List of systems under evaluation (coverage and altitude range).
\r\n\t
\r\n\tThis book is intended to discuss and address the issues and challenges of anomaly detection. The book is focused on, but not limited to chapters that address different aspects of anomaly detection consisting of novel strategies and development of services over different computing models. Moreover, the book intends to investigate how anomaly detection is impacted by cutting edge innovations.
Brain death is defined as permanent cessation of all vital functions of the brain. It is principally established using clinical criteria including coma, absence of brain stem reflexes, and using apnea test. In Canada, two physicians must determine whether particular patient is brain dead or not [1, 2]. The criteria for declaring brain death includes deep unresponsive coma with established etiology, absence of reversible conditions [2]. Absence of brain stem reflexes includes absence of gag, cough, bilateral absence of corneal response, pupillary response to light and vestibule-ocular response, absence of respiratory efforts based on apnea test, and absence of confounding factors [2]. Ancillary imaging tests are necessary in situations when neurological examination or the apnea test cannot be performed or its validity comes into a question [3]. These situations include when patients have resuscitated shock, hypothermia, severe metabolic abnormalities, complex spinal reflexes, peripheral nerve or muscular dysfunctions, high cervical spine injury, craniofacial trauma or if the patient is on sedative drugs such as alcohol, barbiturates, sedatives, and hypnotics.
\nAn ideal ancillary test should not have any false positive results. This is very important in brain death patients. If the ancillary test confirms death, when in fact, patient is not dead, is very dangerous and raises critical social, ethical and legal concerns. The main objective of the ancillary test would be to demonstrate the absence of cerebral electric activity or cerebral circulatory arrest [4]. Based on this, the first type assesses the electrical functions of the brain, and the other type analyses cerebral blood flow in the brain on imaging. Here, we provide description of cerebral blood flow imaging techniques and compare them.
\nYoung and his colleagues described the attributes of an ideal ancillary test [5]. A reliable ancillary test should meet all the criteria mentioned below.
When the test confirms brain death, there should be no one that recovers or have the potential to recover. There should be no false positives.
The test should be independently sufficient enough to establish whether brain death is present or not.
The test should not be susceptible to external or internal confounding factors such as drug effects and metabolic disturbances.
The test should have standardized technology, technique, and classification of results.
The test should be inexpensive, safe, and readily applied. Testing should not be restricted to only few tertiary academic centers. It could be applied with any intensive care unit, and the technique should be mastered without difficulty.
This is considered the gold standard for ancillary imaging test. DSA is the first used modality for determining the cerebral blood flow. It is typically performed with a catheter tip in the aortic arch and contrast injection into each of the four arteries supplying the brain [3]. At least two injections, 20 min apart, must show an absence of filling of four arteries as their course becomes intracranial (Figure 1) [3, 6].
\nDigital subtraction angiography image of a brain dead patient showing no intracranial filling on selective (A) left and (B) right common carotid artery as well as (C) left and (D) right vertebral artery angiograms. These show continued filling of the extracranial arteries including (A) left and (B) right external carotid arteries.
This test is capable of detecting dynamic blood flow in the arteries, veins, and capillaries. The criteria for brain death diagnosis using this method include no intracerebral filling at the level of entry into the skull of carotid or vertebral artery and filling of external carotid arteries. But this method does not have the spatial resolution to distinguish the blood flow in the different parts of the brain such as brainstem. Other disadvantages include transportation of patents to the angio suite; requires expert operator to perform; is invasive; and requires injection of contrast medium that may have a potential risk to the patients with kidney diseases. It can have “stasis filling” due to diffusion of contrast in the static column of blood, which can result in false negatives. Thus, it is an expensive procedure and not readily available in many hospitals and may not be easy to interpret in many healthcare facilities.
\nThis is another gold standard ancillary imaging test for determination of brain death. In this technique, a gamma emitting radioactive tracer is intravenously injected and is detected by a radio counter in the nuclear medicine. One of the radioactive tracers used is Tc99m-DTPA. After bolus intravenous injection of the tracer, brain vascular flow is estimated. DTPA does not have the ability to cross the intact blood brain barrier, so intracranial blood flow is seen in normal patients. However, Tc99m-DTPA tracer has low resolution for brain vascular flow [7]. There are two other radiopharmaceuticals, namely Tc99m-HMPAO (hexamethylpropyleneamine oxime) and Tc99m-ECD (ethyl cysteinate dimer) [8]. Both of them are brain specific, lipophilic and after intravenous injection, they cross the blood brain barrier. Because of this property, they are accumulated proportional to the blood flow in normal gray matter including brain cells of cerebrum, cerebellum, and brainstem [8]. So, it is not only blood flow but also brain parenchyma is seen in the normal functioning brain. In this method, radioactive isotope is injected 30 min after its reconstitution. Images are taken immediately after injection, after 30 min, and finally after 2 hours. If there is no blood flow, there is no accumulation of tracer in the brain and brain looks hollow, this phenomenon is known as “hollow skull” or “empty bulb” sign (Figure 2). These injected radioactive tracer compounds are safe to the patients because they do not interact with their medication and have no associated side effects [8].
