:"22325",title:"Dr.",name:"Mahmood",middleName:null,surname:"Joorabian",fullName:"Mahmood Joorabian",slug:"mahmood-joorabian"},{id:"22326",title:"PhD.",name:"Mehdi",middleName:null,surname:"Baghdadi",fullName:"Mehdi Baghdadi",slug:"mehdi-baghdadi"},{id:"22959",title:"PhD.",name:"Iman",middleName:null,surname:"Sadinezhad",fullName:"Iman Sadinezhad",slug:"iman-sadinezhad"}]},{id:"14740",title:"Application of ANN to Real and Reactive Power Allocation Scheme",slug:"application-of-ann-to-real-and-reactive-power-allocation-scheme",signatures:"S.N. Khalid, M.W. Mustafa, H. Shareef and A. Khairuddin",authors:[{id:"10447",title:"Dr.",name:"Hussain",middleName:null,surname:"Shareef",fullName:"Hussain Shareef",slug:"hussain-shareef"},{id:"21079",title:"Dr.",name:"Saifulnizam",middleName:null,surname:"Abd. Khalid",fullName:"Saifulnizam Abd. Khalid",slug:"saifulnizam-abd.-khalid"},{id:"21187",title:"Dr.",name:"Mohd Wazir",middleName:null,surname:"Mustafa",fullName:"Mohd Wazir Mustafa",slug:"mohd-wazir-mustafa"},{id:"21188",title:"Dr.",name:"Azhar",middleName:null,surname:"Khairuddin",fullName:"Azhar Khairuddin",slug:"azhar-khairuddin"}]},{id:"14741",title:"The Applications of Artificial Neural Networks to Engines",slug:"the-applications-of-artificial-neural-networks-to-engines",signatures:"Deng, Jiamei, Stobart, Richard and Maass, Bastian",authors:[{id:"21980",title:"Dr.",name:"Jiamei",middleName:null,surname:"Deng",fullName:"Jiamei Deng",slug:"jiamei-deng"},{id:"22750",title:"Dr.",name:"Richard",middleName:null,surname:"Stobart",fullName:"Richard Stobart",slug:"richard-stobart"},{id:"22751",title:"PhD.",name:"Bastian",middleName:null,surname:"Maass",fullName:"Bastian Maass",slug:"bastian-maass"}]},{id:"14742",title:"A Comparison of Speed-Feed Fuzzy Intelligent System and ANN for Machinability Data Selection of CNC Machines",slug:"a-comparison-of-speed-feed-fuzzy-intelligent-system-and-ann-for-machinability-data-selection-of-cnc-",signatures:"Zahari Taha and Sarkawt Rostam",authors:[{id:"858",title:"Dr.",name:"Zahari",middleName:null,surname:"Taha",fullName:"Zahari Taha",slug:"zahari-taha"},{id:"24305",title:"PhD.",name:"Sarkawt Rostam",middleName:null,surname:"Hassan",fullName:"Sarkawt Rostam Hassan",slug:"sarkawt-rostam-hassan"}]},{id:"14743",title:"Artificial Neural Network – Possible Approach to Nonlinear System Control",slug:"artificial-neural-network-possible-approach-to-nonlinear-system-control",signatures:"Jan Mareš, Petr Doležel and Pavel Hrnčiřík",authors:[{id:"20382",title:"Dr.",name:"Jan",middleName:null,surname:"Mareš",fullName:"Jan Mareš",slug:"jan-mares"},{id:"22548",title:"PhD.",name:"Pavel",middleName:null,surname:"Hrncirik",fullName:"Pavel Hrncirik",slug:"pavel-hrncirik"},{id:"22608",title:"PhD.",name:"Petr",middleName:null,surname:"Dolezel",fullName:"Petr Dolezel",slug:"petr-dolezel"}]},{id:"14744",title:"Direct Neural Network Control via Inverse Modelling: Application on Induction Motors",slug:"direct-neural-network-control-via-inverse-modelling-application-on-induction-motors",signatures:"Haider A. F. Almurib, Ahmad A. Mat Isa and Hayder M.A.A. Al-Assadi",authors:[{id:"7191",title:"Dr.",name:"Hayder M. A. Ali",middleName:null,surname:"Al-Assadi",fullName:"Hayder M. A. Ali Al-Assadi",slug:"hayder-m.-a.-ali-al-assadi"},{id:"21745",title:"Dr.",name:"Ahmad Azlan",middleName:null,surname:"Mat Isa",fullName:"Ahmad Azlan Mat Isa",slug:"ahmad-azlan-mat-isa"},{id:"22702",title:"Dr.",name:"Haider A.F.",middleName:null,surname:"Almurib",fullName:"Haider A.F. Almurib",slug:"haider-a.f.-almurib"}]},{id:"14745",title:"System Identification of NN-based Model Reference Control of RUAV during Hover",slug:"system-identification-of-nn-based-model-reference-control-of-ruav-during-hover",signatures:"Bhaskar Prasad Rimal, Idris E. Putro, Agus Budiyono, Dugki Min and Eunmi Choi",authors:[{id:"20747",title:"PhD.",name:"Bhaskar Prasad",middleName:null,surname:"Rimal",fullName:"Bhaskar Prasad Rimal",slug:"bhaskar-prasad-rimal"},{id:"23043",title:"Prof.",name:"Agus",middleName:null,surname:"Budiyono",fullName:"Agus Budiyono",slug:"agus-budiyono"},{id:"23044",title:"Prof.",name:"Dugki",middleName:null,surname:"Min",fullName:"Dugki Min",slug:"dugki-min"},{id:"23045",title:"Prof.",name:"Eunmi",middleName:null,surname:"Choi",fullName:"Eunmi Choi",slug:"eunmi-choi"},{id:"23594",title:"Prof.",name:"Idris E.",middleName:null,surname:"Putro",fullName:"Idris E. Putro",slug:"idris-e.-putro"}]},{id:"14746",title:"Intelligent Vibration Signal Diagnostic System Using Artificial Neural Network",slug:"intelligent-vibration-signal-diagnostic-system-using-artificial-neural-network",signatures:"Chang-Ching Lin",authors:[{id:"20925",title:"Dr.",name:"Chang-Ching",middleName:"David",surname:"Lin",fullName:"Chang-Ching Lin",slug:"chang-ching-lin"}]},{id:"14747",title:"Conditioning Monitoring and Fault Diagnosis for a Servo-Pneumatic System with Artificial Neural Network Algorithms",slug:"conditioning-monitoring-and-fault-diagnosis-for-a-servo-pneumatic-system-with-artificial-neural-netw",signatures:"Mustafa Demetgul, Sezai Taskin and Ibrahim Nur Tansel",authors:[{id:"19106",title:"Dr.",name:"Mustafa",middleName:null,surname:"Demetgul",fullName:"Mustafa Demetgul",slug:"mustafa-demetgul"},{id:"22738",title:"Dr.",name:"Ibrahim Nur",middleName:null,surname:"Tansel",fullName:"Ibrahim Nur Tansel",slug:"ibrahim-nur-tansel"},{id:"27078",title:"Dr.",name:"Sezai",middleName:null,surname:"Taskin",fullName:"Sezai Taskin",slug:"sezai-taskin"}]},{id:"14748",title:"Neural Networks’ Based Inverse Kinematics Solution for Serial Robot Manipulators Passing Through Singularities",slug:"neural-networks-based-inverse-kinematics-solution-for-serial-robot-manipulators-passing-through-sing",signatures:"Ali T. Hasan, Hayder M.A.A. Al-Assadi and Ahmad Azlan Mat Isa",authors:[{id:"21745",title:"Dr.",name:"Ahmad Azlan",middleName:null,surname:"Mat Isa",fullName:"Ahmad Azlan Mat Isa",slug:"ahmad-azlan-mat-isa"},{id:"11220",title:"Dr.",name:"Ali",middleName:"Taqi",surname:"Hasan",fullName:"Ali Hasan",slug:"ali-hasan"},{id:"21744",title:"Dr.",name:"Hayder",middleName:"M A A",surname:"Al-Assadi",fullName:"Hayder Al-Assadi",slug:"hayder-al-assadi"}]}]}]},onlineFirst:{chapter:{type:"chapter",id:"69461",title:"Extraction, Characterization, and Application of Agricultural and Food Processing By-Products",doi:"10.5772/intechopen.89289",slug:"extraction-characterization-and-application-of-agricultural-and-food-processing-by-products",body:'Thailand is situated in the heart of the Southeast Asian mainland, fertile, tropical country with monsoonal climate that reinforce agriculture both in land and off land [1]. Besides, Thailand owes high agricultural output to it alluvial soils and topography, plentiful water supplies, which allows several plantings a year. Agriculture has long been the mainstay of the Thai economy, with abundant natural resources, and the majority of the Thai population engages in agricultural practices. Agricultural products in Thailand can be classified into four types: (1)
