Recycled Low Density Polyethylene Features (LDPE)
\r\n\tIn order to understand the detailed content, these parameters are also divided into different classes such as inert, readily biodegradable, soluble COD, etc. However, still we do not possess detailed knowledge on organics in water sources or wastewater streams. Therefore, during the last decade, scientists tried to divide organics into different classes and understand their treatment potential and natural pathways. This book aims to fill out a very significant gap in this research field. Different treatment processes, monitoring and water determination chapters on dissolved organics, emerging organic pollutants, endocrine disruptors, emerging disinfection by-products, microplastic etc. in water or wastewater are welcome to this book project.
",isbn:null,printIsbn:"979-953-307-X-X",pdfIsbn:null,doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"358ff11fd43b59f3a36498ef0494189d",bookSignature:"Associate Prof. Taner Yonar",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/8934.jpg",keywords:"COD, BOD, TOC, treatment, toxicity, fire retardents, bioacumulaion, treatment, pesticides, hormones, sources of microplastics, effects on health",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"June 11th 2019",dateEndSecondStepPublish:"July 2nd 2019",dateEndThirdStepPublish:"August 31st 2019",dateEndFourthStepPublish:"November 19th 2019",dateEndFifthStepPublish:"January 18th 2020",remainingDaysToSecondStep:"2 years",secondStepPassed:!0,currentStepOfPublishingProcess:5,editedByType:null,kuFlag:!1,biosketch:null,coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"190012",title:"Associate Prof.",name:"Taner",middleName:null,surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar",profilePictureURL:"https://mts.intechopen.com/storage/users/190012/images/system/190012.png",biography:"Prof. Dr. Taner Yonar is a Professor of Uludag University, Engineering Faculty, Environmental Engineering Department. He has received his B.Sc. (1996) degree from the Environmental Engineering Department, Uludag University. He received his M.Sc. (1999) and Ph.D. (2005) degrees in Environmental Technology from Uludag University, Institute of Sciences. He did his post-doctoral research in the UK, at Newcastle University, Chemical Engineering and Advanced Materials Department (2011). He teaches graduate and undergraduate level courses in Environmental Engineering on water and wastewater treatment and advanced treatment technologies. He works on advanced oxidation, membrane processes, and electrochemical processes. He is the editor of three books (published by IntechOpen) and the author of over 80 research papers.",institutionString:"Uludağ University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Uludağ University",institutionURL:null,country:{name:"Turkey"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"270941",firstName:"Sandra",lastName:"Maljavac",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/270941/images/7824_n.jpg",email:"sandra.m@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"10026",title:"Electrodialysis",subtitle:null,isOpenForSubmission:!1,hash:"ffef55f8ffe48f096acaa5f6329ed76f",slug:"electrodialysis",bookSignature:"Taner Yonar",coverURL:"https://cdn.intechopen.com/books/images_new/10026.jpg",editedByType:"Edited by",editors:[{id:"190012",title:"Associate Prof.",name:"Taner",surname:"Yonar",slug:"taner-yonar",fullName:"Taner Yonar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"314",title:"Regenerative Medicine and Tissue Engineering",subtitle:"Cells and Biomaterials",isOpenForSubmission:!1,hash:"bb67e80e480c86bb8315458012d65686",slug:"regenerative-medicine-and-tissue-engineering-cells-and-biomaterials",bookSignature:"Daniel Eberli",coverURL:"https://cdn.intechopen.com/books/images_new/314.jpg",editedByType:"Edited by",editors:[{id:"6495",title:"Dr.",name:"Daniel",surname:"Eberli",slug:"daniel-eberli",fullName:"Daniel Eberli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"2270",title:"Fourier Transform",subtitle:"Materials Analysis",isOpenForSubmission:!1,hash:"5e094b066da527193e878e160b4772af",slug:"fourier-transform-materials-analysis",bookSignature:"Salih Mohammed Salih",coverURL:"https://cdn.intechopen.com/books/images_new/2270.jpg",editedByType:"Edited by",editors:[{id:"111691",title:"Dr.Ing.",name:"Salih",surname:"Salih",slug:"salih-salih",fullName:"Salih Salih"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"45416",title:"Landscape Engineering, Protecting Soil, and Runoff Storm Water",doi:"10.5772/55812",slug:"landscape-engineering-protecting-soil-and-runoff-storm-water",body:'Landscape engineering thinks about the application of mathematics and science to the creation of convenient outdoor living areas. These outdoor living areas are a consequence of the design and the construction process made feasible by landscape architects through landscape contractors. Beside landscape engineer’s interested in containing site grading and drainage, earthwork calculations, and watersheds [1,12,13].
Landscape engineers employ engineering knowledge when designing and building spaces. They demand to know how to interpret contour maps which shows elevations and surface configuration by means of contour line sand and also consider how to interpret 2-D images, compute angles and grading requirements for pavements, parking lots, bridges, roads and other structures. Beside they understand the amount of fill needed for specific areas and figure out how water runoff and flow should affect their designs.
Developing and improving for landscape engineering [1,3,13,14]
Stormwater management: building up bioswales, landscape materials used to gather and install runoff, rain gardens and porous asphalt.
Mitigation of the urban heat island effect: diminishing the quantity of paved surfaces, building up green roofs and green walls, and using building materials with low reflectivity.
Wildlife habitat: protecting habitat and building up green roofs and rain gardens.
Social spaces: areas for walking, biking, gathering and eating.
Transportation: growth expanding pedestrian accessibility, limiting vehicle speeds and encouraging the use of public transportation.
All above are using for the mixing plastic with asphalt on the pavement for the above reasons. One of them we are using porous plastic asphalt on the pavement for diminishing the sounds of road, and protecting the soil, and making runoff out the structure.
Porous plastic pavement which is a permeable pavement surface permits the action of storm water in order to infiltrate directly into the soil. It usually constructs with an underlying stone supply that temporarily stocks surface runoff before infiltrating into the subsoil. It takes the place of traditional pavement. There are various types of porous surfaces, including porous asphalt, permeable concrete and even grass or permeable pavers.
Porous plastic asphalt pavements suggest an alternative technology for stormwater management. It is varied from classical asphalt pavement designs so that the structure enables fluids to come frankly through it, decreasing or monitoring the amount of run-off from the surrounding area. By permitting precipitation and run-off to running out the structure, this pavement kind functions as an additional stormwater management technique. The mainly benefits of porous plastic asphalt pavements should contain both environmental and safety benefits including improved stormwater management, improved skid resistance, decreasing of spray to drivers and pedestrians, as well as a potential for noise decreasing. Porous plastic asphalt is applicable to many uses, including parking lots, driveways, sidewalks, bike paths, playgrounds and recreational courts. In addition, with proper maintenance, including regular vacuuming or pressure washing of the pavement surface to prevent clogging by sediments, porous asphalt can have a minimum service life of twenty years [15,16,17,18].
Bitumen is a valuable binder for road construction. Different grades of bitumen which is 30/40, 60/70 and 80/100 are available on the basis of their penetration values. The steady growth in high traffic intensity in terms of commercial vehicles, and the important variation in daily and weather temperature demand developed road characteristics.
Nowadays the waste plastics are to exist tremendous, as the plastic elements have been piece of daily life for using. They either blended with Municipal Solid Waste and/or dispose of landfill. If not recycled, their present disposal is either by land filling that the method has certain impact on the environment. Because of that an alternate use for the waste plastics is also the needed.
Thinner polythene carry bags are most adequately disposed of wastes, which do not draw attention the attending rag pickers to accumulate for forward recycling, for lesser value. These polythene bags are simply suitable with bitumen at specified conditions. The waste polymer bitumen mix may be prepared and a study of the properties can throw more light on their use for road laying.
Permeable pavements have been sufficient in behalf of environmental problems and corroborating sustainable green construction procedures. They are planned to support surfaces for parking lots and pedestrian roads that will permit some of the precipitation to filter into the ground, decreasing the bulk of stormwater runoff and revitalizing groundwater [15,16,17]. Permeable porous asphalt and concrete are the most ordinarily used elements in permeable pavements. Permeable asphalt uses practically the similar elements as conventional asphalt, order than the percent range of plastic added, and the size of the aggregate is used to stay thin, permitting for minimum particle packing [16,17]. Permeable asphalt and concrete has been successfully implemented for road, retaining walls, streets, driveways, sidewalks, parking lots, and slope protection for the past 30 years in many countries, including the United States [17]. None of any researchers, to the authors’ knowledge, have inquired for mixing permeable plastic asphalt so far that implement plastic waste as a binder bonder for permeable pavements. This study presents an alternative sustainable technology, familiar as permeable plastic asphalt, which should be implemented for permeable pavements. Permeable plastic asphalt material is produced from plastic waste, porous aggregates, and asphalt. The research evaluated the mechanical and hydraulic characteristics of permeable plastic asphalt.
An asphaltic paving material involves 4%, 5% and 6% percent, of granular recycled plastic (LDPE with 1%, 3%, and 6%), which supplements the porous aggregate component (aggregate size of 3/8, 4, 8, 16) of the mixture. The material produces a structurally superior paving material and longer lived roadbed. The plastic can contain any and all residual classes of recyclable plastic. The material produces roadbeds of higher strength with less total asphalt thickness and having greater water permeability, and is most useful for all layers below the surface layer. A process of shredding or mechanically granulating preferably forms the paving product.
A porous plastic asphalt pavement has benefit for using road users and road side environments such as decreasing road noise, developing drainage function, and driving security situation. Furthermore, the worth of porous asphalt is to support skid resistance, particularly in the wet weather, that is distinctly better than that of dense traditional asphalt [19].
Conventional asphalt was not usually acceptable in the high temperature, humid, and traffic. As a result that some of issues were occurred like the pores were clogged, strength of drainage, rutting and scattering came off by traffic loading [20]. Large percentage of air voids of the mixture is adopted in order to maintain the drainage function. Nevertheless, in the way that the proportions of air void grow, strength feature of the mixture diminish. This is the main theorem of asphalt mixture. For solving this, landscape engineers think about the plastic for design and planning as binder.
The aim of this research is to assess strength, which means the performances of porous asphalt mixtures, for testing Resilient Modulus to find Indirect Tensile Strength (ITS). Furthermore, it measures the durability of porous asphalt mixture using Marshall Immersion test.
It is the aim of this chapter (book) to outline the elementary essential parts fundamentals associate with the design, plan, and construct of pavements and to mix with plastic techniques that will allow a Landscape Engineer to plan and design a pavement to suit a variety of situations. After experiments next books chapters will be considered to help environment and nature same as protect soil and recycling. Next study will keep going to research the better experiments about permeable surfaces for using different plastic materials. As a result it gains economic, environmental, and practical design and plan for Landscape Engineering.
Landscape Engineering defined that is the art of developing land for people use and entertainment in such a manner as to obtain the utmost utility including with the utmost of beauty. It is a mistake to take into consideration the subject as implicated mainly with planting trees or to visualize its main function to be the supply of some decorative camouflage for some unsightly utility. Conversely, it has to be comprehended as a most important fundamental to life, and all art, which no utility would be necessary camouflage, and that every kind of artistic proceedings, instead of being without deep, has to be natural structural. Landscape engineering verifies the fundamental utilities, not as a necessary bad, but as necessarily well. In lieu of these utilities existing in the way of the objects, which the landscape engineer is succeed in doing, they turn out a most sufficient part of her/his own initiative. Apparently, once this point of view is admitted the Landscape Engineer and the others are definitely suiting for the same thing. Landscape Engineering impresses the main ideas, concepts, and techniques that cope with the functional, visual, and ecological perspectives of grading and landform cultivation. Landscape Engineering points out introduction to the processes, principles, and techniques of site engineering [1,3,13,21,22,23].