\n“Hallow skull”/“empty bulb” sign shown in brain death patient using (A) AP and (B) lateral nuclear scintigraphy imaging. Flow and delayed imaging demonstrated no significant intracranial flow or parenchymal uptake.
Disadvantages of this technique is sometimes posterior fossa may be difficult to visualize, and uptake may be affected by hypothermia and barbiturates [3]. It does not have the spatial resolution to detect isolated brainstem activity. Other disadvantages include associated time delay and availability of this technique. Nuclear scintigraphy requires instrumentation, an experienced radiologist to interpret the test results, and the radioactive tracer used in this test is expensive and requires a trained pharmacist to reconstitute.
\nComputed tomography (CT) was introduced in 1970, since then it has revolutionized the assessment of head injuries including brain death [9]. It is fast, readily available, and requires no contrast medium. It is a standard imaging test for the patients admitted in the hospital because of brain injuries. Plain head CT scan can visualize brain tissue and lesion. It accurately diagnoses skull fractures, intracranial bleeds, brain contusions, and brain herniation. For diagnosis of brain death, a diffuse loss of gray-white mater differentiation needs to be established (Figure 3).
\nPlain head CT image of a brain dead patient showing diffuse loss of gray-white mater differentiation.
Plain head CT has several limitations in assessment of brain death. Plain head CT does not provide functional information of the brain and does not assess intracranial blood flow. Diffuse loss of gray-white mater differentiation is likely a late phenomenon and the inter-rater reliability is poor [10].
\nContrast enhanced CT of head can be acquired to assess brain blood flow but is delayed compared to CT angiography. Contrast-enhanced CT acquisition requires a delay of 5 min, whereas CT angiography requires only 12–16 seconds. This delay makes the contrast-enhanced CT highly susceptible to “stasis filling” of the brain blood vessels. Thus, plain head CT is not very reliable test in determining brain death.
\nCTA is a valuable ancillary imaging technique for intracranial blood flow. CTA was first reported in 1998 as an ancillary test in diagnosing the brain death [11]. According to Dupas et al., in 14 patients who were diagnosed as brain dead using clinical criteria, the results were confirmed to have 100% sensitivity using CTA [11]. CTA is fast, non-invasive, technically noncomplicated, inexpensive, readily and widely available. It is perhaps the most widely available brain blood-flow test. CTA has a high spatiotemporal resolution and is relatively operator independent. Several European countries have adopted CTA as an ancillary test but not the United States [12, 13].
\nThe technique of CTA involves rapid intravenous administration of iodinated contrast followed by volume scanning of the whole brain. For imaging of brain death at least two acquisitions should be performed, 60 seconds apart [9]. Others have proposed at least three acquisitions-arterial phase scanning after 20 seconds and venous phase scanning after 50–60 seconds [4].
\nDiagnostic criteria for brain death using CTA include lack of intracranial arterial contrast opacification. Lack of intracranial contrast opacification can be assessed by 4, 7, and 10 point scales. In 4 point scale, M4 (cortical) segments of middle cerebral artery (MCA) and intracerebral vein (ICV) are evaluated for contrast opacification [11]. The 7 point scale included evaluation of MCA-M4, anterior cerebral artery (ACA), ICV, and great cerebral vein (GCV) [14]. In the 10 point scale, all the seven segments of the 7 point scale plus posterior cerebral artery (PCA) and basilar artery are included [6]. In a recent study, Garret et al. assessed statistical performance of CTA in diagnosing brain death. For all the 18 patients included in the study, CTA had sensitivity of 75%, specificity of 100%, positive predictive value of 100%, and negative predictive value of 33% [15]. Another recent study from Macdonald et al. reported the diagnostic accuracy and inter-rater reliability of different ancillary imaging tests used for brain death in 74 patients. They showed that CTA along with CTP and radionuclide scan had a specificity and positive predictive value of 100% [10]. These results certainly add to the growing medical literature that supports the use of CTA as a reliable ancillary imaging test in confirming the brain death. However, systematic reviews do not support use of CTA as an ancillary imaging test for confirmation of brain death [16, 17].