Thailand is one of the world’s leading exporters of rice and also a major exporter of shrimp. The major trading partners with Thailand in agricultural products, ranked by export value, are as follows: (1) rice (Nigeria, China, Japan, and the USA); (2) natural rubber (Benin, Malaysia, the United Kingdom, and Japan); (3) processed chicken (South Africa, Japan, the Netherlands, Canada, and Taiwan); (4) chilled or frozen shrimp (Cote d’Ivoire, the USA, Germany, and the Republic of Korea); and (5) tapioca products (Ghana, the Republic of Korea, Ireland, the United Kingdom, and Indonesia) [2]. Thailand’s food processing industry has developed rapidly and is one of the most developed in Southeast Asia with more than 10,000 food and beverage processing factories. Thailand has a large fresh, frozen, and semi-cooked food industry. In 2017, food exports generated an income of more than US$26 billion or about 830 billion baht to the country, employing as many as 10.75 million workers in the agricultural and fishery sectors, which is expected to reach US$27.4 billion for 2019 [4, 5]. According to the Thai government, “Thailand ranks among the top of the world?s food producing countries in several food categories”. Thailand is therefore considered one of the world?s important food exporting countries. The fast-growing demand for food by the world’s population bodes well for the limitless expansion of the consumer market [2, 5, 6]. According to data supplied by the Trade and Economic Information Center, the Ministry of Commerce, the main groups of food export are as follows: (1) frozen seafood group, canned seafood, and processed seafood; (2) fresh chicken and products; (3) other food groups (including ready-to-eat food and semi-cooked food); (4) halal group or food and food products for Muslims, prepared as prescribed by Muslim law; (5) frozen vegetable and fruit group, canned vegetables and fruits, canned fruit in syrup, processed vegetables and fruits, and vegetable pickles [2].
In addition, Thailand government looks set to revitalize the Kitchen of the World campaign, a scheme to accelerate Thailand’s plan to become a major world food exporter, as it aims to boost food exports to contribute >6% of the country’s GDP. Initiated 15 years ago, the Kitchen of the World campaign aims not only to merely accelerate Thailand’s plan to become a major world food exporter but also spearhead the export of products from the One Tambon One Product (OTOP) scheme. Thailand also approved the Strategic Framework for Food Management in Thailand (2017–2021), which aims to produce enough food to sustain domestic demand, support access to adequate food at all times, improve food quality, reduce food waste and use food correctly, promote sustainable food production, and support the development of food security and nutrition [7].
From the above information, number of production and exportation, and Thai government policy, we can understandably assume that a large amount of food materials as by-products, which are generated along the chain of food production and transformation, are thrown into the environment as consumption demand is growing. Not only Thailand concern, but the global food losses, by-products and wastes are also hot issue that needs to be taken into consideration. The highest percentage of by-products is found in fruits and vegetables, plus roots and tubers (45%), followed by fish and seafood (35%), and oilseed, meat, and dairy (20%), respectively [8]. According to Ezejiofor et al. [9], by-products from food manufacturing make up to 30–60% of the product that is utilized for human consumption and animal feeding. Most of the by-products commonly contain proteins, carbohydrates, and lipids, which are promising sources of value-added substances that can be extracted and utilized as a starting material for enzyme, gelatin, collagen, bioactive compounds, for example, enzymes and antioxidants extractions [10]. Current trends in the world as well as in Thailand are to recover and utilize the food manufacturing by-products into useful materials as a means of achieving goal of sustainable development. Hence, considerable efforts in the valorization of agricultural and food processing residues have been made with the purpose of minimizing the amounts of by-products, reducing the environment pollution, and increasing sustainability of these by-products. This section reviews by-products from two main food processing industries such as animal-based biomaterials (fish skin, bone, flesh, and internal organs) and plant-based biomaterials (pineapple, mango, longan, tea, sacha inchi, oilseeds, legumes, rice, etc.) that have a potential to be produced as gelatin, seasoning powder, calcium powder, film, protein concentrate, isolate and hydrolysates, bioactive peptides, and others such as protease, tyrosinase, antioxidant, and antimicrobial agents.
Thailand is one of the top fish-producing nations in the world, supplying markets in the USA, Europe, and Asia. Fishery production in Thailand demonstrated a remarkable growth over the last three decades. The total production exceeded 0.7 (freshwater fish) and 3 million tons (marine fish) over the last 5 years. Thailand is now the largest exporter of canned tuna, chilled and frozen shrimp, shrimp products, chilled fish, and prawns. Accounting for 1.5% of various kinds of fishery products for exporting are fresh and frozen prawn, processed shrimp, squid, cuttlefish, fish fillet, and surimi and fish in the form of fresh, chilled-frozen, and processed food [11].
Freshwater fish are widely cultured for commercial exploitation and trade in Thailand. The Mekong giant catfish (
Farm and morphology of Mekong giant catfish.
An increase in fish consumption has resulted in an increase in fish-processing by-products, and these, in turn, may contribute significantly to environmental pollution if there is no further valorization process. With an increase in fish processing, a large amount of internal organs and by-product are also generated. During the filleting, 50–65% of the body is discarded which are environmental pollutants. More than 60% of these residues, including of the bone/frame (12–17%), viscera (4–12%), heads (18–60%), cut-offs (6%), skin (4–7%), and roe (2%) are considered as waste as shown in Table 1 and Figure 2. The waste is used in the production of fish meal, and in a very few cases, it is collected for the production of animal feeds; more frequently it is simply discarded. The utilization of these by-products could make more profit to the producer and ease environmental problems. Besides, they will be benefit for the producer to gain more profit from their materials instead of discard. These by-products contain a significant amount of protein that could be converted into useful substances and used for food formulation and bioactive ingredients.
Component | Yield (%) | ||
---|---|---|---|
Giant catfish | Striped catfish | Nile Tilapia | |
Whole fish | 15–17 (kg) | 4.1–4.6 (kg) | 0.8–1 kg |
Fillet skinned | 50–52 | 42–45 | 4.6–6 |
Skin | 4–6 | 5–7 | 4.5–6 |
Viscera | 4–5 | 10–12 | 5–8 |
Head | 25–27 | 18–20 | 52–60 |
Bone | 12–15 | 15–17 | — |
Scale | — | — | 2–3 |
Yield (%) | 50–52 | 48–59 | 64–77 |
By-products (%) | 45–53 | 48–56 | 64–77 |
Fish-processing by-products of freshwater fish including giant catfish, striped catfish, and Nile tilapia.
Source: Vannabun et al. [14].