Students who pursue to study their career in Landscape Engineering programs learn about Landscape Design and Planning, Transportation Plan, Structural Landscape Design, Urban Planning, Site Planning, Ecological Design, Environmental Design, and Horticulture. Essential aims of all of subjects in Landscape Engineering pay attention to cover sustainability, and eco-friendly landscaping processes. They usually not only study with their specific area of studies like sustainable urbanism, environmental hazard management, historic preservation, ecological design but also focus in land development along with construction management, or a compound of land development and architecture [2,14].
Landscape engineer is that construction is the first step after designing and planning. Landscape engineer have to be continually consider to reach suitable adjustments between the operating cost, the construction cost, and the maintenance cost. For only during the construction period can the required savings be influenced at a minimum of expense. Landscape engineer think about completed without mention of subgrade conditions or specifications on material and method of placing while designing and planning pavement, parking lot, etc. Drains are often paid attention as releases for storm water during the catch basins although the drain is laid to accumulate the soil. With new experiment in planning is the topographical survey, usually worked out with care and precision during considers drain and protects soil.
Landscape engineer has to keep in mind when planning the pavement that it is a business proposition as well as a picture designing and planning. That the Landscape planned with an eye to operation and maintenance cost must in time, have the better financial situation to protect appearance. Meanwhile design and plans are begun; we have to never forget that budget is a factor in maintenance, whether the project is considered on the constant care principle. The complete design of the pavement is that while every element of pavement construction must be considered from the point of view of beauty and aesthetic value, the weight of construction, operation and maintenance must be found and recognized at the time of beginning [3,22].
A Landscape Engineer conducts and takes advantage of the strengths of nature for the benefit and satisfaction of man. For instance, if you were designing and planning a new landscape for your property and wanted to direct the winds to preserve your amusing areas, a Landscape Engineer would help you make a determination which trees to get and where to plant them; thus, the wind could avoid your patio or courtyard. Landscape engineering involves with the application of mathematics and science to the constitution of practical outdoor living areas. These areas are a conclusion of the design and the construction process made possible by landscape architects, along with landscape contractors. Other main contemplates of landscape engineer’s include drainage and site grading, watersheds and earthwork calculations. It is the Landscape engineer’s act to vigorously interest in the design of the landscape, hence, to significantly supervise the creation of the landscape design. Landscape engineering exemplifies the traditional engineering elements of planning, operation, management, design and construction, and assessment. Before planning and designing, Landscape engineer should consider three main areas that focus on [4,5,24]:
Landscape plan and design that Landscape Engineers interest planning the individual landforms so that they go along with the objectives arrange in the termination design phase. It is necessity that the Landscape engineer confers with the rest of the architectural team for carrying out a sufficient visual result once the construction process is finished.
Termination design and plan that it implies setting targets as well as supporting the Landscape design of the project at hand. Landscape engineers who works very closely with the contractors and sub-contractors does for working with Landscape designers as well as the owner of a home or property for deciding what the desired look is considered together and the essential steps to be taken in order to success it.
Functioning assessment that the reason of performance evolution of the Landscape engineer results in estimating liability and financial assurance of the landscape design and plan project. Thus, performance evaluation is vital to both the closure planning progress and performance evaluation.
As we preserve air and water, which we use for breathing and drink, the soil is very important as well. The quality of soil takes care of ecosystems. Soil quality, which would be linked to water quality, is a measure of soil productivity. As a determination soil quality which particularly, the bulk of soil to operate within ecosystem borders to endure keep up environmental quality, biological productivity, and support plant and animal health [25,26,27].
Soil structure and water infiltration is very important for soil quality as well as aim attention at characteristics like organic matter content overall soil biological activity, nutrient availability, and total organic matter levels [25,27]. Soil can be protected from erosion, landslide, and compaction by mixing plastic materials. Soil conveys very easy underground by water. Soil, which is ancient, rock broken into sand, silt and clay is the recycled and continuously transforming.
The one of ways for protect and sustainably improve of soils is mixed cover pavement with plastic materials for prevent erosions of soil. Soil tests should be recommended for mixing with compaction plastic. It is evaluated compliance with hydrologic characteristics like drainage from plastic compaction.
Stormwater runoff comes off while precipitations from rain or snowmelt infiltrate the ground. Impermeable surfaces like pavement, driveways, parking lots, sidewalks, and streets restrain stormwater runoff from naturally permeate into the ground.
For understanding the impact of stormwater runoff firstly need to consider how important water cycles through the urban environment. The bulks of precipitation infiltrate forests flows slowly underground, are infiltrated in by natural progress, and eventually arrive at lakes, streams while is being its natural. When we design and plan to compress the land with roads, parking lots, and buildings, the natural progress of water infiltrate in the earth is diminished. The existing grasslands and forests are put in place of concrete, roofs, and asphalt that do not permit rain to infiltrate the earth. Rather than, the precipitations soak through as faster as directly into streams, storm drains, and all without the profit of filtration. Designing, planning and constructing with mixing plastic material help to infiltrate water on the driveway, parking lots, pavement in place of concrete or asphalt. Thus, they permit stormwater to quickly drain into the ground [28,29,30].
Stormwater is water that directly results from a rainfall event is not absorbed into soil and rapidly flows downstream, increasing the level of waterways. The flow of water results from precipitation and that occurs immediately following rainfall or as a result of snowmelt. Stormwater is the portion of rainfall that does not infiltrate into the soil. Rainwater and snowmelt that runs off impermeable surfaces rather than infiltrate into the soil through a drainage system of underground pipes, stormwater carries nutrients, fine soils, plant debris, drippings from vehicles, and other substances from the drainage basin most of lakes, ponds, and wetlands are connected to the stormwater system. Water collected in a system of pipes which drain roads and industrial or trade premises Stormwater may contain contaminants present on drained surfaces.
Stormwater is concerning about two issues that are the volume and timing of runoff water and prospective polluting. Stormwater is needed to flood control and water supplies. Also stormwater lead to be water pollution for conveying the water. As a stromwater, watermanagement on the pavements should probably do urban environments self-sustaining in terms of water. Stormwater is pollution because impermeable surfaces like parking lots, roads, buildings, compacted soil do not enable rain to drain into the ground. More runoff is constituted than in the unprogressive condition. Thus, it should consume waterways like flooding after stormwater collection system is overwhelmed by the additional flow. So the water is out of watershed way through little drainage the soil, the storm event [31,32].
Stormwater is a problem so that it could collect chemicals waste, mud, dirt, and other pollutants and infiltrate in the storm sewer system or directly to a river, lake, coastal water, stream, or wetland. Anything, which inserts a storm sewer system, is released untilled into the waterbodies we run for fishing, swimming, and supplying drinking water.
The results of pollution of stormwater runoff could have many unfavorable effects on animals, plants, people, and fish. Sediment that could blur the water and make it complicated or unimaginable for aquatic plants to grown could demolish aquatic habitats. The pollution of stormwater usually influences drinking water sources, which could transform to imitate human health and grow drinking water treatment costs.
The solution of pollution of stormwater that is permeable pavement consists of mixing plastic. Traditional concrete and asphalt don\'t tolerate water to infiltrate into the ground. Rather than these surfaces depend on storm drains to switch unwanted water, Permeable pavement systems permit rain and snowmelt to saturate with, diminishing stormwater runoff [28,32]. Stormwater runoff is without filtered water that arrives at oceans, streams, and lakes by means of streaming on impermeable surfaces that contain driveways, parking lots, roads, and roofs.
Impermeable pavement in a watershed occurs in growth permeable runoff. The barely 10 percent impermeable pavement in a watershed would occur in stream decline.
Stormwater is pollution so that impermeable surfaces like parking lots, compacted soil, roads, buildings, do not permit rain to flows off from the land in the streams, further runoff is caused to be than in the immature condition [28,31].
This further runoff would spoil streams and rivers as well as bring about flooding after the stormwater system is overflow by the extra flow so that the water is reveled out of the watershed through the storm event, barely drains the soil, fills groundwater, or stocks stream baseflow in dry weather. Contaminant inserting surface waters during rain that is lead to contaminate runoff. Daily people activities appear in sediment of pollutants on parking lots, farm fields, driveways, roads, lawns, roofs. As soon as precipitation begins, water flow off and eventually makes its way to a lake, ocean, and river.
A traditional city block creates more than five times more runoff than the forest because of impermeable pavement. The waste of penetration from city may come out with depth groundwater changes [28,31,32].
The present drainage systems, which accumulate runoff from impermeable surfaces like roads, parking lots, roofs insure that water is effectively transported to ways of water during pipes. As a matter affects little storms water occur in growth ways of water flows. Stomwater lead to some of issue that shows below.
Impermeable Pavement
Roads, sidewalks, rooftops, overly compacted soils
Do not allow for natural infiltration of stormwater
Increase temperatures (Heat Island Effect)
Degradation of water quality and natural habitats
Flooding, erosion and may reduce groundwater levels
The simplest way for a user to label the class of plastic used in a product is to recognize the resin identification code, which is familiar with the material container code as well, is generally plotted, shaped or symbolized in or close to the middle of the bottom of the product. In accordance with the society of the plastics industry (SPI) resin identification code (or material code) is to systematize mutual plastic resins and their characteristics.
The identification of plastics made known in 1988 by The Society of the Plastics Industry Trade Association (SPI) that provides to build the companies for easy recycles make collect the consumer plastics during the common pathways for coming together recyclable stuffs from household waste. It is based on willing for plastic manufacturers, however, it has evolved into comparatively standard on plastic products sold in the U.S. and internationally. For example, the identification of plastics is in service and is affirmed by the Canadian Plastics Industry Association (CPIA) in Canada. It supports specifics on the identification by mean of its Environment, health and safety strategic unit and its Environment and Plastics Industry Council (EPIC) [7,33,34].
The aim of the identification provides to make it simpler for recycling to plastics. Furthermore, it determines consumers with an easy, handy method for identifying the class of plastic resin used to create a specific product. In conformity with SPI identifications, the number is intentionally located in an unnoticeable place on the product so that the company purpose is not to affect the consumer\'s buying determination, barely to assist the progress of recycling of the product.
According to SPI, there are seven different classes of plastics. Showing Figure 1, the identification numbers imprint on the bottom of plastic products that is a number inside of triangle represents to mean their identifications for recycling. Have you ever been curious about what the numbers inside the little recycling symbol mean on all of the plastic packaging and plastic products which we consume for using?
According to SPI the identification in 1988 reciprocates to the consider revising of the plenty recyclers side to side the countries. Here each class of plastics number and definition [7].
PETE, PET (Polyethylene Terephthalate) is clarity, strength or toughness, barrier to gas and moisture, resistance to heat. It uses for consuming plastic soft drink and water bottles, beer bottles, mouthwash bottles, peanut butter and salad dressing containers, oven able film, oven able pre-prepared food trays.
Samples of identification on the bottom of plastic water bottles
HDPE (High Density Polyethylene) is stiffness, strength or toughness, resistance to chemicals and moisture, permeability to gas, ease of processing, and ease of forming. It uses to make plenty classes of bottles. The bottles are clear, have good limit qualities and stiffness, and are quite appropriated to packaging products with a short shelf life like milk so that HDPE has good chemical resistance; it is used for packaging many household and industrial chemicals such as detergents and bleach. It uses milk, water, juice, cosmetic, shampoo, dish and laundry detergent bottles; trash and retail bags, yogurt and margarine tubs, cereal box liners.