\nThe disadvantages of CTA are that this is not widely available as a bedside test and patient needs to be transported to imaging facility and this is challenging for an intensive care unit (ICU) patient. However, this can be obviated by the use of portable CT scanners in the future. CTA provides incomplete quantitative measurement of cerebral blood flow due predominantly of “stasis filling” (Figure 4). It is defined as delayed, weak persistent opacification of proximal cerebral arteries. This phenomenon causes a major problem in the development of reliable CTA protocol for the diagnosis of brain death [6]. There is also potential risk of damage to the organs of the brain death patients because of iodinated contrast media used in CTA. However based on the volume of contrast used for CTA, this is rare or negligible [18, 19].
\nAxial CTA images (A, B) in patient with clinically confirmed brain death show contrast opacification of bilateral internal carotid arteries, proximal branches of bilateral middle, and anterior cerebral arteries. None of the two images show opacification of M4 or cortical branches of middle cerebral arteries, distal anterior cerebral artery (ACA), internal and great cerebral vein. There is some opacification of only right posterior cerebral artery. There is continued filling of the extra cranial arteries.
CTP is an advanced CT scan technique that provides both anatomical as well as functional information about the brain. CTP is useful in detecting perfusion even in small vessels such as arterioles, capillaries, and venules [20]. CTP is routinely used for evaluation of cerebral ischemia and vascularization of brain tumors and has the spatial resolution to quantify perfusion in any selected part of the brain [21, 22]. This imaging technique can help in calculation of cerebral blood flow (CBF) and cerebral blood volume (CBV). Normal CBF in the brain is 50–60 ml/100 mg/min and CTP can measure as low as 1.2 ml/100 mg/min [20]. CTP is very sensitive in detecting the blood flow and can detect decreased perfusion as low as 2–3% in CBF and 2% in CBV [23]. In CTP acquisition protocol, patients will undergo whole brain coverage with 80 kVp, 100 mAs resulting in a radiation dose of approximately CT dose index of 189.64 mGy [20]. A minimum scan duration of 60 seconds is recommended to reliably cover the venous phase of the circulation. A total of 40 ml nonionic iodinated contrast medium injected at the rate of 5 ml/seconds, followed by 40 ml of saline flush at the rate of 5 ml/seconds. Regular perfusion analysis is performed if intracranial arteries are seen on the source images [20]. Whole brain death could be seen as no intracranial CBF or CBV (Figure 5). Shankar et al. compared CTP and CTA derived from the CTP for confirmation of brain death in a retrospective review of 11 patients clinically suspected of brain death [20]. CTA showed a sensitivity of 72.7% for 7- and 4-point scales, 81.8% sensitivity for opacification of ICV, and 100% sensitivity for CTP scores in the brainstem [20]. They, for the first time, showed that CTP can be a valuable ancillary tool in early detection of brain death. Recently, Sawicki et al. tested the reliability and diagnostic accuracy of CTP over CTA in determining brain death [24]. For whole brain CTP, they also showed a sensitivity of 100% to confirm the diagnosis of brain death [24]. MacDonald et al. showed similar sensitivity [10].
\nCT perfusion showing no detectable cerebral blood flow (CBF) (A) and cerebral blood volume (CBV) (B) in the whole brain.
CTP can also evaluate brain-stem specific CBF [10, 20]. The concept of isolated brainstem death was first proposed by Shankar et al. in clinically confirmed brain death patients (Figure 6) [20]. Exact pathophysiological mechanism behind isolated brainstem death is not yet known. This is described when in patients with clinically confirmed brain death, there is presence of blood flow in the supratentorial brain and isolated absence of blood flow in the brainstem [10, 20]. Clinical examination does not differentiate between whole brain death and isolated brainstem death. CTP is the first imaging test reported to show the phenomenon of isolated brainstem death [10, 20]. It is suspected that isolated brainstem death is an earlier phenomenon in the process of brain death and may help early declaration of brain death [10]. However, the concept of brainstem death is debatable at the present time, and more studies are needed to establish this phenomenon.