Wastes and by-products of Nile tilapia and giant catfish. Source: Vannabun et al. [
In order to upgrade the by-products of the fish industry, various systematic studies were made to fulfill the best utilization of fish-processing by-products. Fish skin, in particular, is a rich source of collagen and gelatin, and these by-products still contain a significant amount of protein-rich material [15, 16, 17, 18]. Using proteases from fish viscera in combined with commercial enzymes can be an alternative way to reduce the enzymes costs [12, 14, 19]. Alternatively, digestive enzymes from shrimp or fish viscera can be recovered and be successfully used as processing aids, that is, for the production of gelatin hydrolysate with antioxidant activities and/or angiotensin-I-converting enzyme (ACE) inhibitory activity [20, 21] or the extraction of carotenoprotein from shrimp waste [22]. Fish bone is another by-product that can serve as a raw material for the production of high value-added compounds that can be used in various sectors including agrochemical, biomedical, food, and pharmaceutical industries [23]. Fish bone is considered as one of the potential biological sources to produce calcium phosphates [23, 24]. Fish bone can be applied to boost nutritional characteristics in seasoning powder [25].
The growing consumer demand for healthy fish products has led to a thriving fish-processing industry worldwide. The fish-processing industry generates significant amounts of by-products and waste as illustrated in Table 1 and Figure 2 and tends to increase with fish body weight and consumption [26]. It is estimated that 25% of the global fish production is regarded as waste and is discarded or in the best case scenario processed into fish oil, fishmeal fertilizer, fish silage, and animal feed [27, 28]. It is costly to treat these wastes because it contains high content of organic matter. In addition, disposing these wastes may cause severe health and environmental issues as well as increase the cost of the fish industry.
In general, gelatin is manufactured from the waste generated during animal slaughter and processing, that is, skin and bone. The most abundant gelatin sources are pig skin (46%), bovine hide (29.4%), and pork and cattle bones (23.1%) [29]. For several reasons, there are still serious concerns among the consumers to consume gelatin which is produced from bovine and porcine bones and skins. This is because of some problems such as religious matter and mad cow disease (bovine spongiform encephalopathy (BSE)) [16]. Thus, it lead to many researchers to discover alternative sources such as fish (marine and freshwater) [16, 18, 30] and poultry by-products [31]. As a consequence, there has been increasing interest in other sources, especially in fish skin and bone from fishery processing by-products. Gelatin was extracted from the skin of farmed giant catfish with a yield of 19.50 g/100 g skin sample on wet weight basis (Figure 3). The gelatin had high protein (89.1 g/100 g) but low fat (0.75 g/100 g) content and contained a high number of imino acids (proline and hydroxyproline) (211 residues per 1000 residues). Hydroxyproline accounted for 87 residues per 1000 residues. Giant catfish (GC) skin gelatin had a slightly different amino acid composition than calf (BF) skin gelatin. Gelatin was extracted from the skin of GC and tilapia (TP) at a yield of 19.50 and 23.34%, respectively. Gelatin from GC skin was lower in ash content (0.33 g/100 g). GC skin gelatin was rich in
Extraction of collagen and gelatin form farmed giant catfish skin. Sources: Rawdkuen et al. [
Microstructures in transverse section photomicrographs of both GC and TP skin clearly projected the arrangement of collagenous bundles in each fish skin (Figure 4). TP showed a small bundle with the same ordered pattern, while in GC, the alternate arrangement was observed with a large bundle. The gaps between collagenous bundles represent the compact structure of the component in the skin. This particular characteristic affected the extractability of the collagen and the gelatin in the structure. The relative thickness of the two dermal layers depends on the presence or absence of scales, and it varies with the fish species. In general, the skin of animal is composed of collagen as a main compound. GC skin showed the large collagenous bundles with ordered arrangement when compared with the TP skin, while TP skin showed more compact and small bundles of collagenous components. These results cause different extraction yields of gelatin. The compact arrangement of the bundle effect to the strength and hardness of the fish skin [16].
Microstructure of giant catfish skin (A) and tilapia (B). LM examined at 400× magnifications and SEM magnification of 500× at acceleration voltage of 10 kV. Source: Rawdkuen et al. [
Chemical compositions of both the fish skin and the gelatins are also presented in Table 2. Proteins are the major compound ranging 84–88% (wet wt.). Other components are moisture, ash, and lipid. For the skin of fresh fish, moisture was the major constituent (53–67%). Protein found in GC was higher than TP.
Constituents | Gelatin | Fish skin | |||
---|---|---|---|---|---|
Giant catfish | Tilapia | Bovine | Giant catfish | Tilapia | |
Yield (%) | 19.50 ± 1.87 | 23.34 ± 2.49 | — | — | — |
Moisture | 3.39 ± 0.43 | 8.49 ± 0.82 | 11.38 ± 0.72 | 53.8 ± 5.3 | 67.7 ± 0.5 |
Protein | 85.27 ± 0.68 | 84.28 ± 1.04 | 88.33 ± 1.10 | 43.0 ± 0.9 | 30.6 ± 0.9 |
Lipid | 1.24 ± 0.15 | 0.45 ± 0.18 | 0.09 ± 0.01 | 1.6 ± 0.5 | 1.1 ± 0.1 |
Ash | 0.17 ± 0.03 | 0.15 ± 0.09 | 1.30 ± 0.22 | 0.3 ± 0.1 | 2.1 ± 0.4 |
For the functional properties, the results showed that GC and TP are comparable to BF. Protein patterns by using SDS-PAGE showed high band intensity for the α- and β-components in TP, while BF showed the lowest band intensity of the major component (Figure 5). From the study, it can be concluded that the GC and TP are a prospective source for gelatin production with desirable functionalities. In addition, fish skin gelatin could be more effectively and widely used in food ingredient industries [16].
SDS-PAGE patterns of gelatin from farmed fish skins and commercial beef skin gelatin under nonreducing conditions. Source: Rawdkuen et al. [
Edible films prepared from different types of biomaterials such as proteins, polysaccharide, lipids, or their blends exhibit different film properties. Among all of these materials, proteins are considered to provide desirable mechanical, gas barrier and transparency properties, as well as high nutrition [32]. Rawdkuen et al. [15] prepared edible films from the gelatin of farmed giant catfish skin (GC), bovine bone gelatin (BB), and their combination (50:50) as depicted in Figure 6. The total color difference (ΔE) value of BB films was lower than CG and GC films, respectively. The GC films showed significantly lower values of
Surface morphology of gelatin films from bovine bone gelatin, giant catfish skin gelatin and their combination of bovine bone:giant catfish (50:50). Source: Rawdkuen et al. [
Some studies regarding to cooperation some natural extracted into protein-based film was summarized in Table 3. Natural extracts such as catechin-Kradon, catechin-lysozyme, nisin-catechin, and longan seed extract were used as active ingredients to delay lipid oxidation or retard microbial growth in soybean oil or fresh meat and fish slice. In vitro antibacterial of films incorporated with nisin and/or catechin was investigated by Kaewprachu et al. [33]. Interestingly, gelatin films with nisin and catechin retarded lipid oxidation and microbial growth: the time to reach a total viable count of 107 CFU g−1 of meat was extended from 1 to 4 days as illustrated in Figure 7. Catechin-lysozyme incorporated gelatin film (CLGF) also showed positive results in preserving the quality and maintaining shelf life of minced pork when compared with that of PVC film [34]. It was found that sample wrapped with CLGF showed less weight loss, less discoloration, and low TBARS content than that wrapped with PVC. Microbial numbers in the sample wrapped with the CLGF (TPC count 4.15 log CFU/g; yeast and mold 2.99 log CFU/g) were lower than those observed in the PVC [34]. The properties of gelatin films incorporated with neem extract (NE;
Protein | Antioxidant/antimicrobial agents | Sample tested | Loading | Observation | References |
---|---|---|---|---|---|
Gelatin | Longan seed extract | Soybean oil | 50, 100, 300, and 500 ppm | Prevent effect on lipid oxidation 30 days of storage | Vichasilp et al. [37] and Sai-Ut et al. [38] |
Nisin and/or catechin | Minced pork | 0.12 g/100 g 0.06 g/100 g | Retarded lipid oxidation and lower microbial growth rates | Kaewprachu et al. [33] | |
Catechin-lysozyme combination (1:1) | Minced pork | 0.5 g/100 g | Inhibition of lipid oxidation and lower microbial growth rates than those of PVC | Kaewprachu et al. [34] | |
Neem extract | Minced beef | 0, 0.1, 0.3, and 0.5% (w/v) | Delay oxidative reactions | Putsakum et al. [35] | |
Catechin-lysozyme combination | 0, 0.125, 0.25, and 0.5% (w/v) | Improve mechanical, physicochemical, and antimicrobial properties | Rawdkuen et al. [39] | ||
Fish myofibrillar protein | Catechin and Kradon extract | 0, 3, 6, 9, and 12 mg/ml | Antimicrobial activity | Kaewprachu et al. [40] | |
Catechin and Kradon combination extracts | Tuna slice | 0.9% (v/v) | Total volatile base nitrogen, peroxide value, and TBARS decreased and lowest growth of psychrophilic bacteria | Kaewprachu et al. [36] |
Antioxidant and antimicrobial activity of protein-based films incorporated with antioxidant or antimicrobial agents.