V, PVC (Vinyl, Polyvinyl Chloride) is versatility, ease of blending, strength or toughness, resistance to grease or oil, resistance to chemicals, clarity. It has well chemical resistance, weather ability, flow typical features and constant electrical qualities. Products made from Vinyl can be both flexible and rigid. It uses toys, clear food and non-food packaging, shampoo bottles, medical tubing, wire and cable insulation, film and sheet; construction products such as pipes, fittings, siding, flooring, carpet backing, window frames.
LDPE (Low-Density Polyethylene) is ease of processing, barrier to moisture, strength or toughness, flexibility, ease of sealing. It is used efficaciously in film uses because of its flexibility toughness, and approximate transparency, making it familiar for use in uses that heat sealing is essential. Furthermore, LDPE uses to procedure some flexible lids and bottles as well as in wire and cable uses. It uses squeezable bottles (honey, mustard), coatings for paper milk cartons and hot and cold beverage cups, container lids, toys, dry cleaning, bread, and frozen food bags.
PP (Polypropylene) is strength or toughness, resistance to chemicals, resistance to heat, barrier to moisture, versatility, and resistance to grease or oil. It has good chemical resistance, is strong, and has a high melting point making it well for hot-fill liquids. This resin is brought to light in rigid and flexible packaging, fibers, and large pattern parts for automotive and consumer products. It uses containers for yogurt, margarine, takeout meals and deli foods, medicine bottles, bottle caps and bottles for ketchup. Furthermore, for packaging, its plenty of uses are in fibers, appliances and consumer products, containing strong applications like automotive and carpeting.
PS (Polystyrene) is versatility, insulation, and clarity, easily foamed as known “styrofoam”. It is clear, hard and brittle. Also, it has an approximately low melting point. General uses contain protective packaging, food packaging, bottles, and food containers. It is usually connected with rubber to make high impact polystyrene (HIPS) that is used for packaging and constant uses necessity stiffness. It uses compact disc cases, food- service applications, grocery store meat trays, egg cartons, aspirin bottles, cups, plates, and cutlery.
Other is dependent on resin or combination of resins. Use of this number represents which a package is made with a plastic other than the six listed above, or is made of more than one plastic and used in a multi-layer combination. It uses usually shows the exits of polycarbonate which a hard, clear plastic used to make baby bottles, water pitchers, nalgene brand water bottles, three and five-gallon reusable water bottles, food containers, some citrus juice and ketchup bottles, compact discs, cell phones, automobile parts, computers, three and five-gallon reusable water bottles, some citrus juice and catsup bottles, oven-baking bags, barrier layers and custom packaging.
The area of pavement design is vigorous in which ideas are steadily changing as new data evolve into achievable. For mixing plastic pavement that are many majority of design and plan applicable, since alternatives relating to sustainability, suitability of designs and plans alter from area to area. Especially, supplies that are applicable for construction and foundation of pavements have a higher impress on design and plan. There are, nevertheless, fundamentals of design that are mutual to all problems irrespective of other uncontrollable situation [35,36,37,38,39].
The plan and design of pavement embrace with a work of soils and paving materials, their action under load, and the plan and design of pavement to convey which load under all hydraulic and weather situations. All pavements obtain their eventual support from the underlying subgrade. As a result, a comprehension of elementary plastic materials, pavement design and soil mechanics is necessary. Landscape Engineers are familiar that efficiency of pavement that are connected to a large volume upon the types of plastic, soils over that the pavement is designed and constructed, therefore, in relationships pavement efficiency between subgrade types are built. On the whole, the experiments of mixing plastic pavement demonstrated that pavement designed and constructed over plastic displayed higher degrees of distress than those designed and implemented over traditional pavement. Frost process and unfavorable drainage situations were observed early as two of the primary reasons of pavement lapse.
However, many landscape engineers are made use of standard cross components for most pavements. It means that a road, even though it crossed several mixing plastic and soil types, was designed and implemented using a constant thickness. The foreseeing was usually confirmed on the rest of economics. Beginning of 1980s, people recognized that the traditional pavement affects the environment and nature. All of thriving technological elements such as cars, bike for becoming a simple life causes to influence the pavements lapse [40,41,42,43].
AASHTO have been in charge for various tests, which roads designed and implemented in United States as well as some of state highway departments have implemented test pavements for the aim of assessment the influence of load and elements on pavement design.
There is a small suspicion that the outcomes of test results have had extreme effect on current design ideas. Furthermore, efficiency of example pavements in service has had important effect on design. This is not shocking, if one thinks that it is hard to do if not unreasonable to judge entirely design ideas in the laboratory. In addition, it has been familiar with for quite a while that reader belief in the final analysis imposes the competency in some of the design.
Basically, with regard to history of pavements have been classified two main types which are flexible and rigid. Flexible pavements comprise asphalt. Nowadays flexible pavement is very important with mixing plastic so that makes permeable areas.
Plan, design, and construction of permeable pavements have altered rather importantly in the last decades. On account of the current traditional plan, design, and construction pavements come up severe higher traffic levels, wheel loads, pavement lapse. A growth use of balanced is base and subbase. Balancers such as asphalt, plastic are repeatedly used to grow the structural strength of the pavement by growth rigorously. Because of the reason an extremely concentrated effort was made in the last several years to develop a more fundamentally based design analysis for asphalt.
Some of researchers assessed the impact of moisture susceptibility on porous asphalt samples [44]. Samples were based on wet and dry conditions and then tested for indirect tensile strength test (ITS). Results showed that ITS decreased noticeably when the sample was immersed in water.
The aims of the study are need to do those. First of all; Disposal of waste plastic is a major problem, non-biodegradable, burning of these waste plastic bags causes environmental pollution. Secondly need is it mainly consists of low-density polyethylene, and to find its utility in bituminous mixes for road construction. Thirdly, Laboratory performance studies were conducted on bituminous mixes. Laboratory studies proved that waste plastic enhances the property of the mix, and improvement in properties of bituminous mix provides the solution for disposal in a useful way.
Waste plastics like polythene carry bags, etc. on heating usually at approximately 160°C. According to thermo gravimetric results has demonstrated that gas evolution isn’t found during the temperature rank of 130 to 180°C. Furthermore the mellowed plastics have a binding feature. Therefore, the melted plastics can be implemented as a binder that they should be blended with binder like bitumen to improve their binding feature. As a result it should be a good modifier for the bitumen, implemented for road construction.
The growth of plastic city wastes has affected to wide and creative technologies that incorporate recycled plastics in miscellaneous uses. Scientists and Departments of Transportation have been interested in different researches regarding to the feasibility, economic and ecological impact and the complete efficiency of recycled plastic in connected landscape engineering projects. For instance, recycled thermoplastics like PET, HDPE, and LDPE, have been implemented in porous asphalt mixtures to put in place of aggregates with specified diameters [45,46,47,48,49,50]. Conclusion from these researches demonstrated improvement in strength, durability, and fatigue life. Nevertheless, the scale of improvement is a capacity of the plastic types and amount. The rest of researchers implemented recycled plastic strips to mechanically stabilize and aggregates by mixing plastic shreds with aggregates to compaction to defeat inadequacies in grading and diminishing the plasticity index [51,52,53]. The scale of enhancement was affected by many factors like the class and volume of shreds, and aggregate classes. Furthermore, creative and innovative study has cause to the development of new mixed elements using recycled plastic waste for miscellaneous uses. The mixed is produced by heating and blending the absorption elements, recycled plastic, which flakes, shared, or unprocessed, granulates and by products to a highlighted temperature. The heated combination is then compacted into a particular mold to found a final product. The features of the mixed rely on the pressure, class of recycled plastic and granulates [54,55,56].
The supplier for Recycled Low Density Polyethylene (LDPE) provided the test properties of the material with respect to density, tensile strength at break, elongation at break, impact strength, and melting point of the material as shown below Table 1 [8,10]. Recycled low-density polyethylene (LDPE), which is identification number four, was gathered together and implemented in this research. The cleaned LDPE has shredded as shown below Figure 2.
Recycled Low-density polyethylene (LDPE) material is used extensively to produce tote bags for domestic goods. These bags become solid waste after their use for short periods and cause serious waste disposal problems. To solve this environmental problem, and at the same time to improve the drain down and other related engineering properties of the porous asphalt mixture, reclaimed from LDPE bags was used in this investigation as additive in porous asphalt mixtures. LDPE material in shredded of used is as added ingredient.
Yield Strength | 15-20 MPa |
Elongation @ break | 600-650 % |
Bending Strength | 10-40 MPa |
Young’s modulus (E) | 200-400 MPa |
Shear modulus | 100-350 MPa |
Tensile Strength (σt) | 8-12 MPa |
Density | 910-928 kg/m3 |
Thermal expansion | 150-200 e-6/K |
Water absorption | 0.005-0.015 % |
Melting Point | 248 oF 120 oC |
Thermal conductivity | 0.3-0.335 W/m.K |
Melting temperature | 125-136 oC |
Maximum Temperature | 176 oF 80 oC |
Minimum Temperature | 58 oF 50 oC |
Specific heat (c) | 1800-3400 J/kg.K |
Recycled Low Density Polyethylene Features (LDPE)
Shredded for recycled Low Density Polyethylene (LDPE)
Crushed limestone was chosen as the course aggregate for mixing LDPE. Bulk samples were sieved in conformity with the sieve sizes for AASHTO No. 8. According to Figure 3 demonstrates the gradation for aggregates that Porous aggregates confirming to the sizes 3/8 in., Nos. 4, 8, 16 (AASHTO No 8) were used for mixing with permeable plastic asphalt. Aggregates maintained on each sieve were washed, dried for 24 hours in 110oC in the oven and then located into their respective batches by sieve maintained. This procedure provided regenerate samples to meet AASHTO No. 8. Furthermore, it made to be better control over the gradation of each sample, so that gradation has important impact on the engineering and physical features of an aggregate mixed.
Grain size distribution of AASHTO No. 8
“PG 68-22” was used in the porous asphalt mixture [9]. Bitumen was mixed with Low-density polyethylene (LDPE) and porous aggregates. Mixes were prepared for three (4%, 5%, and 6% bitumen) percentages of bitumen. Each % of bitumen has 1%, 3%, and 6% LDPE. Obviously, four types of mixtures with three different percent of bitumen of 4%, 5% and 6% were used at a mixing and compacting temperature of 160oC. These are: Without LDPE, 1% LDPE, with 3% LDPE, and with 6% LDPE.
The aggregate mix is heated to 1600C in oven, and similarly the bitumen is to be heated up to a maximum of 1600C. Plastic waste is shredding for mixing bitumen and aggregate to coat the plastics effectively. After that, put them in oven 1600C in order to mix and compact simultaneously. For protecting the moisture the spacemen, it compacted immediately after took out oven with approximately 1600C.
Use of the processed plastic bags is as an additive in bituminous concrete mixes. The processed plastic was used as an additive with heated bitumen in different proportions (ranging from 4 to 6 % by weight of bitumen) and mixed well by hand, to obtain the modified bitumen. The properties of the modified bitumen were compared with ordinary bitumen.