\nCT perfusion showing matched defect on cerebral blood flow (CBF) (A and B) and cerebral blood volume (CBV) (C and D) maps in brainstem only. The supratentorial brain as well as cerebellum showed preserved CBF and CBV.
Like CTA, CTP is a widely available tool and with the availability of automated software, CTP is relatively operator-independent [20]. The advantage of CTP is that it can be performed along with CTA. CTP has a presumed risk of contrast induced renal damage in the patients with kidney disease. But, based on the volume of contrast used for CTP, the chances of nephrotoxicity is very rare or negligible [18, 19].
\nIt is a reliable high-resolution imaging of brain and has been used for imaging for brain death. MRI has an advantage of not requiring nephrotoxic contrast material for demonstration of cerebral blood flow. It is noninvasive and accurate in identifying structural abnormalities in the brain. Common MRI findings in brain death patients are variable edema, diffuse cortical high signal intensity, diffuse cerebral white matter injury, and tonsillar herniation [25, 26]. Lovblad and colleagues demonstrated the usefulness of diffusion weighted imaging (DWI) in the diagnosis of brain death [27]. They reported that apparent diffusion coefficient (ADC) values are reduced in brain death patients when compared to the normal individuals [27]. Using DWI and ADC mapping, it is possible to identify areas of cytotoxic damage and ischemic damage [4]. However, this has not been accepted in the imaging guidelines for brain death. The major disadvantages of this method are the length of the scan time and obtaining MRI on ventilated patients as they may have several contraindications to MRI.
\nIt is a reliable test for cerebral blood flow [28] and can detect intracranial arterial blood flow and flow voids (Figure 7). However, MRA has not yet been proven as an ancillary test in assessing the brain death. Time of flight MRA is relatively immune to “stasis filling” when compared to CTA or DSA. Like any MRI, the patient needs transportation to the radiology department, and the length of time for MRA is longer than that for CTA or CTP. There is requirement of having specialized critical care equipment in a scanner.
\nTime of flight MR angiography image of a brain dead patient showed no intracranial flow but preserved extracranial flow on source image (A), axial (B), and coronal (C) maximum intensity projection images.
MRP is noninvasive and can be used to detect intracranial arterial blood flow. It can also detect perfusion parameters of affected brain tissues such as cerebral blood flow and cerebral blood volume. There are not many reports in the literature that used MR perfusion as an ancillary imaging tool, and more research studies are needed to establish the reliability of this technique in the clinical setting.
\nFor clinical confirmation of brain death, the three essential criteria are apnea, absence of brain stem reflexes, and coma. In situations where brain death cannot be confirmed by one of these clinical tests or there are uncertainties around the reliability of clinical examination, ancillary imaging techniques are required to confirm brain death. We describe different ancillary imaging tests commonly used and reported to confirm the brain death. More research is required to validate these tests to become gold standards in the clinical practice.
\nJai Shankar is the co-PI of ongoing INDEX study for prospective evaluation of CT perfusion for confirmation of brain death.
An important part of the Colombian territory is located mainly around and in the vicinity of the volcanoes and is covered with deep mantles as deposits of volcanic ash soils modeling the landscape of mountains and especially the central mountain range.
\nSoils of residual origin evolve from in situ weathering, and normally, they are characterized by a finer granulometry close to the surface where the alteration has been more intense. Despite this generalization, there are residual soils that reflect greater alteration in depth; this is often the case of soils derived from volcanic ash [13].
\nThe soils derived from volcanic ash are those formed from the weathering of deposits of materials from volcanic ejections. According to the Committee for the Recognition of Soils [24], these soils are called Andisols, a name derived from ando soil; etymologically, “an” means dark and “do” means soil in Japanese language [10, 21, 27].
\nThe central concept of the Andisols covers two fundamental aspects: (1) parental material of volcanic origin (ash, pomace, slag, pyroclastic, etc.) and (2) soils whose colloidal fraction is dominated by non-crystalline materials.
\nUnder this concept, the specific properties of these soils have been attributed basically to the predominance of allophane in the colloidal fraction; however, the results found by Shoji and Ono [22] in soils without the presence of this mineral showed that the properties of the Andisols are not necessarily given by the allophone and indicate that the Al-humus and Fe-humus complexes also influence the properties of these soils [10].
\nBased on these results, new criteria were established to define the Andisols as soils developed from volcanic ejections or volcanoclastic materials whose colloidal fraction is dominated by non-crystalline materials and/or Al-humus complexes. It was also determined that the andic properties are the result mainly of the presence of significant amounts of Al-humus, allophane, imogolite, or ferrihydrite complexes [10, 16].