Quality attribute of meat wrapped with myofibrillar protein film incorporated with natural extract. Sources: Kaewprachu et al. [
Besides, catechin-Kradon extract (
Apart from film application, gelatin from food processing by-products can be applied to make clarification in juice or protection from syneresis of yogurt. In application as guava juice clarifier study by Widyasari and Rawdkuen [31], the addition of gelatin at different concentrations showed different results, where the highest value of turbidity was observed from tilapia gelatin at concentration of 1% (w/v) (382 FTU). Furthermore, the lowest turbidity value is purchased at 0.16% (w/v) from chicken feet gelatin (108 FTU). On the other hand, the syneresis of yogurt after centrifugation at 4°C ranged from 0.0 to 71.49%, where the lowest syneresis index was obtained at 1% (w/v) level of the added gelatin from chicken feet and tilapia gelatin.
Fish bone weighs as high as 52–60% of fish body weight. Proximate composition of giant catfish bone was shown in Table 4. Fish bones can serve as a raw material for the production of high value-added compounds that can be used in various sectors including agrochemical, biomedical, food, and pharmaceutical industries [23]. Those bones can serve as a promising source of calcium. The bone is composed of 34–36% calcium, based on total ash content, and is also rich in collagen and chondroitin. Additionally, fish bone is the source of hydroxyapatite (HA) known as (Ca2+)10−
Composition | Percentage |
---|---|
Moisture | 6.79 ± 0.09 |
Protein | 28.14 ± 0.10 |
Fat | 8.61 ± 0.38 |
Minerals | 50.09 ± 0.19 |
Permpoon et al. [25] worked to develop food seasoning powder supplemented with fish bone as depicted in Figure 8. Different concentrations of fish bone powder (0–3%, w/w) were added in those recipes with and without monosodium glutamate (MSG). The content of minerals was shown in Table 5. The highest score of overall acceptance was 6.40 in the sample supplemented with 0.5% fish bone powder containing MSG. High calcium, phosphorus, and sodium were predominant mineral content in the sample supplemented with fish bone [25].
Food seasoning powder supplemented with fish bone. Source: Permpoon et al. [
Component | Conditions* | ||
---|---|---|---|
Control | 1% Fish bone | Commercial | |
Calcium** | 94.48 ± 8.65b | 1637.50 ± 252.44a | 120.25 ± 5.02b |
Potassium | 2088.50 ± 41.72a | 2115.50 ± 85.56a | 2122.50 ± 136.47a |
Phosphorus | 493.90 ± 23.19b | 1338.00 ± 0.69a | 683.70 ± 32.24b |
Magnesium | 60.62 ± 2.98c | 80.38 ± 0.69b | 92.52 ± 3.96a |
Sodium | 182,550 ± 6151a | 185,050 ± 19,728a | 171,800 ± 16,687a |
Mineral content in food seasoning supplemented with fish bone values which are presented as mean ± SD (n = 2). Different lowercase letters in the same row indicate significant difference (p < 0.05).
Values are represented as mean ? SD (n = 2). Different lowercase letters in the same row indicate significant difference (p
mg/kg
Source: Permpoon et al. [25]
Fish bones have high calcium content, and large quantities of this raw material are available as a waste from the fishery industry. Previously, emphasis has been done on producing high-quality products from fish by-products by the use of bacterial proteases [41]. Biocalcium powder from the bones of precooked skipjack tuna was produced and characterized compared with calcined bone (CB) powder. Higher calcium (40.35%) and phosphorous (15.28%) contents were found in the CB powder than BC powder (26.91 and 12.63%, respectively). BC powder had a low abundance of volatile compounds, including aldehydes, alcohols, and ketones. Precooked skipjack tuna bone could be used as a raw material for preparing BC powder, which has a different composition than CB powder. The BC powder was still composed of collagenous protein. BC had a low abundance of odorous compounds, whereas the CB powder had a negligible amount of volatiles. Precooked skipjack tuna is considered a promising source for BC production due to its abundance. BC with improved color and odor along with increased solubility in gastrointestinal tract can be used as an alternative calcium supplement to tackle the inadequate intake of dietary calcium.
The waste portions such as the peel, core, stem, and crown were 29–40, 9–10, 2–5, and 2–4% (w/w), respectively (Figures 9 and 10 and Table 6) [42, 43, 44, 45]. From the last decade, the use of plant extracts as a source of bioactive components (phytochemicals) has gained wide attention against synthetic antibiotic drugs. Pineapple peels and cores account for about 40% of the whole fruit, and they are largely wasted after fresh-cut processing. Papaya fruit is the green fruit which is widely used in Thai cuisine and famously in papaya salad. As the consumption increases, large quantities of papaya peels as by-products are left [42]. Usually, the peels are occasionally used for animal feed or disposed, which produce phytopathogens, then cause ecological problems, and pose risks to human health. These wastes are occasionally utilized as fertilizers or animal feed, yet they have very low economic value. Therefore, ways to utilize these residue wastes have become an important focus for research and development, recognizing that a systematic reduction in waste disposal is beneficial both economically and ecologically. Thus, fruit waste extracts are suitable for enhancing the nutritional and antioxidant properties in food, and moreover, they can also be applied in cosmetics and the nutraceutical and pharmaceutical industries [46]. Therefore, the utilization these waste products have become an important task for research and development. Systematically reducing waste and putting it to other uses is profitable both economically and ecologically speaking [37, 38].
Peel from agriculture products, pineapple, papaya, and mango (left to right). Source: Ketnawa et al. [
By-products from pineapple fruits. Source: Ketnawa et al. [
Part of pineapple | ||||
---|---|---|---|---|
Weight (g) | % (w/w) | Weight (g) | % (w/w) | |
Peel | 143.40 | 30.09 | 159.86 | 42.20 |
Core | 44.61 | 9.36 | 40.60 | 10.72 |
Stem | 26.55 | 5.57 | 9.26 | 2.44 |
Crown | 22.48 | 4.72 | 10.20 | 2.69 |
Flesh | 239.86 | 50.33 | 158.94 | 41.95 |
Total | 476.54 | 100.00 | 378.86 | 100.00 |
Proportion of pineapple fruits of Nang Lae and Phu Lae cultivars.
Source: Ketnawa et al. [43].
Peel is the outermost covering of fruits and not commonly consumed. Pineapple and papaya peels are found to have potential uses as raw materials that could be converted into value-added products, especially as sources for bioactive compound extraction. The utilization of fruit peels as a source of bioactive compounds, especially in proteolytic enzymes extraction means [44, 47].