Varying percentages of waste plastic by weight of bitumen was added into the heated aggregates. Marshall sample with varying waste plastic content was tested for stability. Maximum value of stability was considered as criteria for optimum waste plastic content. The optimum modified binder content fulfilling the Marshall Mix design criteria was found to be 4, 5, and 6 % by weight of the mix, consisting of 1,3, and 6 % by weight of processed plastic added to the bitumen. In order to evaluate the ability of the mix prepared with the bitumen to withstand adverse soaking condition under water, Marshall Stability tests were conducted after soaking in water at 60oC for 24 hours.
Shedder LDPE was simultaneously composed with binder and aggregates for heating and mixing approximately 160oC for two hours so that a uniform was achieved. Mixed plastic porous asphalt was poured and compacted into a mold, which is 4 inches diameter and 2.5 inches height, using a steel shovel. The Marshall test procedure was used for designing porous mix by compacting the sample with 50 blows on one face by Marshall hammer, at varying binder contents. The mixture design trials used asphalt content in the range of 4 – 6 %, by total weight of the mixture, excluding the weight of the fibers, with 1% increments. The LDPE fibers were added to the porous mixtures at a dosage rate of 1,3, and 6 % based on total mixture weight. The compacted samples were extracted from the mold when they had sufficiently cooled. After compaction, samples were be kept in the hot (conditioned) and cold (unconditioned) waters. Resilient Modulus and permameter test conducted. Samples were tested for hydraulic conductivity and indirect tensile strength. Figure 4 demonstrates the preparation of the Porous plastic asphalt samples.
Porous plastic asphalt samples were tested for hydraulic conductivity and indirect tensile strength. Hydraulic conductivity tests were operated using a falling head approach in conformity with a proceeding particularized in the researchers [57,58]. The indirect tensile tests were conducted in accordance with the ASTM C 6931-07 test methods.
Sample preparation for permeable plastic asphalt that mixing of LDPE, porous aggregates, binder to create
From equation 1 calculate hydraulic conductivity for testing in the falling head permameater test. After used Permameters to measure k, use this following formula. Calculate the hydraulic conductivity of the sediment by using the following formula:
whereK = hydraulic conductivity of the sediment sample [L]/[T]
V = volume of water that passed through the sample [L]3
L = sample length [L]
h0 = height of top mark above outflow port [L]
h = height of bottom mark above outflow port [L]
A = cross sectional area of sample. For the NEIU permameters, this is 31.65 cm2. [L]2
t = total time for discharge [T]
The indirect tensile test that is one class of tensile strength test implemented in order to stabilize elements. The test has been run on asphalt-stabilized elements [35,59,60,61]. The test has many advantages, the most obvious being simplicity of test procedure. From equation 2 calculate ITS for testing in the resilient modulus (MR) test. After used with the diametrical Mr test (repetitive indirect tensile modulus test) to calculate ITS, as using the tensile strength St of the material is given by:
Where P= total applied load (lb)
t= sample thickness (in)
d= sample diameter (in)
According to Table 2 demonstrates the hydraulic conductivity (k) of the porous plastic asphalt samples. From Table 2, it has provided that the results of k diminished with the growth of porous plastic mixing. For instance, when the results of k mixed %4 binders with %1 LDPE were 0.204 in/s, the result of mixing %3 LDPE was 0.193 in/s. Obviously, while mixing with % of LDPE was increasing, the result of k was diminishing. Figure 5 represents the results of permeability of porous plastic asphalt with mixing %1 LDPE.
The results of k with mixing %1 LDPE
The results of hydraulic conductivity
Use this test method to determine the tensile strength of compacted bituminous mixtures. The porous plastic mixed tested as a conditioned and unconditioned. After compaction, samples were kept in the hot water (conditioned situation) and cold water (unconditioned situation). The objective of this test was to measure the water resistance of the mixture after immersion for 24 hours at 60oC. After that, testing the resilient modulus provided the results of ITS. The purpose of results was to evaluate the resistance of porous plastic asphalt mix on plastic deformation. Furthermore, from equation 3 Tensile strength ratio (TSR) calculated that divided by conditioned to unconditioned situation. TSR < 70% considered Susceptible to Moisture. As a result it provides that the performance of strength of porous plastic asphalt. Moisture Susceptibility of Porous Plastic tested in accordance with ASTM C 6931-07. Samples were cured at room temperature, 100oC and 160oC for 24 hours. Samples dimension is Diameter=4”, Height=2.5”.
Where:
S1 = conditioned set (wet)
S2 = unconditioned set (dry)
According to Table 3 demonstrates that the results of unconditioned decreased with the growth of porous plastic mixing. For instance, when the results of mixed %5 binders with %3 LDPE were 57 psi, the result of mixing %6 LDPE was 54 psi. Obviously, while mixing with % of LDPE was increasing, the results of conditioned ITS was decreasing. On the contrary, the result of conditioned increased simultaneously with the growth of porous plastic mixing. Figure 6 represents that the result of conditioned ITS diminished while unconditioned ITS increased. According to the results of TSR is considered to susceptible to moisture. It provides that %3 LDPE and over is very strength.
0.67 | ||||
0.90 | ||||
1.22 | ||||
1.54 | ||||
0.76 | ||||
0.95 | ||||
1.09 | ||||
1.26 | ||||
0.86 | ||||
0.97 | ||||
1.08 | ||||
1.23 |
The results of Indirect Tensile Strength test (ITS)
The results of k and ITS of porous plastic asphalt mixtures were within the approximately predictable ranked come up in the literature for conventional asphalt showing Table 4. It is an indication that porous plastic asphalt should be used as a sustainable alternative for permeable pavements.
The results of ITS with mixing %6 LDPE
[62] | 29.29-69.76 |
[63] | 18.17-38.82 |
[64] | 253.9-377.09 |
[65] | 29-65.26 |
[66] | 26.1-130.53 |
[19] | 18.30-55.90 |
Summary of ITS porous asphalt from literature
Permeable Plastic Asphalt samples with different percentage of plastic to aggregate ratio were composed and then tested for hydraulic conductivity (k) and indirect tensile strength (ITS). Results represented which k and ITS results of samples were within the predictable results observed in the literature for porous pavements. In addition to it was come up with that the k, ITS values diminished as the percentage of plastic waste increased. The research results of Permeable Plastic Asphalt demonstrated that Permeable Plastic Asphalt should be a sufficient recycle and stormwater runoff with important reasonable economic and ecological associations.
This research was taken in charge to evaluate the hydraulic and mechanical features of innovative porous plastic asphalt for implementing in permeable pavements. The test represented that the result of hydraulic conductivity diminished with the growth of porous plastic mixing. On the other hand, while the results of unconditioned decreased with the growth of porous plastic mixing, the result of conditioned increased simultaneously with the growth of porous plastic mixing. Furthermore, the results of TSR are the best result over 1 for susceptible to Moisture. The results of experiments were approximately come across that expected from literature. According to results that demonstrate porous plastic asphalt could be implement sustainable alternative pavements. It also provides also recycling.
This research concentrated on the hydraulic and mechanical properties of a permeable pavement like permeable plastic asphalt. Permeable Plastic Asphalt was composed of plastic waste, aggregates, and asphalt. Permeable Plastic Asphalt should provide a sufficient method for decreasing stormwater runoff, contributing a structural pavement sufficient for pedestrian and vehicular loadings. Furthermore, Permeable Plastic Asphalt should take the part of the currently ongoing recycling aims as a critical role that support to deflect a majority of plastic from landfills and incinerators.
The laboratory test indicates that aggregate, binder with mixing LDPE affected the results of k and ITS. Thus, permeability and strength of porous plastic asphalt is getting better with mixing LDPE. It proves that porous plastic asphalt help to diminish storm water runoff times diminish urban heat island effects. A new pavement increases for the sustainability of the nature that will be benefit users for many years. The design of plastic pavements contains developed pedestrian and public transportation as well as parking lot, driveway, bridges.
The results represents porous plastic asphalt should be implemented as a sustainable alternative for permeable pavements. Porous plastic asphalt is a peerless choice in that it undertakes two environmental problems that decreasing stormwater runoff and prevent to fill out with plastic waste at landfills. In the way that we keep up our way to green building and construction, porous plastic asphalt is new approach on the way to eco-friendly improvement. The innovative technology comes to grips with two environmental problems that are plastic waste and stormwater runoff. It provides to prevent a large quantity of plastic waste at landfills and incinerators, thus the plastic waste uses fro recycling. Also it decreases stormwater runoff and decreases the use of natural resources.
Permeable plastic pavement has whole with its permeability should be determined by valid void. Valid void should be directly implement to mixing ratio of permeable plastic pavement that both take control sufficiently the forming of run off and restrict urban flood.
All above results that Landscape Engineering considers that the progress of permeable plastic uses to efficiently integrate the mixing permeable plastic pavements with land use planning. Using recycling service with very powerful has approached to create pleasing environments in the world. According to test results that the advantages of plastic asphalt provide that is stronger road with increased plastic, better resistance during stormwater, without stripping and rutting, develop binder and better linking of the mix. Besides it support that is the strength of the road is increased. Using permeable plastic asphalt that is the cost of road construction diminish the maintenance cost of road gradually diminish as well. Obviously, as the plastic mix with pavement for using, the disposal of waste plastic will no longer be issue. As a result of that, using plastic helps to decrease in pores in aggregate save bitumen and help recycling.
Consecutive chapters of this research will count profoundly on the outcomes of the test pavements mentioned above, as well as efficiency data issued in the research. Detailed representing results of the several researches projects will be debated during the research.
Effectively managing the collection, separation and processing of plastic waste can limit the environmental damages limited by eliminating the waste from our streets. Thus, we can prevent to fill the landfill with plastic waste when we mix the plastic with the other elements with soil, asphalt and cement in order to use future studies.
Laboratory tests and real life implementation will study that the life expectancy of a plastic polymer road as compared to a conventional road. Future study will need to study for expanding of life expectancy for plastic. This study proved that investigates, summarizes preliminary results, and debates key properties to be considered for future alternative pavement. Future researchers will keep going to research the better permeable pavement for economic, environmental and nature.
A long-term monitoring project to document changes in performance, evaluation of different maintenance strategies, and lifecycle costs of permeable plastic asphalts is recommended for future research. Future experience is based on designs that provide to improve future properties such as increased new materials, and developed construction and maintenance activities.
The author gratefully acknowledged Dr. Naji Khoury for his guidance and help.
Modular manufacturing systems, as an integrated part of flexible manufacturing systems, deserve an unmistakable merit in today’s rapidly changing manufacturing environment, characterized by developed competition in the global context and progressive changes in process technologies and in their structure according to market requirements. Such systems necessitate a rapid and factual integration of new technologies and new functions into both system and process relationships.
\nThe Industry 4.0 (I4.0) trends and conditions and requirements require cyber and flexible production-oriented approach, enabling to build the following:
A production capacity of production systems that is operatively adaptive to market requirements, i.e., obtaining new, rapidly viable products
Fast integration of modern process technologies and new functions into existing production systems and their easy adaptation to dynamically changing batches of individual products
Integrated production units with new service capabilities based on robust Industry Internet of Things (IIoT) data streams from individual work units and their accessibility for being processed from anywhere subject to Internet connection
Flexible manufacturing systems (FMS) enable flexible production of a product group in a single production system. Using modular principles, flexible manufacturing, which is the fundamental concept of cyber production systems, has recently become one of the major systems of production management. These arrangements are (and there are several of them) theoretically and methodically based on the search for a mathematically modeled component production center relationship that would guarantee different types of parts produced with a small number of pieces in the batch. The modular structure of the production systems enables links between machines, saving production time and space. The operation of the machines is synchronized via data stream, and the material flow is optimized (moving parts between machines is at an optimal distance). FMS utilizes many advantages of other types of production structures (\nTable 1\n) [1].