\nThe physical, mechanical, and chemical properties of these soils make them considered as being of great importance worldwide due to their high productive potential, high carbon and nitrogen accumulation, high storage capacity, and improved water quality [10, 23].
\nAround the volcanic zones of the entire American continent are deposits of residual soils formed from the weathering of volcanic ash. Studies on similar soils and their performance in engineering works in regions such as Indonesia, New Zealand, India, Dominica, and Japan show that this type of soil has unusual properties compared to sedimentary soils [18, 20, 28]. In: soils derived from volcanic ash in Colombia [13].
\nThe soils that currently cover the regions surrounding the volcanoes of the Andes Mountains in Colombia have their origin in pyroclastic materials that emanated during the volcanic eruptions of the last 25,000 years [9]. These deposits correspond to residual soils formed from the physical and chemical alteration of volcanic ash. Worldwide, volcanic ash soils represent approximately 0.84% of soils and are located predominantly in tropical regions [10, 13, 17, 21].
\nThe soils derived from volcanic ash in Colombia occupy about 11.6% of the national territory and are located in regions of significant demographic and economic growth. In the Colombian coffee zone, it is estimated that about 350,000 ha of soils grown with coffee correspond to Andisols. These soils extend from the Eje Cafetero (Departments of Antioquia, Caldas, Risaralda, and Quindío) in the center of the country, to the departments of Tolima, Cauca, and Nariño to its south west.
\nVolcanic ash is generated from the fragmentation of magma and materials in the cone of the volcano from previous eruptions [2, 13, 29]. Three mechanisms have been identified as the main generators of volcanic ash: the rupture of the magma due to vesiculation, the fragmentation due to high thermal stresses, and the pulverization of the lava in the walls of the volcano’s chimney during eruption.
\nThe mechanism of ash formation defines the block or vesicular morphology. The block ashes have flat surfaces resulting from the vitreous fracture of the magma. Vesicular ashes may have water drop textures or surfaces formed by the rupture of the material through areas that had air bubbles [13, 29].
\nThe amount of water consumed in the transfer of thermal energy into mechanical energy also affects the production of volcanic ash. Dry eruptions (completely consumed water) lead to the formation of thickly laminated lapilli layers and thick ash layers (scale: dm–m). Wet eruptions (partially consumed water) lead to thin ash layers (scale: cm) [2].
\nVolcanic ash is composed predominantly of light primary minerals and mainly volcanic glass [14]. This primary mineral plays an important role in the formation of the minerals currently found. In a more advanced stage of alteration of the volcanic glass, halloysite is formed, a quasi-argillaceous primary mineral that is less evolved as a gel with a 1:1 Si/Al ratio. Most of the ashes that have led to soil formation in Colombia are dacitic, rich in plagioclase feldspar, volcanic glass, amphiboles, and pyroxenes, and poor in quartz [1, 13].
\nResidual soils derived from volcanic ash are developed through processes of physical and chemical alteration of volcanic ash deposits (dissolution, leaching, and precipitation of compounds). These processes of alteration transform the minerals, the shape and size of the particles, and the porosity. Its influence is controlled by climatic conditions and weather. Climatic conditions (such as precipitation, temperature, humidity, and wind) determine the presence of available fluids for chemical reactions, the rate at which these reactions occur, the migration of compounds, and the erosion, among other processes [4, 26]. Time, on the other hand, governs the sequence for the synthesis of secondary minerals and the distribution of particle sizes.
\nAs a soil-forming factor, the effect of the parent material is more important in the initial stages of soil formation than in advanced stages. The weathering of the parent material depends on the presence of acidic or basic minerals. In general, acid minerals (e.g., quartz, feldspar, hornblende, mica, etc.) are more resistant to weathering than basic minerals (e.g., olivine, pyroxene, and calcium plagioclase [13, 26]).
\nDuring weathering, an elemental composition rich in Si, Al, and base cations (e.g., Na and Ca) is generally obtained. The Si and the basic cations are dissolved and removed from the surface layers and the Al tends to remain. As the climate becomes more humid, greater dissolution occurs and more aluminum (Al) is removed [13, 14, 30]. The mechanisms of dissolution and leaching are very important for the formation of soils derived from volcanic ash since they lead to highly porous surface areas and the availability of the necessary solutions for the synthesis of secondary minerals.