The isolation and characterization of bromelain extract (BE) from the wastes of
Bromelain has been used commercially in the food industry, in certain cosmetics, and in dietary supplements. It is used for meat tenderizing, brewing, and baking, as well as for the production of protein hydrolysates [42]. Toughness is one of the most common quality characteristics of meat and can be subdivided into actomyosin toughness and background toughness. The former is attributable to changes in myofibrillar proteins, whereas the latter is attributable to connective tissues. Treatment by proteolytic enzymes is a popular method for meat tenderization. Proteolytic enzymes derived from plants such as papain, bromelain, and ficin have been widely used as meat tenderizers in most parts of the world. Ketnawa and Rawdkuen [45] used bromelain extract obtained from the top phase of an aqueous two-phase system (18% PEG-6000 + 17% MgSO4) to tender the muscle foods with different concentrations of BE (0–20%, (w/w)) for 1 h. A reduction of meat firmness and toughness was observed in all samples when compared to the control. Electrophoretic patterns revealed extensive proteolysis and a reduction in number and intensity of the protein bands in all of the treated samples. The results showed that the bromelain extract could be used as an effective meat tenderizer. In similar study of Ketnawa et al. [43], the effects of the bromelain extract on the protein patterns of beef, chicken, and squid muscles were also determined as depicted in Figure 11. Trichloroacetic acid-soluble peptide content of all the treated muscles increased when the amount of bromelain extract increased. Decrease in myosin heavy chains and actin was observed in all the muscle types when bromelain extract was used [43]. The technology for applying this enzyme is cheaply available and can be exploited at the household or industrial level for tenderizing meat, and it can be used as an alternative to chemical tenderizers or other plant proteases.
SDS-PAGE patterns of muscles treated with bromelain from pineapple peels. BC, CC, and SC, controls without extract: B, beef; C, chicken; and S, squid. The numbers 1 and 2 indicate the amount of extract, 1 and 2 mL, respectively. MHC, myosin heavy chain; AC, actin; TM, tropomyosin; TN-T, troponin-T; and MLC, myosin light chain. Source: Ketnawa et al. [
Recent studies have shown that fruit’s waste parts like mango seed contain a noteworthy amount of bioactive component of therapeutic worth [48, 49]. These biologically active components include mangiferin, flavonoids, catechin, phenolic acids, gallic acid, and gallic acid derivatives as shown in Figure 12. The therapeutic importance of these compounds have evaluated through in-vitro and minimal pre-clinically, but there is a need for proper preclinical trials and afterward clinical trials for health claims and health benefits. The industrial processing of mangoes produces several million tons of waste from their peels and seeds at various stages that cause for a major disposal problem and effect to the environment. The seed alone makes up about 20% of the whole fruit, with 45–78% of the seed being the seed kernel [49, 50]. During processing of mango, by-products such as peel and kernel are generated.
Chemical structures of some phenolic compounds found in plant by-products.
The major polyphenols present in mangos that act as a source of natural antioxidants (Figure 12) are as follows: mangiferin, catechin, quercetin, kaempferol, cinnamic acids, tanins, etc. The extract of the mango peels and the seed kernels also has a great deal of tyrosinase inhibitor, antioxidant activity, and chelating activity [46, 49, 51].
To enhance the efficiency of the extraction process, optimization the extraction parameters: the liquid/solid ratio, the ethanol concentration, and the extraction time are consideration. The study describes the optimization of polyphenol extraction from mango seed kernels by using response surface methodology (RSM) (Figure 13). Sai-Ut et al. [46] applied RSM to optimize the ethanolic extraction of polyphenols from mango peels. Nam-Dokmai peel (NDP) showed significantly higher phenolic content and tyrosinase inhibitor activity than that of the Tong-Dam peel (TDP). The optimal condition that maximized the extraction yields, EPC, and the antioxidant activities for NDP were ethanol proportion of 49%, a temperature of 61°C, and an extraction time of 221 min, whereas the optimized condition that maximized the extraction yields, TPC, and antioxidant activities from mango Tong-Dam kernel (TDK) was an ethanol concentration of 62%, a temperature of 63°C, and a duration of 150 min with a fixed ratio of 1:30 solid-liquid [48].
Response surface methodology to optimize the extraction of polyphenol compounds from plant wastes. Sources: Rawdkuen et al. [
Sacha inchi is widely utilized as a raw material in the edible oil industry not only in South Africa but also in Asian country. The de-oiled meals contain high amounts of proteins, which makes it highly desirable for industrial use as value-added products. The proximate compositions of sacha inchi used in this study included protein 459, carbohydrate 361, fat 67, ash 59, crude fiber 58, and moisture 53 g/kg (wb). A comparative study of pressed cake made from tea and sacha inchi seeds was performed. Sacha inchi seeds contained the largest amount of protein (62.07%) and tea seeds contained the largest amount of carbohydrates (82.68%) as shown in Figure 14. Lysine, leucine, histidine, and phenylalanine were the main essential amino acids. Protein patterns by using SDS-PAGE showed that the main protein component had MWs of 35–63 for sacha inchi and 11–20 kDa for tea seeds. In addition, it contained glycoprotein with a MW of 35 kDa. Both pressed cakes showed good sources for bioactive compounds with high antioxidant activities. Therefore, the chemical properties of the pressed cakes indicate that this by-product of oil extraction is a good supplement to functional food ingredients. Nutritional factors such as essential amino acids, essential fatty acids, dietary fiber, and mineral content suggest that the pressed cake with sacha inchi seeds could be a useful ingredient for human consumption [52, 53].
Some utilization of pressed cake from sacha inchi and tea seeds. Source: Rawdkuen et al. [
Protein concentrate (PC) was prepared (Figure 15
Preparation of protein concentrate from pressed cake sacha inchi. Source: Rawdkuen et al. [
Some applications of protein concentrate in food model system were performed in pork sausage and fish finger (Figure 16). The results showed that when the concentration of protein concentrate increased, the textural properties of the sausage were improved. In addition, with fried fish finger can extent it shelf life when protein hydrolysates was added when compared with the control treatment. Both hydrolysates showed effective bioactivities as well as high nutritional value (Lys, Phe, and Tyr) after in vitro gastrointestinal digestion. Thus, crude papain extracted from papaya peel and
Application of protein concentrate from sacha inchi defatted meal in fish fingers. Source: Rawdkuen et al. [
A plenty of rice bran are produced as by-products during rice milling process nowadays following the demand in production and consumption. After rice milling process, 70% rice is obtained, while rice hull (20%), rice bran (8%), and rice germ (2%) are the by-products. The major portion of this is used as animal feed or discarded as waste material [54]. However, rice bran is attracting attention from researchers because it is an alternative and economic source of plant-based hypoallergenic and high-quality protein [54, 55]. Besides, rice bran is a rich source of protein, fat, carbohydrate, vitamins, minerals, dietary fiber, and bioactive compound antioxidants. Furthermore, the chemical, functional, and biofunction properties of rice protein seem superior to other proteins such as soya flake, potato starch, peanut, sorghum, kidney bean, and groundnut [55, 56]. Thus, rice bran has a strong potential to extract certain bioactive compounds, that is, protein concentrate, protein hydrolysates, active peptides, and utilization of those compounds, that is, film production (Figure 17).
Different methods for extraction of protein from rice bran. Sources: Phongthai et al. [
Rice bran fraction is the main source of protein in rice grain. The protein content ranges from 10 to 16% (W/W) depending on its cultivars [57]. Rice bran is an economic source of high-quality plant-based protein that can exhibit an excellent functional properties and interesting bio-functions. Rice bran protein is suggested as one of the important plant-based proteins that can be applied or used as ingredient in many products such as infant food, meat ball, noodles, biscuit, breads, and gluten-free (GF) products. Moreover, its hydrolysate form has a potential to be applied in nutraceutical products and also cosmetic goods [58]. Thus, the several methods to extract protein from rice bran fraction are of interest and developed through physical, chemical, and enzymatic treatments.