\nType of production | \nStructure definitions and objectives | \n
---|---|
Production line | \nThe line is designed for the production of a (one) specific product, using the technology of gradual production with given tools and a fixed level of automation. The economic goal of production lines is to produce one particular type of product in large quantities and the required quality cost-effectively | \n
Flexible manufacturing system ( | \nThe structure of a production system with fixed hardware and programmable software for affecting changes in the assortment produced according to current orders and changes in production plans with tools for several product types. The economic objective of | \n
Reconfigurable manufacturing system ( | \nA structure of the manufacturing system that can be created through multiple groupings of basic process configurations of changeable system modules (hardware and software). Reconfiguration allows for the addition, removal, or modification of specific process features, controls, control software, or machine structure to adapt the system’s production capacity to changes in market demand or to the necessary and related technological changes. This system structure guarantees the flexibility of the system for a specific product group, while the system is technically ready for change so that it can be further improved, upgraded, and reconfigured and not merely replaced [2, 3]. The goal of \n
| \n
Overview of basic production system structures.
The dynamic development of computers, information science, data processing, control and managing systems, optical systems, drives, and materials, that is taking place in short cycles, significantly affects the growth rate (obsolescence) of the technical level of the systems in question. An efficient manufacturing system can become inefficient in a short time. In addition, the current customer-oriented market, as well as the environmental, energy and material issues, results in accelerated launch of new products. The adaptability of established manufacturing systems to new products may not have sufficient technical availability, and the introduction of new technically available systems may take too long a time from the production availability point of view (machine tools approximately 2 years).
\nFor these reasons, it is necessary to pay constant attention to flexible, modular, and reconfigurable production systems and consequently to improve them systematically and technically and adapt them to the needs of current production processes or to the needs of current engineering production [1, 2].
\nGenerally, the best-selling article (or article with the highest investment value) of production technology are the CNC machine tools. Prof. Marek writes in [3] about the factors influencing the development of machine tools.
\nForecasts focused on the position of modular technologies in the twenty-first century confirm their important place in both fully automated production plants (both engineering and nonengineering areas) and in non-production areas (service and maintenance activities).
\nThus, the modularity and reconfigurability in terms of where the development is heading have the potential for further development in the future. Design of reliable (universal) modules or of the building nodes with a wider applicability is, and will always be, topical. This desired property can be achieved through experience, selection of suitable elements, and reliable design. In terms of reliability and reconfigurability, two areas need to be focused on:
Design of machine tools (machine reconfiguration to another type of workpiece)
Production (technology reconfiguration to another type of workpiece)
The concept of flexibility is also related to reconfigurability and structurelability. Flexibility can also be seen from the point of view of design and manufacturing development (\nFigure 1\n).
\nAn unconventional view of the “flexibility” concept.
The possibilities and tools for increasing the performance of production machines in multifunction machinery are associated with the developed ability to fully perform several types of machining, e.g., turning and milling at the same time or milling and grinding, etc. Reducing the number of machine tools for the production of one component, less handling, shortening the lead times, minimizing the recurrence of workpiece clamping, maximizing the concurrence of operations, as well as the development of machine components and machine concepts for maximum machine multifunctionality contribute to:
Increased accuracy
Increased production capacity
Increased economy
Reduced negative impacts on the environment
Unification of parts and components is implemented in order to minimize diversity of the components used, while maintaining very good static and dynamic properties of the machines and, at the same time:
Increasing reliability
Increasing economy
In the area of production systems, a number of terms are used with broader interpretation. This situation is related to approaches to and perspectives on this issue. A proposal for their general unification and effective classification is given in \nFigure 2\n.
\nOpen proposal for production systems classification.
Various definitions of production systems from different points of view are cited in various literature sources [1]. This has led to the need to harmonize these formulations so that they provide the most precise definitions, taking into account current knowledge in this area:
\n\n
\n
\n
\n
\n
\n
\n
In the category of manufacturing technology, machining centers (MC) are defined as manufacturing machines designated for complex components machining with defined characteristics. According to the number and type of technological operations performed, machining centers are divided into:
Multipurpose (multi-operation)—machines with a predominant technological operation (e.g., turning), i.e., they mostly enable one type of technology
Multiprofessional (multiprofessional productions center (MPC))—machines on which various technological operations can be performed (e.g., turning, milling, drilling, etc.)
Production centers are conceptually built on the principles of modular systems or as modular single-purpose machines. In terms of design and structure, they are assembled from technological, handling, and auxiliary units (mechanical, electromechanical, hydraulic, pneumatic) integrated through a supporting element (frame) into one functional and structural unit. The highest integration of production centers is based on the automation of technological and handling operations. These are multiprofessional machine tools designed for complex machining of parts on one machine and, if possible, requiring one clamping. To machine a workpiece requiring one clamping, its rotation must be ensured (e.g., in the X-Y plane) and so must be its tilting. The machining centers are equipped with a tool magazine automatically replaced by a mechanical hand. Some tools feature their own drive, which makes drilling off the workpiece axis or its milling possible, especially on lathes. Machining centers represent the basic AVS production machines. They are mainly used in piece and small batch production. Machining centers are characterized by a high concentration of operations. The machining is often carried out with the component clamped only once. They are mostly equipped with tool magazines exchanged automatically as needed. The most common main feature of machining centers is the largest machined part dimension.
\n\n
\n
MPRC characteristic features:
The MPRC ensures the technological cycle of product manufacturing, i.e., MPRC may be considered a production system.
The MPRC’s design guarantees the automation of technological, handling, and control operations, i.e., MPRC may be deemed an autonomous automated production system.
The MPRC is built on the principles of modularity, which allows the MPRC to be converted quickly and efficiently into a new product range, i.e., MPRC can be considered a flexible autonomous automated production system.
By its structure, the MPRC is closest to that of the robotic cell.
Unlike the type-specific structures of automated production systems, the MPRC provides a fully automated multiprofessional technology cycle designed for complete workpiece production and has a simpler (fewer number of elements/modules) structure, less space requirements, and more integration of technological (handling) control functions.
\nThe technical system is described by terminology which determines the procedures, tools, and methods for its description, understanding, and interpretation.
\n\n
\n
\n
\n
Structure diagram of the general modular technical system.
\n
\n
Element designation:
\nMTS—Modular technical system.
\nAMi—Unified modular unit (functional node, modular block, etc.)
\nUi—Mutual links (compatibility of ij module Ui to Uj, or of the ji module Uj to Ui).
\nX i—Module input parameters (set requirements).
\nYi—Module output parameters (properties, operating functions), “a” active, “p” passive.
\nThe mutual linking of AM modules is based on their arrangement in the technical structure of the system ψ. The possibilities of connecting the AMi and AMj modules are described by the matrix of the
By combining the modules AM ={AM1, AM2,..., AMn,}, the MTS can be assembled with none or several degrees of freedom of motion. MTS motion options with respect to a defined coordinate system can be analyzed from the
The AM module, a critical element of the MTS ψ structure, is defined as a unified unit, separate structurally, functionally, and in terms of design, composed of elements, elements E (e.g., mechanical module, servo drive, possibly also source, control, and communication module), with a specified level of function integration (main, secondary, auxiliary) and intelligence (control and information, control and decision function), capable of connecting with other modules mechanically, and in terms of control, creating functionally higher units in the technical structure of the system ψ:
\nAMr + 1 inputs are X parameters of MTS task transformed to Xr + 1 parameters of Xr + 1 partial task and Urr + 1 compatibility parameters transformed as interaction of directly linked downstream AMr module in MTS structure. Outputs from the AMr + 1 module are output parameters Yr + 1u and Yr + 1p of the AMr + 1 module representing the performance of a partial task of the module transformed into output parameters Y of the MTS robot and the Ur + 1r compatibility parameters, by which the AMr + 1 module directly affects the subsequently linked module AMr to the MTS structure (\nFigure 4\n).
\nStructure diagram of the general autonomous module (AM).
\n
Unlike the conventional systems, modular systems have the following specific features (\nFigure 5\n):
\nAn illustration of the modular systems’ specificities.
According to the breakdown in \nFigure 2\n, the flexible technical systems include modular and structural systems (STS). The difference between these systems is mainly in the autonomy or the sophistication of basic building elements.
\nThe concept of MTS design is to create a complete set of modules (unified units, functional nodes, modular blocks, etc.) and their links in functionally logical (in terms of structure, system, concept, kinematics, etc.) arrangement into a higher functional unit, meeting the required parameters and working functions.
\n\n
\n
\n
\n
\n
\n
STS rebuilding concept 1 with fixed links by SCHUNK.
\n
Concept 2, reconfiguration by adding new elements to the assembly (in production technology, spindle heads) from Riello Sistemi.
\n
Concept 3, reconfigurable modules by Riello Sistemi [
\n
Concept 4, self-reconfigurable module sets by Riello Sistemi.
A particular MTS architecture made up of AM modules should meet the technical requirements of the application, quality, durability, and safety.
\nIn the MTS system, the AMs are interchangeable—links with other parts of the MTS system are ensured by standard (or special purpose) connectors (interfaces).
\nAM module features—type and shape of the AMi module depend on its functionality in the MTS system configuration and parameterization of the resulting requirements (features):
It can move on top of adjacent modules, or it can rotate or move adjacent modules.
It may be heterogeneous or homogeneous.
Depending on the type of positioning and coordination, it can be applied to parallel or serial MTS structure.
The number of drives and the number of degrees of freedom determine its mobility.
The type of interface applied determines the capabilities of its metamorphosis.
An active AM can be built on the rotary or the linear principle of motion.
Passive AM—connecting AM has no moving parts (the task is to link the active AMs).
\n
Modules grouped in the MTS architecture (\nFigure 10\n):
A
A set of modules involved in multiple MTS sets (multimachine modules (MM)), e.g., M5.
A set of modules involved in only one robot assembly (singlemachine modules (MS)), e.g., M4.
Grouping of the modules into a platform in the general
The degree of utilization of the unified building modules in the individual MTS design kit expresses the “degree of modularity.” In general, the degree of modularity can assume a value of \n
It is recommended the structure of the MTS assemblies under consideration be compiled into the so-called modular system maps—a clear display of structures of individual assemblies and display of usage of individual building module options in the MTS assemblies.
\n\n
Modularity breakdown.
\n
\n
The
Basic groups (typical for structural and functional groups: power, torque, etc.)
Derived (critical for the user: output, speed, etc.)
\n
\n
\n\nFigure 12\n shows a dual biaxial modular manipulator designed for varying degrees of load. If the modular assembly is subjected to maximum loads, it is necessary to reduce the motion dynamics to the recommended level or to choose a dimensional range of higher type for the construction of the handling equipment (\nFigure 13\n) [10].
\nGüdel ZP-type biaxial portal linear motion modules.
Güdel type and size-specific linear portal modules of the ZP type.
Currently, modular production machines represent advanced machine systems designed on the basis of a mechatronic approach to their design, with the predominant concept of their construction being a three-dimensional and functional modularity structurally built on fixed links.
\nConceptually, these structures obey the principles of functional and type and dimension-specific modularity structurally built on fixed links.