\nIn a general way, it can be said that the structure, the state of efforts, and the flow of water in any type of soil change when it is exposed to the intense cycles of drying and wetting, typical of the climatic conditions of the tropics. These changes affect the physical properties and mechanical behavior of the soil, which can lead to geotechnical problems (e.g., erosion, slope instability, etc.).
\nSoils derived from volcanic ash in Colombia are located in regions where a bimodal rainfall regime occurs during April to May and October to November and very dry periods occur between these stages. During periods of low precipitation and high temperature, high water evaporation occurs between the pores of the soil, causing its drying.
\nThe evaporation produces contraction and increase of the suction forces in fine soils (silts and clays), for the states of complete saturation or partial saturation, respectively. The desiccation evolves occasionally toward the formation of cracks. These cracks can be understood as a consequence of the stresses produced by desiccation. Cracks in the surface of the soil make up areas susceptible to problems of erosion and instability, often observed on slopes with little plant cover, continuously exposed to drying processes. On the other hand, during humid periods, characterized by permanent and intense rains, the infiltrated water reduces the capillary effects and causes volumetric changes that can lead to swelling or collapse of the soil structure [13].
\nIn Colombia, the natural slopes in soils of volcanic origin reach heights between 10 and 20 m with slopes greater than 60° [8, 13, 19]. Despite this, the slopes are susceptible to instability, erosion, and cracking depending on the climatic conditions and vegetation cover. In the Colombian Coffee Region, landslides detonated by intense rainfall or locally intense earthquakes are often reported. These landslides can have a high potential for destruction in densely populated areas in mountainous reliefs of great length and high slope.
\nThe soils of the region are characterized by steep slopes of 30° (67%) to 35° (78%), extensive slope lengths; the shape of the concave slope is favorable to the accumulation of surface and sub-surface waters. In addition to the detonating agent, the occurrence of a landslide is determined by previous conditions related to deficient plant cover, or the misuse or management of the soil, the poor disposition of agricultural production systems, the indiscriminate felling of forests for planting of pastures and livestock production and their precarious management and essentially physical causes inherent or intrinsic to these soils.
\nThe coffee axis is located in a tropical zone that presents great climatic changes due to altitude changes and has a bimodal climatic regime given by two humid periods and two dry periods. The zone receives an annual precipitation varying between 1500 and 2250 mm. Surface landslides (depth < 1.5 m) are usually activated during periods of heavy rains, April to May and October to November, in which the accumulated rainfall during 1 or 2 days exceeds 70 mm [13, 25].
\nThe superficial soils predominant in the area have deficiencies in the properties of resistance to the cut, since they are recently formed volcanic ash, unconsolidated, and sandy (Ruiz and Cerro Bravo volcanic complex in the Department of Caldas). These materials generally have low plasticity and cohesion due to their loose grain condition with sandy textural appreciations. The cohesion is drastically reduced (or even disappears) when the soil becomes saturated (reduction in the suction capacity), during the occurrence of intense rainfall, for example (the suction is lost and the natural cements dissolve).
\nThe landslides have a flat and irregularly shaped surface defined by the contact between the layer of soils derived from volcanic ash and the layer that underlies it, composed of materials of vulcano-detrital origin, that are moderately or slightly weathered and/or evolved and they often come in slices. Slides of greater depth (depth: 3–10 m) are produced with detonating precipitation less than 50 mm, when the previous accumulated precipitation exceeds 200 mm [13, 25]. Dramatic differences in the permeability of these strata layers or horizons of these soils lead to the formation of a hung phreatic level that reduces effective efforts and increases instability or susceptibility to erosion.
\nErosive processes are due to natural causes such as contact between geological units, in particular, a geometrically unfavorable contact between the upper volcanic ash (sandy and permeable and without aggregation) and the underlying igneous and metamorphic sedimentary rocks (compact, massive, and impermeable). This contact coincides with the fault surface of many of the landslides that have occurred and favors the accumulation of water that infiltrates through permeable surface of volcanic ash.
\nHigh torrentiality of permanent and intermittent drainage channels and lines exists in the region. Trees and very heavy shrubs on the crown of steep slopes generate a significant overload and negative “lever action.”
\nThe deforestation of the protection areas of the micro-basins, and the areas dedicated to pastures in the study area, becomes an accelerating factor due to the lack of protection of vegetation cover that counteracts the runoff associated with degadation phenomena gives origin to loss of soils and biodiversity and the alteration of the hydrological cycles of the basins or rivers of the region. This determines that areas of productive vocation, which are close to the micro-basins, that have lost their protective capacity of the ecosystems of strategic interest, are also affected due to the factors that undermine the stability of the soil, thus diminishing the potential to offer environmental services, of which the populated communities of the region are beneficiaries, limiting the production processes, and, therefore, their social and economic life.