Different extraction methods both conventional extraction such as solvent extraction [59, 60], alkaline extraction [57, 58] as well as innovative ones such as supercritical fluid [61], microwave [62], ultra-sonication [63] and enzymatic extraction [64] are used to extract protein from rice bran. Conventional method like alkaline extraction is the most common method for extracting protein from plant materials due to its simplicity and low cost. However, severe alkaline conditions negatively affect the nutritional and functional properties of the protein. This process also requires a long time for extraction and consumes large volumes of buffer. Moreover, exposing protein to severe alkaline conditions also affects the nutritional and functional properties of protein [65]. Therefore, other methods such as physical, that is, microwave- and ultrasonic-assisted extraction, as well as enzymatic methods are increasingly being considered as alternative methods.
Nowadays, microwave and ultrasonic are commonly applicable methods in food preparation, especially for solid-liquid extraction. It is high reproducibility in a shorter time, convenience, and less solvent consumption. Response surface methodology could be used instead of other methods that test only one variable at a time, which is time-consuming and not cost-effective. It also provides insight into the interactions of the variables and calculates the optimal response with a limited number of experiments. The integration of ultrasonic and RSM is challenging but beneficial because it could create a systematic, practical, and economical method for rice bran protein extraction.
Phongthai et al. [63] studied of extraction of protein from organic rice bran by three different methods such as alkaline [58], microwave [62], ultra-sonicated extraction [63], enzyme-assisted extraction (EAE) of rice bran protein [64] and then that protein concentrate was isolated by three-phase partitioning (TPP) techniques [66] or utilization of protein concentrate as raw material for production of protein hydrolysate [58], gluten free bread [58] and pasta [67] as depicted Figure 18.
Rice barn protein extraction by conventional alkaline extraction method. Source: Phongthai et al. [
Alkaline extraction is the most common method for extracting protein from plant materials due to its simplicity and low cost. Phongthai et al. [58] studied the protein extraction from organic rice bran using alkaline extraction method which is shown in Figure 18. For alkaline extraction, DFRB was dispersed in distilled water (1:10, w/v), and the pH was adjusted to 10 using 3 M sodium carbonate. The mixture was stirred using a pilot-scale stirrer at a temperature of 50°C for 1 h. After centrifugation at 10,000 ×
Rice bran was extracted for protein by MAE using RSM, and a three-level three-factor Box-Behnken design was chosen to evaluate the effect of microwave power (X1), extraction time (X2), and solid-liquid ratio (X3) as shown in Figure 19 [62]. It was found that the optimal condition was 1000 W of microwave power, 90 s of extraction time, and a solid-liquid ratio of 0.89 g rice bran/10 mL of distilled water. The protein yield of MAE showed higher than that of ALK by about 1.54-fold [62]. The ratio of rice bran per water as 1:10 w/v and the temperature controlled at 40°C by a sensor inserted in a control vessel during 90 s of process time, generating a power range of 350–400 W, showed 11% yield and 75% protein content [68]. In the study of Bandyopadhyay et al. [69], the same ration of rice bran solution sample (100 mL) was simultaneously exposed at a frequency of 2450 MHz and operated at 800 W. The result showed that only 40 s of microwave treatment could give the protein recovery of 78.4% as against 28.9% after 1 min for conventional boiling.
Rice bran protein extraction by microwave-assisted extraction method. Source: Phongthai et al. [
Another alternative method like UAE was used by Phongthai et al. [63] to study the condition of sonication amplitude (X1, 50–90%), extraction time (X2, 10–30 min), and solid-liquid ratio (X3, 0.5–1.5 g RB/10 mL) for the extraction of protein, as depicted in Figure 20. The optimal condition for rice bran protein production was 76% sonication amplitude, 18 min extraction, and 0.99 g/10 mL solid-liquid ratio, which gave a protein yield of 4.73 ± 0.03%. It was found that the sonication amplitude and extraction time influenced a protein yield during UAE. The optimized UAE was a more effective method than alkaline extraction method [63]. The ratio of rice bran per water as 1:10 w/v showed 11.40% yield and 73.80% protein content when using UAE [68].
Rice barn protein extraction by ultrasonic-assisted extraction method. Source: Phongthai et al. [
Phongthai et al. [64] studied the single study of variables, including solid-liquid ratio (0.5–2 g DFRB/10 mL), extraction time (2 h), and enzyme concentration (5000 units) in rice bran protein extraction. The results showed that the use of solid-liquid ratio at 0.5:10 and 1.0:10 for rice bran protein extraction gave comparable protein recovery and protein yield, reaching maximum values of 12.06 and 2.78%, respectively (extraction time 3 h and enzyme concentration 2500 U). The protein recovery and protein yield increased to 14.20–14.75% and 3.28–3.35%, respectively, when the extraction time extended to 4–5 h. These values increased as the concentration of enzymes increased. Protein recovery and protein yield reached the maximum values of 16.69 ± 0.58% and 3.70 ± 0.12%, respectively, when 10,000 U of enzyme was used [64]. The yield of RBPC prepared by alkaline extraction followed by acidic precipitation is 10.2%, which is further increased to 14.5 and 22.4% by papain- and Viscozyme-assisted extraction, respectively [69].
Gluten-free-based products have been studied for several years especially for quality improvement by enriching with proteins. Besides, the allergenic character of common protein source like egg albumin is a limitation factor. Phongthai et al. [58] studied the replacement of egg albumin with rice bran protein concentrate which is a nonallergy protein in order to improve the quality of GF bread. The obtained RBPC was composed of 68.07% protein (dry basis) preparation from alkaline-acid extraction technique. The summary of GF breads enriched with different levels of egg albumin and RBPC is depicted in Figure 21. The addition of RBPC had strongly influenced the rheological properties, especially elastic modulus (G′) of GF batters during oscillation and the relative elasticity of final GF breads. Breads enriched with 2% RBPC and a combination of 1% egg albumin and 1% RBPC had the highest specific volume. The properties of GF bread was improved in terms of specific volume, pore size and uniformity, gas retention, and shelf life by addition of 2% RBPC [58].
GF breads enriched with different levels of egg albumin and RBPC preparation. Source: Phongthai et al. [
For sensory evaluation and attributes, GF bread was determined by those attributes compared with the control bread as shown in Figure 22. High improvements in terms of appearance, color, smell, and overall liking were observed by 2% RBPC enrichment. In addition, the texture of GF breads (2% RBPC) was extremely accepted by panels, which is related to the firmness and relative elasticity values of 15.00 N and 54.11%, respectively. Taste was not significantly different between the breads containing egg albumin or RBPC. It was clearly seen that the addition of 2% RBPC displayed an important anti-staling effect in GF bread. The GF bread containing 1% RBPC and 1% egg albumin had an intermediate staling rate during storage, indicating a slower rate for development of crumb hardness than GF breads enriched with 2% egg albumin and the control recipe. Additionally, crumb porosity and sensory attributes were improved. RBPC also showed higher efficacy to inhibit bread staling than egg albumin. From this study suggested that RBPC could be used as a protein source as well as extending its shelf life for GF bread [58].
Gluten-free breads enriched with different levels of egg albumin and RBPC and sensory evaluation attributes of GF breads. Source: Phongthai et al. [
Since manufacturers have long complained about gluten-free pasta for its apparent low cooking properties and reduced nutritional value, Phongthai et al. proposed to develop a multi-sourced protein-enriched gluten-free pasta [68] as depicted in Figure 23. RBPC is one of the alternative protein sources used in this study. Egg albumen (EB), whey protein concentrates (WP), and soy protein concentrates (SPC) were all enriched into rice flour-based gluten-free pasta in order to test their level of enhancement of cooking properties. In uncooked pasta, the RBPC-enriched pasta contained a soluble protein with a protein solubility of 22.9–27.59 mg/g sample when compared with that of WB 40.77–50.28 mg/g sample, EB (28.40–36.77 mg/g sample), and SP (16.56–21.18 mg/g sample), respectively. However, rice bran protein did not provide satisfied quality of gluten-free pasta. Obviously, RBPC influenced the highest solid loss, which was more than 7.5%. This may be because RBPC is comprised of 6.91% fiber, which would be responsible for weakening the starch network, thereby increasing cooking loss. Besides, the addition of RBPC had a great impact on color parameters as shown in Figure 23, possibly because RBPC was obviously darker than the other protein sources. Egg albumen manifested the greatest potential for improving gluten-free pasta as it gave a short cooking time, a low cooking loss, and a firm texture.