\nAn example of functional modularity is the IMG industry concept (\nFigure 14\n). Machining centers, production cells, and transfer lines of varying degrees of complexity can be built from the presented base of modules and platforms.
\nModular concept of EMAG production machines [
These two concepts are now strongly prevalent in the development of modular manufacturing technology. A feature of the application of these two concepts in the development of this technique is also their overlap in case of a certain degree of fuzziness of their boundaries or their combination. This direction is particularly pronounced in modular systems enabling the assembly of higher functional units such as machining centers, multiprofessional centers, and production cells.
\nIndustrial robots and manipulators are implemented as modular systems mainly due to the requirements of flexible automated production systems [4, 11, 12].
\nFrom a number of current designs (EPSON, SCHUNK, YAMAHA, KUKA, MOTOMAN, etc.), the solution by SCHUNK will be introduced (\nFigure 15\n), the concept of which corresponds to the principles of functional modularity. The presented robot has 7 degrees of freedom when the required number of rotary motion modules can be linked in the series kinematic chain as required. In the design concept, rotary modules are arranged alternately perpendicular to each other, and linked modules are using complex shape interface, which is subject to demanding requirements of stiffness and low weight (a lighter metal material with sufficient strength). This concept is based on the complex structure of the modular system and the links of its elements. The advantage of this design is high flexibility and accommodation of a wide range of requirements of real applications.
\nModular robot SCHUNK [
SCHUNK solution (\nFigure 15\n) can be improved with an innovative custom solution. The presented system of rotary modules called universal rotary module (URM) (\nFigure 16\n) has any number of degrees of freedom, within the rigidity, load-bearing, and precision characteristics of course. They can be connected to the required number of degrees of freedom (DOF) in the kinematic chain as required. The design concept is changed from the SCHUNK solution so that the rotary modules are arranged at different angles in the range of 15 to 90° and not perpendicular to each other.
\nBasic concept of universal rotational module (URM).
A simple interface is used to connect the modules (\nFigure 17\n, item 5) which by its curvature determine the extent and reach of the working space of the kinematic structure, which are subject to tough requirements of stiffness and low weight (material of lighter metal with sufficient strength). This concept is based on the complex structure of the modular system and its constraints. The advantage of the solution is high flexibility and coverage of a wide range of requirements of real applications.
\nBasic concept of standalone URM module and section of its structure. 1, reductor; 2, accumulators; 3, servomotor; 4, body; 5, interface; 6, connection panel; 7, coil winding; 8, rotational connection; 9, next URM.
Depending on the number of modules involved, a modular manipulator can be created with a working space of different ranges, positions, and shapes (\nFigure 18\n). The number of modules also determines the number of degrees of freedom of the manipulator. The design and construction of the URM allows the modules themselves to be modified so that their curvature angle may be different from the basic 45°, 90°, and the like. Subsequently, it is possible to assemble modified robot structures. Extension modules can be inserted between the modules to increase the reach of the manipulator arm while maintaining sufficient rigidity of the kinematic chain. All modifications to the mechanical part must be taken into account in the setup and programming of the robot control system.
\nExamples of reach of a modular assembly made of URM with 6 DOF.
The main benefits of designing URM-based modular structures are a pair of conveniences:
There is no cable bundle inside the modular structure. Neither data nor energy. This means that each module is capable of rotating without limiting the angle of rotation, as is the case of a machine tool spindle. The solution is absolutely wireless. No contact between the moving and the rotating mechanical parts occurs neither is there contact with a brush or carbon brush. Thus, the solution does not generate sparks and is, therefore, suitable to explosive or food handling environment.
The URM assembly has its own power accumulators inside each module. Thus, this kinematic structure is resistant to power outages. A certain short house can be operated without power. This is a benefit that other modular solutions do not yet have.
The URM is developed by one department from Manufacturing Machinery, Faculty of Mechanical Engineering, Technical University of Košice. The result of this solution is a modular system that allows us to assemble modular robots, assembled from identical or type-identical URM01 with unlimited rotational motion. Machines and equipment constructed from these modules are designed to ensure the best possible working range and also to achieve the desired space in the work area (\nFigure 19\n).
\nManipulator with 6 DOF of movement made of URM 01 modules.
The main parameter of URM01 is the angle of curvature of the interconnectors. Since this is a homogeneous structure, the curvature of each manipulator module will be the same. A homogeneous structure with 5 DOF of movement was subjected to a series of simulation tests with different angles of curvature of the couplers. In the individual curves of the couplers, structures with interesting shapes are formed. The analysis of the working space of the individual series structures with different angles of curvature of the couplers has brought to light the fact that the more the angle of curvature of the coupler increases, the more the working space of the individual serial structures increases.
\nThe best working space range in all axes has a series structure with 90° curvature of the coupler. This is similar to the standard solutions of SCHUNK, KUKA, etc. In our case, given the curvature of the spacer, it is necessary to consider the possibility of collision with the own modules. This problem can be addressed with the correct control algorithm or software-embedded software limit switches that alert the control system to the limit position of the axis and consequently prevent access beyond that limit.
\nThe prototype URM02, which is conceptually based on the original first variant of URM01, is currently being completed (\nFigure 20\n). The development of the second-generation URM02 has brought many improvements and possibilities that its predecessor did not contain. Development has taken URM02 to a higher level, making it easier and more efficient to use it in industrial applications. As with any development, the aim was to achieve the best possible results based on the stated objectives and rules of previous research and testing.
\nThe first version of the URM01 prototype (left) versus the second version of the proposed URM 02 prototype (right) with basic dimensions.
Benefits of applying modularity to production systems:
Modules can be developed, manufactured, and tested separately.
Acceleration (paralleling) of development and production, production, and delivery to the customer.
Higher component recurrence and simpler logistics.
Higher level of design variability for the customer.
Potential expandability.
Higher flexibility of production volume and assortment (from the manufacturer’s point of view).
Simplification of organization and recycling.
Acceleration of troubleshooting and service.
Reduction of development and operating costs.
Disadvantages of applying modularity to production systems:
Incompatibility with older production systems
Higher acquisition price compared to conventional systems
Lower overall efficiency in mass production
This work was supported by the Slovak Research and Development Agency under the Contract no. APVV-18-0413 and Research and development of rotary module with an unlimited degree rotation under Contract no. VEGA 1/0437/17.
\n\n flexible manufacturing system reconfigurable production system modular technical system machining center multiprofessional productions center multiprofessional productions robotic center unified modular unit (functional node, modular block, etc.) basic building element of „ij “module mutual relations (compatibility of ij module Ui to Uj,or of the ji module Uj to Ui) module input parameters (set requirements) module output parameters (properties, operating functions), “a” active, “p” passive set of binary interconnections degree of modularity degrees of freedom
"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges".
\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.
",metaTitle:"About Open Access",metaDescription:"Open access contributes to scientific excellence and integrity. It opens up research results to wider analysis. It allows research results to be reused for new discoveries. And it enables the multi-disciplinary research that is needed to solve global 21st century problems. Open access connects science with society. It allows the public to engage with research. To go behind the headlines. And look at the scientific evidence. And it enables policy makers to draw on innovative solutions to societal challenges.\n\nCarlos Moedas, the European Commissioner for Research Science and Innovation at the STM Annual Frankfurt Conference, October 2016.",metaKeywords:null,canonicalURL:"about-open-access",contentRaw:'[{"type":"htmlEditorComponent","content":"The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\\n\\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\\n\\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\\n\\nOAI-PMH
\\n\\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\\n\\nLicense
\\n\\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\\n\\nPeer Review Policies
\\n\\nAll scientific works are Peer Reviewed prior to publishing. Read more
\\n\\nOA Publishing Fees
\\n\\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\\n\\nDigital Archiving Policy
\\n\\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'The Open Access publishing movement started in the early 2000s when academic leaders from around the world participated in the formation of the Budapest Initiative. They developed recommendations for an Open Access publishing process, “which has worked for the past decade to provide the public with unrestricted, free access to scholarly research—much of which is publicly funded. Making the research publicly available to everyone—free of charge and without most copyright and licensing restrictions—will accelerate scientific research efforts and allow authors to reach a larger number of readers” (reference: http://www.budapestopenaccessinitiative.org)
\n\nIntechOpen’s co-founders, both scientists themselves, created the company while undertaking research in robotics at Vienna University. Their goal was to spread research freely “for scientists, by scientists’ to the rest of the world via the Open Access publishing model. The company soon became a signatory of the Budapest Initiative, which currently has more than 1000 supporting organizations worldwide, ranging from universities to funders.