\nOther determining factors of the drastic hydrological imbalances of the micro-basins of the region, which contribute significantly to the increase of flows, both surface water and infiltrated, which are the cause of landslides and mass erosion phenomena, are as follows:
Increase in the change of land use from forests to paddocks. It has produced a drastic hydrological imbalance of micro-basins, significantly increasing the flows of surface and infiltrated waters.
Excavation at the base of slopes and their over steepness, during the road construction processes.
Deficiencies in road rainwater management works (transverse, without debris to stable and/or well-protected sites, and without internal structures to dissipate energy). Specific fillings in some areas of the road corridor, with low technical specifications and coinciding with sites of subsidence and settlements.
Deposit of the materials resulting from the road cut, on the adjacent slopes, without any type of confinement. These “hillside fillings” coincide with the failed soils of some recent landslides.
Specific problems of inadequate catchment, conduction, and delivery of surface water served in local homes (lack of channels and downspouts, deliveries of sewer networks to the hillside, soft areas without waterproofing, etc.).
The deforestation of the areas of interest for the protection of the micro-basins and the presence and increase of the areas in natural pastures in the study area are some of the causes of the decrease in water flows, which are associated with degradation of soils and aquatic and terrestrial flora and fauna and the alteration of the hydrological cycles of the basins, when climatic variables reach the most critical levels. The productive areas to intervene surrounding the micro-basins as ecosystems of strategic interest are also affected by climate change, which affects soils, reducing the supply of this environmental service to the beneficiary communities.
\nAccording to PLA [15], amorphous clays, high in allophane, are the main determinants of the very particular physical and mechanical properties of Andisols. They are responsible for the development of low-density bulk floors, high porosity, high water retention (high saturation, field capacity, and tension of 1.5 MPa), and high limits (upper plastic limit or liquid limit—LPS and liquid plastic lower limit—LPI) of plasticity. The retention of available water (field capacity humidity at 1.5 MPa) is also usually high and limit liquid or water flow in the form of water is near, in soils not altered to the point of saturation.
\nAlthough the gravimetric water retentions are usually very high (up to 2–3 times the mass of dry soil when saturated), they are not so much on a volumetric basis due to the low apparent densities, although they are still higher than in other soils. The high retention of moisture even at high voltages and the poor connection between pores means that in humid climates, even with good drainage, conditions of poor aeration at shallow depths that restrict root development remain in the Andisols. In any case, to achieve such high moisture retentions requires a degree of weathering of volcanic ash, with formation of halloysite and accumulation of organic matter, since with very recently formed ashes, generally with sandy loam to gravel, the volumetric capacity Water retention is usually very low [15].
\nWith drying, up to 30–50% of the water-retention capacity and a large part of its plasticity are irreversibly lost. It has been pointed out that the change of the plasticity indexes with the drying of the soil is the main property that distinguishes the Andisols from other soils where crystalline clays predominate.
\nThe drastic and irreversible changes of properties of the Andisols derived from changes in humidity have much to do with the erosion processes in these soils.
\nThe greater the inclination of the soils, the instability increases soils and, with it, the greater the susceptibility to mass movements, the more rainwater is infiltrated and less lost by runoff (accumulation). Mass movements depend on the interaction of several factors, especially slope; lithology; soil type; intensity, duration, and continuity of rainfall; surface and internal drainage conditions; vegetation cover; and management.
\nBy virtue of the above, it is technically demonstrated that in Andisols, where a limiting layer has been formed for internal drainage at shallow depths and a high rate of surface infiltration is maintained, increases in moisture content negatively affect the stability of the soil material facing landslides by:
Increase in pore water interstitial pressure, which reduces the flow resistance in saturated soil over the restricted drainage layer.
Development of a hydraulic gradient or pressure in the direction of flow below the surface that can gradually lead to sub-surface erosion.
Lubrication of the limiting layer or sliding plane, which facilitates the movement of the material above it.
Increase in the mass of moist soil, sometimes 2–3 times its dry mass.
Decrease in the cohesion between particles and aggregates and once the soil is saturated, development of positive pressures in the pores [15].