Characteristic of uncooked gluten-free pasta and scanning electron microscopy images of rice flour-based gluten-free pasta enriched with 6 and 9% of egg albumen (EB), rice bran protein concentrates, soy protein concentrates, and whey protein concentrates. Source: Phongthai et al. [
Rice bran protein can be utilized by the production of rice bran protein hydrolysate (RBPH) by enzymatic techniques.The protein hydrolysates can be subjected to isolation and characterization for study possibility to be functional ingredient that benefits for human health. In the study of Phongthai et al. [64], RBPC that produced from alkaline extraction was used as raw material for rice bran protein hydrolysate production, and the hydrolysate was further fractionated by membrane ultrafiltration (UF, F1: molecular weight (MW) <3 kDa, F2: MW 3–5 kDa, and F3: MW 5–10 kDa) was used to fractionation of the hydrolysate [64]. Both RBPC and RBPH were digested by pepsin, and the combination of pepsin and trypsin under in vitro gastrointestinal digestion was investigated for its free amino acids (FAAs). The digestion affected the FAA content in each sample by RBPH had the highest FAAs content (34.44 mg/g) when compared with RBPC (22.40 mg/g) and pepsin-hydrolysates (27.07 mg/g). For antioxidant properties, it was found that the digestion by pepsin and pepsin-trypsin increased the DPPH radical scavenging activity of RBPC by about 3.1–4.9-fold. The digestion by pepsin and pepsin-trypsin could simulate the metal chelating efficacy of RBPC by about 2.17–2.21-fold. UF had a positive effect with DPPH and ABTS but negative effect on the reducing activity of peptide fractions. However, the UF fractions and the RBPH with MW between 3 and 5 kDa showed outstanding activity to chelate. The majority of peptides with
Rice bran protein hydrolysates at different degrees of hydrolysis (DH) (5.04, 10.37, and 15.04%) were obtained from RBPC from MAE and produced by Alcalase. The molecular weight (MW) of the rice bran protein concentrate and the PHs ranged between <11 and 100 kDa [62]. In addition, another RBPH was obtained from RBPC from UAE and further hydrolysis by Neutrase 0.8L and Subtilisin A [63]. The degree of hydrolysis for the rice bran protein by Subtilisin A, Actinase E, and Neutrase 0.8L was 20.03, 13.84, and 5.54%, respectively. The MWs of the isolated proteins ranged between <11 and 75 kDa. The RBPH exhibited greater scavenging activity on DPPH radical and ACE-inhibitory activity. The RBPH obtained by using Subtilisin A was efficient in reducing power and metal chelating activities. From these studies, it was found that that the partial hydrolyzed rice bran protein is more suitable for application in food systems rather than the non-hydrolyzed form [63].
IntechOpen’s team of Scientific Advisors supports the publishing team by providing editorial and academic input and ensuring the highest quality output of free peer-reviewed articles. The Boards consist of independent external collaborators who assist us on a voluntary basis. Their input includes advising on new topics within their field, proposing potential expert collaborators and reviewing book publishing proposals if required. Board members are experts who cover major STEM and HSS fields. All are trusted IntechOpen collaborators and Academic Editors, ensuring that the needs of the scientific community are met.
",metaTitle:"STM Publishing and Free Peer Reviewed Articles | IntechOpen",metaDescription:"IntechOpen’s scientific advisors support the STM publishing team by offering their editorial input, ensuring a consistent output of free peer reviewed articles.",metaKeywords:null,canonicalURL:"scientific-advisors",contentRaw:'[{"type":"htmlEditorComponent","content":"\\n"}]'},components:[{type:"htmlEditorComponent",content:'
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5828},{group:"region",caption:"Middle and South America",value:2,count:5288},{group:"region",caption:"Africa",value:3,count:1765},{group:"region",caption:"Asia",value:4,count:10557},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15951}],offset:12,limit:12,total:119464},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"ebgfFaeGuveeFgfcChcyvfu"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:29},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:4},{group:"topic",caption:"Chemistry",value:8,count:9},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:29},{group:"topic",caption:"Environmental Sciences",value:12,count:3},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:53},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:4},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5334},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9559",title:"Teamwork in Healthcare",subtitle:null,isOpenForSubmission:!1,hash:"0053c2ff8d9ec4cc4aab82acea46a41e",slug:"teamwork-in-healthcare",bookSignature:"Michael S. Firstenberg and Stanislaw P. Stawicki",coverURL:"https://cdn.intechopen.com/books/images_new/9559.jpg",editedByType:"Edited by",editors:[{id:"64343",title:null,name:"Michael S.",middleName:null,surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7016",title:"Cardiovascular Risk Factors in Pathology",subtitle:null,isOpenForSubmission:!1,hash:"7937d2c640c7515de372282c72ee5635",slug:"cardiovascular-risk-factors-in-pathology",bookSignature:"Alaeddin Abukabda, Maria Suciu and Minodora Andor",coverURL:"https://cdn.intechopen.com/books/images_new/7016.jpg",editedByType:"Edited by",editors:[{id:"307873",title:"Ph.D.",name:"Alaeddin",middleName:null,surname:"Abukabda",slug:"alaeddin-abukabda",fullName:"Alaeddin Abukabda"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9873",title:"Strategies of Sustainable Solid Waste Management",subtitle:null,isOpenForSubmission:!1,hash:"59b5ceeeedaf7449a30629923569388c",slug:"strategies-of-sustainable-solid-waste-management",bookSignature:"Hosam M. Saleh",coverURL:"https://cdn.intechopen.com/books/images_new/9873.jpg",editedByType:"Edited by",editors:[{id:"144691",title:"Prof.",name:"Hosam M.",middleName:"M.",surname:"Saleh",slug:"hosam-m.-saleh",fullName:"Hosam M. Saleh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9893",title:"Automation and Control",subtitle:null,isOpenForSubmission:!1,hash:"09ba24f6ac88af7f0aaff3029714ae48",slug:"automation-and-control",bookSignature:"Constantin Voloşencu, Serdar Küçük, José Guerrero and Oscar Valero",coverURL:"https://cdn.intechopen.com/books/images_new/9893.jpg",editedByType:"Edited by",editors:[{id:"1063",title:"Prof.",name:"Constantin",middleName:null,surname:"Volosencu",slug:"constantin-volosencu",fullName:"Constantin Volosencu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10405",title:"River Basin Management",subtitle:"Sustainability Issues and Planning Strategies",isOpenForSubmission:!1,hash:"5e5ddd0f2eda107ce19c4c06a55a8351",slug:"river-basin-management-sustainability-issues-and-planning-strategies",bookSignature:"José Simão Antunes Do Carmo",coverURL:"https://cdn.intechopen.com/books/images_new/10405.jpg",editedByType:"Edited by",editors:[{id:"67904",title:"Prof.",name:"José Simão",middleName:null,surname:"Antunes Do Carmo",slug:"jose-simao-antunes-do-carmo",fullName:"José Simão Antunes Do Carmo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"442",title:"Organizational Research",slug:"organizational-research",parent:{title:"Business Administration",slug:"business-management-and-economics-business-administration"},numberOfBooks:2,numberOfAuthorsAndEditors:25,numberOfWosCitations:48,numberOfCrossrefCitations:35,numberOfDimensionsCitations:71,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"organizational-research",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"1847",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",subtitle:null,isOpenForSubmission:!1,hash:"76ab953fe7ca1b6e89d7937d69842d5f",slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",bookSignature:"Asunción López-Varela",coverURL:"https://cdn.intechopen.com/books/images_new/1847.jpg",editedByType:"Edited