\n\nAt IntechOpen today, we are still as committed to working with organizations and people who care about scientific discovery, to putting the academic needs of the scientific community first, and to providing an Open Access environment where scientists can maximize their contribution to scientific advancement. By opening up access to the world’s scientific research articles and book chapters, we aim to facilitate greater opportunity for collaboration, scientific discovery and progress. We subscribe wholeheartedly to the Open Access definition:
\n\n“By “open access” to [peer-reviewed research literature], we mean its free availability on the public internet, permitting any users to read, download, copy, distribute, print, search, or link to the full texts of these articles, crawl them for indexing, pass them as data to software, or use them for any other lawful purpose, without financial, legal, or technical barriers other than those inseparable from gaining access to the internet itself. The only constraint on reproduction and distribution, and the only role for copyright in this domain, should be to give authors control over the integrity of their work and the right to be properly acknowledged and cited” (reference: http://www.budapestopenaccessinitiative.org)
\n\nOAI-PMH
\n\nAs a firm believer in the wider dissemination of knowledge, IntechOpen supports the Open Access Initiative Protocol for Metadata Harvesting (OAI-PMH Version 2.0). Read more
\n\nLicense
\n\nBook chapters published in edited volumes are distributed under the Creative Commons Attribution 3.0 Unported License (CC BY 3.0). IntechOpen upholds a very flexible Copyright Policy. There is no copyright transfer to the publisher and Authors retain exclusive copyright to their work. All Monographs/Compacts are distributed under the Creative Commons Attribution-NonCommercial 4.0 International (CC BY-NC 4.0). Read more
\n\nPeer Review Policies
\n\nAll scientific works are Peer Reviewed prior to publishing. Read more
\n\nOA Publishing Fees
\n\nThe Open Access publishing model employed by IntechOpen eliminates subscription charges and pay-per-view fees, enabling readers to access research at no cost. In order to sustain operations and keep our publications freely accessible we levy an Open Access Publishing Fee for manuscripts, which helps us cover the costs of editorial work and the production of books. Read more
\n\nDigital Archiving Policy
\n\nIntechOpen is committed to ensuring the long-term preservation and the availability of all scholarly research we publish. We employ a variety of means to enable us to deliver on our commitments to the scientific community. Apart from preservation by the Croatian National Library (for publications prior to April 18, 2018) and the British Library (for publications after April 18, 2018), our entire catalogue is preserved in the CLOCKSS archive.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5820},{group:"region",caption:"Middle and South America",value:2,count:5289},{group:"region",caption:"Africa",value:3,count:1761},{group:"region",caption:"Asia",value:4,count:10546},{group:"region",caption:"Australia and Oceania",value:5,count:909},{group:"region",caption:"Europe",value:6,count:15933}],offset:12,limit:12,total:119318},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"12"},books:[{type:"book",id:"10760",title:"Steppe Biome",subtitle:null,isOpenForSubmission:!0,hash:"982f06cee6ee2f27339f3c263b3e6560",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10760.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10763",title:"Biodiversity of Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"c96b42d4539957c58dfc2eb8fd9ffc21",slug:null,bookSignature:"Dr. Levente Hufnagel",coverURL:"https://cdn.intechopen.com/books/images_new/10763.jpg",editedByType:null,editors:[{id:"10864",title:"Dr.",name:"Levente",surname:"Hufnagel",slug:"levente-hufnagel",fullName:"Levente Hufnagel"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10766",title:"Landscape Architecture",subtitle:null,isOpenForSubmission:!0,hash:"bf47534a17fef030dc256b541482553c",slug:null,bookSignature:"Dr.Ing. Mustafa Ergen and Associate Prof. Yasar Bahri Ergen",coverURL:"https://cdn.intechopen.com/books/images_new/10766.jpg",editedByType:null,editors:[{id:"166961",title:"Dr.Ing.",name:"Mustafa",surname:"Ergen",slug:"mustafa-ergen",fullName:"Mustafa Ergen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10845",title:"Marine Ecosystems",subtitle:null,isOpenForSubmission:!0,hash:"b369ac809068d2ebf1f8c26418cc6bec",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10845.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10846",title:"Stormwater",subtitle:null,isOpenForSubmission:!0,hash:"9bfae8caba192ce3ab6744c9cbefa210",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10846.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:28},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:8},{group:"topic",caption:"Business, Management and Economics",value:7,count:3},{group:"topic",caption:"Chemistry",value:8,count:11},{group:"topic",caption:"Computer and Information Science",value:9,count:10},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:10},{group:"topic",caption:"Engineering",value:11,count:25},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:7},{group:"topic",caption:"Mathematics",value:15,count:3},{group:"topic",caption:"Medicine",value:16,count:48},{group:"topic",caption:"Neuroscience",value:18,count:3},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:4},{group:"topic",caption:"Psychology",value:21,count:5},{group:"topic",caption:"Robotics",value:22,count:2},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:5},popularBooks:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"2160",title:"MATLAB",subtitle:"A Fundamental Tool for Scientific Computing and Engineering Applications - Volume 1",isOpenForSubmission:!1,hash:"dd9c658341fbd264ed4f8d9e6aa8ca29",slug:"matlab-a-fundamental-tool-for-scientific-computing-and-engineering-applications-volume-1",bookSignature:"Vasilios N. Katsikis",coverURL:"https://cdn.intechopen.com/books/images_new/2160.jpg",editors:[{id:"12289",title:"Prof.",name:"Vasilios",middleName:"N.",surname:"Katsikis",slug:"vasilios-katsikis",fullName:"Vasilios Katsikis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9161",title:"Frailty in the Elderly",subtitle:"Understanding and Managing Complexity",isOpenForSubmission:!1,hash:"a4f0f2fade8fb8ba35c405f5ad31a823",slug:"frailty-in-the-elderly-understanding-and-managing-complexity",bookSignature:"Sara Palermo",coverURL:"https://cdn.intechopen.com/books/images_new/9161.jpg",editors:[{id:"233998",title:"Ph.D.",name:"Sara",middleName:null,surname:"Palermo",slug:"sara-palermo",fullName:"Sara Palermo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5327},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9685",title:"Agroecosystems",subtitle:"Very Complex Environmental Systems",isOpenForSubmission:!1,hash:"c44f7b43a9f9610c243dc32300d37df6",slug:"agroecosystems-very-complex-environmental-systems",bookSignature:"Marcelo L. Larramendy and Sonia Soloneski",coverURL:"https://cdn.intechopen.com/books/images_new/9685.jpg",editors:[{id:"14764",title:"Dr.",name:"Marcelo L.",middleName:null,surname:"Larramendy",slug:"marcelo-l.-larramendy",fullName:"Marcelo L. Larramendy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8564",title:"Cell Interaction",subtitle:"Molecular and Immunological Basis for Disease Management",isOpenForSubmission:!1,hash:"98d7f080d80524285f091e72a8e92a6d",slug:"cell-interaction-molecular-and-immunological-basis-for-disease-management",bookSignature:"Bhawana Singh",coverURL:"https://cdn.intechopen.com/books/images_new/8564.jpg",editors:[{id:"315192",title:"Dr.",name:"Bhawana",middleName:null,surname:"Singh",slug:"bhawana-singh",fullName:"Bhawana Singh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9515",title:"Update in Geriatrics",subtitle:null,isOpenForSubmission:!1,hash:"913e16c0ae977474b283bbd4269564c8",slug:"update-in-geriatrics",bookSignature:"Somchai Amornyotin",coverURL:"https://cdn.intechopen.com/books/images_new/9515.jpg",editedByType:"Edited by",editors:[{id:"185484",title:"Prof.",name:"Somchai",middleName:null,surname:"Amornyotin",slug:"somchai-amornyotin",fullName:"Somchai Amornyotin"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9021",title:"Novel Perspectives of Stem Cell Manufacturing and Therapies",subtitle:null,isOpenForSubmission:!1,hash:"522c6db871783d2a11c17b83f1fd4e18",slug:"novel-perspectives-of-stem-cell-manufacturing-and-therapies",bookSignature:"Diana Kitala and Ana Colette Maurício",coverURL:"https://cdn.intechopen.com/books/images_new/9021.jpg",editedByType:"Edited by",editors:[{id:"203598",title:"Ph.D.",name:"Diana",middleName:null,surname:"Kitala",slug:"diana-kitala",fullName:"Diana Kitala"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7030",title:"Satellite Systems",subtitle:"Design, Modeling, Simulation and Analysis",isOpenForSubmission:!1,hash:"b9db6d2645ef248ceb1b33ea75f38e88",slug:"satellite-systems-design-modeling-simulation-and-analysis",bookSignature:"Tien Nguyen",coverURL:"https://cdn.intechopen.com/books/images_new/7030.jpg",editedByType:"Edited by",editors:[{id:"210657",title:"Dr.",name:"Tien M.",middleName:"Manh",surname:"Nguyen",slug:"tien-m.-nguyen",fullName:"Tien M. Nguyen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10413",title:"A Collection of Papers on Chaos Theory and Its Applications",subtitle:null,isOpenForSubmission:!1,hash:"900b71b164948830fec3d6254b7881f7",slug:"a-collection-of-papers-on-chaos-theory-and-its-applications",bookSignature:"Paul Bracken and Dimo I. Uzunov",coverURL:"https://cdn.intechopen.com/books/images_new/10413.jpg",editedByType:"Edited by",editors:[{id:"92883",title:"Prof.",name:"Paul",middleName:null,surname:"Bracken",slug:"paul-bracken",fullName:"Paul Bracken"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9154",title:"Spinal Deformities in Adolescents, Adults and Older Adults",subtitle:null,isOpenForSubmission:!1,hash:"313f1dffa803b60a14ff1e6966e93d91",slug:"spinal-deformities-in-adolescents-adults-and-older-adults",bookSignature:"Josette Bettany-Saltikov and Gokulakannan Kandasamy",coverURL:"https://cdn.intechopen.com/books/images_new/9154.jpg",editedByType:"Edited by",editors:[{id:"94802",title:"Dr.",name:"Josette",middleName:null,surname:"Bettany-Saltikov",slug:"josette-bettany-saltikov",fullName:"Josette Bettany-Saltikov"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8148",title:"Investment Strategies in Emerging New Trends in Finance",subtitle:null,isOpenForSubmission:!1,hash:"3b714d96a68d2acdfbd7b50aba6504ca",slug:"investment-strategies-in-emerging-new-trends-in-finance",bookSignature:"Reza Gharoie Ahangar and Asma Salman",coverURL:"https://cdn.intechopen.com/books/images_new/8148.jpg",editedByType:"Edited by",editors:[{id:"91081",title:"Dr.",name:"Reza",middleName:null,surname:"Gharoie Ahangar",slug:"reza-gharoie-ahangar",fullName:"Reza Gharoie Ahangar"}],equalEditorOne:{id:"206443",title:"Prof.",name:"Asma",middleName:null,surname:"Salman",slug:"asma-salman",fullName:"Asma Salman",profilePictureURL:"https://mts.intechopen.com/storage/users/206443/images/system/206443.png",biography:"Professor Asma Salman is a blockchain developer and Professor of Finance at the American University in the Emirates, UAE. An Honorary Global Advisor at the Global Academy of Finance and Management, USA, she completed her MBA in Finance and Accounting and earned a Ph.D. in Finance from an AACSB member, AMBA accredited, School of Management at Harbin Institute of Technology, China. Her research credentials include a one-year residency at the Brunel Business School, Brunel University, UK. Prof. Salman also served as the Dubai Cohort supervisor for DBA students under the Nottingham Business School, UK, for seven years and is currently a Ph.D. supervisor at the University of Northampton, UK, where she is a visiting fellow. She also served on the Board of Etihad Airlines during 2019–2020. One of her recent articles on “Bitcoin and Blockchain” gained wide visibility and she is an active speaker on Fintech, blockchain, and crypto events around the GCC. She holds various professional certifications including