by",editors:[{id:"302731",title:null,name:"Asun",middleName:null,surname:"López-Varela Azcárate",slug:"asun-lopez-varela-azcarate",fullName:"Asun López-Varela Azcárate"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3726",title:"Products and Services",subtitle:"from R&D to Final Solutions",isOpenForSubmission:!1,hash:"00f9ed3ad58c6e5d10c299d312242e7d",slug:"products-and-services--from-r-d-to-final-solutions",bookSignature:"Igor Fuerstner",coverURL:"https://cdn.intechopen.com/books/images_new/3726.jpg",editedByType:"Edited by",editors:[{id:"121454",title:"Prof.",name:"Igor",middleName:null,surname:"Fuerstner",slug:"igor-fuerstner",fullName:"Igor Fuerstner"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"12330",doi:"10.5772/10393",title:"Drilling Fluid Technology: Performances and Environmental Considerations",slug:"drilling-fluid-technology-performances-and-environmental-considerations",totalDownloads:33926,totalCrossrefCites:17,totalDimensionsCites:40,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Mohamed Khodja, Malika Khodja-Saber, Jean Paul Canselier, Nathalie Cohaut and Faïza Bergaya",authors:null},{id:"12326",doi:"10.5772/10389",title:"Process Capability and Six Sigma Methodology Including Fuzzy and Lean Approaches",slug:"process-capability-and-six-sigma-methodology-including-fuzzy-and-lean-approaches",totalDownloads:64e3,totalCrossrefCites:7,totalDimensionsCites:13,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Ozlem Senvar and Hakan Tozan",authors:null},{id:"12324",doi:"10.5772/10384",title:"Forecasting of Production Order Lead Time in Sme’s",slug:"forecasting-of-production-order-lead-time-in-sme-s",totalDownloads:4090,totalCrossrefCites:1,totalDimensionsCites:4,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Tomaž Berlec and Marko Starbek",authors:null}],mostDownloadedChaptersLast30Days:[{id:"12330",title:"Drilling Fluid Technology: Performances and Environmental Considerations",slug:"drilling-fluid-technology-performances-and-environmental-considerations",totalDownloads:33926,totalCrossrefCites:17,totalDimensionsCites:40,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Mohamed Khodja, Malika Khodja-Saber, Jean Paul Canselier, Nathalie Cohaut and Faïza Bergaya",authors:null},{id:"38286",title:"Applying Social Sciences Research for Public Benefit Using Knowledge Mobilization and Social Media",slug:"applying-social-sciences-research-for-public-benefit-using-knowledge-mobilization-and-social-media",totalDownloads:2253,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",fullTitle:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management"},signatures:"David J. Phipps, Krista E. Jensen and J. Gary Myers",authors:[{id:"113142",title:"Dr.",name:"David",middleName:null,surname:"Phipps",slug:"david-phipps",fullName:"David Phipps"},{id:"117588",title:"Ms.",name:"Krista",middleName:null,surname:"Jensen",slug:"krista-jensen",fullName:"Krista Jensen"},{id:"117589",title:"Mr.",name:"J. Gary",middleName:null,surname:"Myers",slug:"j.-gary-myers",fullName:"J. Gary Myers"}]},{id:"12326",title:"Process Capability and Six Sigma Methodology Including Fuzzy and Lean Approaches",slug:"process-capability-and-six-sigma-methodology-including-fuzzy-and-lean-approaches",totalDownloads:64e3,totalCrossrefCites:7,totalDimensionsCites:13,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Ozlem Senvar and Hakan Tozan",authors:null},{id:"38285",title:"Open-Source Tools for Data Mining in Social Science",slug:"open-source-tools-for-data-mining-in-social-science",totalDownloads:3724,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",fullTitle:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management"},signatures:"Paško Konjevoda and Nikola Štambuk",authors:[{id:"119511",title:"Dr.",name:"Nikola",middleName:null,surname:"Štambuk",slug:"nikola-stambuk",fullName:"Nikola Štambuk"},{id:"119512",title:"Dr.",name:"Paško",middleName:null,surname:"Konjevoda",slug:"pasko-konjevoda",fullName:"Paško Konjevoda"}]},{id:"38287",title:"Re-Visiting Ethnographic and Orthodox Research Methodologies: Field Research Experiences from an African Perspective",slug:"re-visiting-ethnographic-and-orthodox-research-methodologies-field-research-experiences-from-an-afri",totalDownloads:1280,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",fullTitle:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management"},signatures:"Oliver Mtapuri",authors:[{id:"117005",title:"Dr.",name:"Oliver",middleName:null,surname:"Mtapuri",slug:"oliver-mtapuri",fullName:"Oliver Mtapuri"}]},{id:"12319",title:"Law of Success or Failure in the High Tech Driven Market - 'Revenge of Success' in the Biotech, Nanotech, and ICT Industry",slug:"law-of-success-or-failure-in-the-high-tech-driven-market-and-bio-industry",totalDownloads:3221,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Makoto Takayama",authors:null},{id:"38278",title:"Social Research Methods in Higher Education: A Critical Analysis of Methodological Issues and Emerging Trends at the Zimbabwe Open University",slug:"social-research-methods-in-higher-education-a-critical-analysis-of-methodological-issues-and-emergin",totalDownloads:6329,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",fullTitle:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management"},signatures:"Caleb Kangai",authors:[{id:"116563",title:"Mr.",name:"Caleb",middleName:null,surname:"Kangai",slug:"caleb-kangai",fullName:"Caleb Kangai"}]},{id:"38288",title:"Social Physics: An Interdisciplinary Way to Explore the Mechanism of Public Opinion",slug:"social-physics-an-interdisciplinary-way-to-explore-the-mechanism-of-public-opinion",totalDownloads:1287,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",fullTitle:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management"},signatures:"Yijun Liu and Wenyuan Niu",authors:[{id:"95451",title:"Dr.",name:"Yijun",middleName:null,surname:"Liu",slug:"yijun-liu",fullName:"Yijun Liu"},{id:"139508",title:"Prof.",name:"Wenyuan",middleName:null,surname:"Niu",slug:"wenyuan-niu",fullName:"Wenyuan Niu"}]},{id:"38290",title:"Theoretical Approaches to Employment and Industrial Relations: A Comparison of Subsisting Orthodoxies",slug:"theoretical-approaches-to-employment-and-industrial-relations-a-comparison-of-subsisting-orthodoxies",totalDownloads:14576,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"theoretical-and-methodological-approaches-to-social-sciences-and-knowledge-management",title:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management",fullTitle:"Theoretical and Methodological Approaches to Social Sciences and Knowledge Management"},signatures:"Christopher Odogwu Chidi and Okwy Peter Okpala",authors:[{id:"116449",title:"Mr.",name:"Okwy",middleName:null,surname:"Okpala",slug:"okwy-okpala",fullName:"Okwy Okpala"},{id:"155386",title:"Dr.",name:"Christopher Odogwu",middleName:null,surname:"Chidi",slug:"christopher-odogwu-chidi",fullName:"Christopher Odogwu Chidi"}]},{id:"12318",title:"Large Scale Distributed Knowledge Infrastructures",slug:"large-scale-distributed-knowledge-infrastructures",totalDownloads:1787,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"products-and-services--from-r-d-to-final-solutions",title:"Products and Services",fullTitle:"Products and Services; from R&D to Final Solutions"},signatures:"Wojtek Sylwestrzak",authors:null}],onlineFirstChaptersFilter:{topicSlug:"organizational-research",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/artificial-neural-networks-methodological-advances-and-biomedical-applications/reputation-based-neural-network-combinations",hash:"",query:{},params:{book:"artificial-neural-networks-methodological-advances-and-biomedical-applications",chapter:"reputation-based-neural-network-combinations"},fullPath:"/books/artificial-neural-networks-methodological-advances-and-biomedical-applications/reputation-based-neural-network-combinations",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()