Chartered Fintech Professional (USA), Certified Financial Manager (USA), Women in Leadership and Management in Higher Education, (UK), and Taxation GCC VAT Compliance, (UK). She recently won an award for “Blockchain Trainer of the Year” from Berkeley Middle East. Other recognitions include the Women Leadership Impact Award by H.E First Lady of Armenia, Research Excellence Award, and the Global Inspirational Women Leadership Award by H.H Sheikh Juma Bin Maktoum Juma Al Maktoum.",institutionString:"American University in the Emirates",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"2",totalChapterViews:"0",totalEditedBooks:"2",institution:{name:"American University in the Emirates",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10201",title:"Post-Transition Metals",subtitle:null,isOpenForSubmission:!1,hash:"cc7f53ff5269916e3ce29f65a51a87ae",slug:"post-transition-metals",bookSignature:"Mohammed Muzibur Rahman, Abdullah Mohammed Asiri, Anish Khan, Inamuddin and Thamer Tabbakh",coverURL:"https://cdn.intechopen.com/books/images_new/10201.jpg",editedByType:"Edited by",editors:[{id:"24438",title:"Prof.",name:"Mohammed Muzibur",middleName:null,surname:"Rahman",slug:"mohammed-muzibur-rahman",fullName:"Mohammed Muzibur Rahman"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9959",title:"Biomedical Signal and Image Processing",subtitle:null,isOpenForSubmission:!1,hash:"22b87a09bd6df065d78c175235d367c8",slug:"biomedical-signal-and-image-processing",bookSignature:"Yongxia Zhou",coverURL:"https://cdn.intechopen.com/books/images_new/9959.jpg",editedByType:"Edited by",editors:[{id:"259308",title:"Dr.",name:"Yongxia",middleName:null,surname:"Zhou",slug:"yongxia-zhou",fullName:"Yongxia Zhou"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8472",title:"Bioactive Compounds in Nutraceutical and Functional Food for Good Human Health",subtitle:null,isOpenForSubmission:!1,hash:"8855452919b8495810ef8e88641feb20",slug:"bioactive-compounds-in-nutraceutical-and-functional-food-for-good-human-health",bookSignature:"Kavita Sharma, Kanchan Mishra, Kula Kamal Senapati and Corina Danciu",coverURL:"https://cdn.intechopen.com/books/images_new/8472.jpg",editedByType:"Edited by",editors:[{id:"197731",title:"Dr.",name:"Kavita",middleName:null,surname:"Sharma",slug:"kavita-sharma",fullName:"Kavita Sharma"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8760",title:"Structure Topology and Symplectic Geometry",subtitle:null,isOpenForSubmission:!1,hash:"8974840985ec3652492c83e20233bf02",slug:"structure-topology-and-symplectic-geometry",bookSignature:"Kamal Shah and Min Lei",coverURL:"https://cdn.intechopen.com/books/images_new/8760.jpg",editedByType:"Edited by",editors:[{id:"231748",title:"Dr.",name:"Kamal",middleName:null,surname:"Shah",slug:"kamal-shah",fullName:"Kamal Shah"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"1387",title:"Holistic Veterinary Medicine",slug:"holistic-veterinary-medicine",parent:{title:"Animal Science",slug:"animal-science"},numberOfBooks:1,numberOfAuthorsAndEditors:27,numberOfWosCitations:30,numberOfCrossrefCitations:22,numberOfDimensionsCitations:42,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"holistic-veterinary-medicine",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"6179",title:"Antibiotic Use in Animals",subtitle:null,isOpenForSubmission:!1,hash:"330ad6b360324a533411aa736563fbee",slug:"antibiotic-use-in-animals",bookSignature:"Sara Savic",coverURL:"https://cdn.intechopen.com/books/images_new/6179.jpg",editedByType:"Edited by",editors:[{id:"92185",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"57645",doi:"10.5772/intechopen.71780",title:"Antibiotics in Chilean Aquaculture: A Review",slug:"antibiotics-in-chilean-aquaculture-a-review",totalDownloads:1475,totalCrossrefCites:12,totalDimensionsCites:20,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Ivonne Lozano, Nelson F. Díaz, Susana Muñoz and Carlos Riquelme",authors:[{id:"208847",title:"Dr.",name:"Ivonne",middleName:null,surname:"Lozano",slug:"ivonne-lozano",fullName:"Ivonne Lozano"},{id:"208895",title:"Dr.",name:"Nelson F.",middleName:null,surname:"Díaz",slug:"nelson-f.-diaz",fullName:"Nelson F. Díaz"},{id:"208897",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"},{id:"208898",title:"MSc.",name:"Susana",middleName:null,surname:"Muñoz",slug:"susana-munoz",fullName:"Susana Muñoz"}]},{id:"57341",doi:"10.5772/intechopen.71206",title:"Probiotic Bacteria as an Healthy Alternative for Fish Aquaculture",slug:"probiotic-bacteria-as-an-healthy-alternative-for-fish-aquaculture",totalDownloads:3582,totalCrossrefCites:8,totalDimensionsCites:16,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Camila Sayes, Yanett Leyton and Carlos Riquelme",authors:[{id:"208614",title:"Mrs.",name:"Camila",middleName:null,surname:"Sayes",slug:"camila-sayes",fullName:"Camila Sayes"},{id:"208939",title:"Dr.",name:"Yanett",middleName:null,surname:"Leyton",slug:"yanett-leyton",fullName:"Yanett Leyton"},{id:"208940",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"}]},{id:"57280",doi:"10.5772/intechopen.71257",title:"Necessary Usage of Antibiotics in Animals",slug:"necessary-usage-of-antibiotics-in-animals",totalDownloads:1435,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Magdy Moheb El-Dein Saad and Mohamed Bedair M. Ahmed",authors:[{id:"207381",title:"Associate Prof.",name:"Mohamed Bedair M.",middleName:null,surname:"Ahmed",slug:"mohamed-bedair-m.-ahmed",fullName:"Mohamed Bedair M. Ahmed"},{id:"208838",title:"Prof.",name:"Magdy",middleName:"Moheb El-Dein",surname:"Saad",slug:"magdy-saad",fullName:"Magdy Saad"}]}],mostDownloadedChaptersLast30Days:[{id:"57341",title:"Probiotic Bacteria as an Healthy Alternative for Fish Aquaculture",slug:"probiotic-bacteria-as-an-healthy-alternative-for-fish-aquaculture",totalDownloads:3581,totalCrossrefCites:8,totalDimensionsCites:16,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Camila Sayes, Yanett Leyton and Carlos Riquelme",authors:[{id:"208614",title:"Mrs.",name:"Camila",middleName:null,surname:"Sayes",slug:"camila-sayes",fullName:"Camila Sayes"},{id:"208939",title:"Dr.",name:"Yanett",middleName:null,surname:"Leyton",slug:"yanett-leyton",fullName:"Yanett Leyton"},{id:"208940",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"}]},{id:"57774",title:"Heavy Metal Pollutome and Microbial Resistome Reciprocal Interaction and Its Impact on Human and Animal Matrices",slug:"heavy-metal-pollutome-and-microbial-resistome-reciprocal-interaction-and-its-impact-on-human-and-ani",totalDownloads:843,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Marina Spînu, Anca Elena Gurzău, Carmen Dana Șandru, Gabriel\nGati and Mihaela Niculae",authors:[{id:"209839",title:"Dr.",name:"Marina",middleName:null,surname:"Spinu",slug:"marina-spinu",fullName:"Marina Spinu"},{id:"210997",title:"Prof.",name:"Anca Elena",middleName:null,surname:"Gurzau",slug:"anca-elena-gurzau",fullName:"Anca Elena Gurzau"},{id:"210998",title:"Dr.",name:"Carmen Dana",middleName:null,surname:"Sandru",slug:"carmen-dana-sandru",fullName:"Carmen Dana Sandru"},{id:"211000",title:"Dr.",name:"Mihaela",middleName:null,surname:"Niculae",slug:"mihaela-niculae",fullName:"Mihaela Niculae"},{id:"222995",title:"Dr.",name:"Gabriel",middleName:null,surname:"Gati",slug:"gabriel-gati",fullName:"Gabriel Gati"}]},{id:"58700",title:"Introductory Chapter: Antibiotic Use in Animals Today",slug:"introductory-chapter-antibiotic-use-in-animals-today",totalDownloads:681,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Sara Savić",authors:[{id:"239551",title:"Dr.",name:"Sara",middleName:null,surname:"Savic",slug:"sara-savic",fullName:"Sara Savic"}]},{id:"57558",title:"Influence of Selected Per Orally Administered ATB on Microflora of GIT in Experimental Animals",slug:"influence-of-selected-per-orally-administered-atb-on-microflora-of-git-in-experimental-animals",totalDownloads:807,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Madar Marian, Telepjanová Tatiana and Gancarčíková Soňa",authors:[{id:"210335",title:"Dr.",name:"Soňa",middleName:null,surname:"Gancarčíková",slug:"sona-gancarcikova",fullName:"Soňa Gancarčíková"},{id:"210430",title:"Dr.",name:"Marián",middleName:null,surname:"Maďar",slug:"marian-madar",fullName:"Marián Maďar"},{id:"211223",title:"Dr.",name:"Tatiana",middleName:null,surname:"Telepjanová",slug:"tatiana-telepjanova",fullName:"Tatiana Telepjanová"}]},{id:"57645",title:"Antibiotics in Chilean Aquaculture: A Review",slug:"antibiotics-in-chilean-aquaculture-a-review",totalDownloads:1475,totalCrossrefCites:12,totalDimensionsCites:20,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Ivonne Lozano, Nelson F. Díaz, Susana Muñoz and Carlos Riquelme",authors:[{id:"208847",title:"Dr.",name:"Ivonne",middleName:null,surname:"Lozano",slug:"ivonne-lozano",fullName:"Ivonne Lozano"},{id:"208895",title:"Dr.",name:"Nelson F.",middleName:null,surname:"Díaz",slug:"nelson-f.-diaz",fullName:"Nelson F. Díaz"},{id:"208897",title:"Dr.",name:"Carlos",middleName:null,surname:"Riquelme",slug:"carlos-riquelme",fullName:"Carlos Riquelme"},{id:"208898",title:"MSc.",name:"Susana",middleName:null,surname:"Muñoz",slug:"susana-munoz",fullName:"Susana Muñoz"}]},{id:"57653",title:"Antibiotic-Treated SPF Mice as a Gnotobiotic Model",slug:"antibiotic-treated-spf-mice-as-a-gnotobiotic-model",totalDownloads:868,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Soňa Gancarčíková, Miroslav Popper, Gabriela Hrčková, Marián\nMaďar, Dagmar Mudroňová, Drahomíra Sopková and Radomíra\nNemcová",authors:[{id:"210335",title:"Dr.",name:"Soňa",middleName:null,surname:"Gancarčíková",slug:"sona-gancarcikova",fullName:"Soňa Gancarčíková"},{id:"210430",title:"Dr.",name:"Marián",middleName:null,surname:"Maďar",slug:"marian-madar",fullName:"Marián Maďar"},{id:"210815",title:"Dr.",name:"Miroslav",middleName:null,surname:"Popper",slug:"miroslav-popper",fullName:"Miroslav Popper"},{id:"210816",title:"Dr.",name:"Gabriela",middleName:null,surname:"Hrčková",slug:"gabriela-hrckova",fullName:"Gabriela Hrčková"},{id:"210817",title:"Dr.",name:"Dagmar",middleName:null,surname:"Mudroňová",slug:"dagmar-mudronova",fullName:"Dagmar Mudroňová"},{id:"210818",title:"Dr.",name:"Drahomíra",middleName:null,surname:"Sopková",slug:"drahomira-sopkova",fullName:"Drahomíra Sopková"},{id:"214659",title:"Dr.",name:"Radomíra",middleName:null,surname:"Nemcová",slug:"radomira-nemcova",fullName:"Radomíra Nemcová"}]},{id:"57280",title:"Necessary Usage of Antibiotics in Animals",slug:"necessary-usage-of-antibiotics-in-animals",totalDownloads:1434,totalCrossrefCites:2,totalDimensionsCites:4,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Magdy Moheb El-Dein Saad and Mohamed Bedair M. Ahmed",authors:[{id:"207381",title:"Associate Prof.",name:"Mohamed Bedair M.",middleName:null,surname:"Ahmed",slug:"mohamed-bedair-m.-ahmed",fullName:"Mohamed Bedair M. Ahmed"},{id:"208838",title:"Prof.",name:"Magdy",middleName:"Moheb El-Dein",surname:"Saad",slug:"magdy-saad",fullName:"Magdy Saad"}]},{id:"57136",title:"Nutrition: From the First Medicine to the First Poison",slug:"nutrition-from-the-first-medicine-to-the-first-poison",totalDownloads:743,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"antibiotic-use-in-animals",title:"Antibiotic Use in Animals",fullTitle:"Antibiotic Use in Animals"},signatures:"Sergio Canello, Alessandro Di Cerbo and Gianandrea Guidetti",authors:[{id:"191243",title:"Dr.",name:"Alessandro",middleName:null,surname:"Di Cerbo",slug:"alessandro-di-cerbo",fullName:"Alessandro Di Cerbo"},{id:"195028",title:"Dr.",name:"Gianandrea",middleName:null,surname:"Guidetti",slug:"gianandrea-guidetti",fullName:"Gianandrea Guidetti"},{id:"195029",title:"Dr.",name:"Sergio",middleName:null,surname:"Canello",slug:"sergio-canello",fullName:"Sergio Canello"}]}],onlineFirstChaptersFilter:{topicSlug:"holistic-veterinary-medicine",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/advances-in-landscape-architecture/landscape-engineering-protecting-soil-and-runoff-storm-water",hash:"",query:{},params:{book:"advances-in-landscape-architecture",chapter:"landscape-engineering-protecting-soil-and-runoff-storm-water"},fullPath:"/books/advances-in-landscape-architecture/landscape-engineering-protecting-soil-and-runoff-storm-water",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()