Chavarriaga (2014) studied and investigated the physical and chemical characterization of soil profiles. Reference: evaluation of causal factors, effects and feasible management alternatives, the problem of erosion and mass removal of soils in the Maltería—Las Margaritas road transect, right slope of the Chinchiná River, via Magdalena “Department of Caldas-Colombia.”
\nThe investigation was carried out to identify and diagnose the problem of soil erosion processes in the area of influence of the Maltería-Las Margaritas road transect via Magdalena, right slope of the Chinchiná River, to technically evaluate the factors involved and the causal relationships—intervening effect on the problem of erosion and mass removal of soils, weighing risks and impacts, investigated about the factors related to the technical nature of the problem of deterioration of the soil resource, and its alternatives for improvement or mitigation, of the general impacts and develop the physical-chemical knowledge of the problem of environmental deterioration of soils in the area of influence of the Maltería-Las Margaritas road transect via Magdalena, Municipality of Manizales; Secularly converted into a factor of great environmental and socioeconomic impacts, aggravated in the winter periods of the area, which lead to problems of large soil losses, landslides, road restrictions, and all kinds of risks, which compromise important resources of the region, as losses of landscape, biodiversity and human lives.
\nFor the purposes of sampling, the digital cartographic information provided by CORPOCALDAS (Autonomous Regional Corporation of the Department of Caldas), stratified in three altitudinal ranges: high, medium, and low, considered as representative of the study area, was taken as a basis. The type of sampling applied was of a random nature and was carried out using functions of the ArcGis program based on a number of four repetitions of each combination of the variables “coverage” and “altitudinal range,” resulting in a total of 52 sampling points (52 pits, duly geo-referenced). The resulting systems are shown in Table 1. The soil samples were made by opening pits of 1 × 1 × 1.50 m and making samples in each of them by soil profile (2–4 samples per profile according to horizons and profile morphology), which were processed for analysis in terms of physical and chemical variables. By groups of pits according to their altitudinal position and vegetation cover (5 coverings), a format or spreadsheet for the description of soil profiles was prepared (52 profiles) taking into account the methodology of soil surveys described by Cortés and Malagón [3] and the FAO profile description guide [7], both references updated according to the description method of the Geographic Institute Agustín Codazzi (IGAC) [12]. Soil chemical analyses were carried out in the soil laboratory of the Caldas University and the analyses for the physical variables in the soil physics laboratory of the National University of Colombia, Palmira-Valle. Both the chemical and the physical information were processed by correlation analysis for their interpretation and mapping according to their geo-referencing.
\nTable 1 indicates the edaphic systems under evaluation with their respective coverage and altitude ranges. The information on soil cover are indicative and taken from CORPOCALDAS and verified in the field, were studied, sampled, and analyzed the soils by means of pits as stipulated by the international guides of description of soil profiles. The altitudinal information was suggested by researchers to facilitate its analysis.
\nThe mosaic illustrates the different systems of coverage and their altitudinal position and allows to observe the little spatial variability of the soils, preserving similarities in their morphology and their genesis or their own genetic homogeneity or inheritance provided by the ancient deposits of pyroclastic volcanic materials. The ancient and recent volcanic events in a certain way have shaped the landscapes themselves where the profiles of exposed and supra-lying soils are located and studied to the lithological formations or litho-units dominated by igneous rock materials predominantly but with the participation of shales and other metamorphic materials. In general, this is the panorama of strata or horizons evidencing eminently volcanic features whenever an attempt has been made to discover the soil to such depths edaphologically speaking and that have enabled world literature to highlight the particularities of our soils known as volcanic or volcanic ash (volcanic ash soils).
\nOn the other hand, the exposed mosaic allows a visual approach to obtain knowledge of reality in terms of the fragility of these edaphic ecosystems and therefore their immense susceptibility to erosion or mass removal and accompanying their physical attributes estimate in this study how are sandy and frank sandy textures, friable or loose consistencies, slightly plastic and slightly sticky, loose structures or those without structure in lower horizons markedly pyroclastic, not plastic and not sticky and without structure or loose consistency.
\nIn this regard, the Geographical Institute Agustín Codazzi (IGAC) [12], in studies close to this research area concluded that the alternation of materials: ash-lapilli-pumice sands that have originated different horizons, A and C layers, show that a polycyclic development of these soils allow to deduce the different depositions of pyroclastic materials that have suffered degradation and reconstruct the history of their evolution; in effect, once the horizon was formed, it was buried by new materials, repeating in this way the different cycles of contributions of tephra or pyroclastic layers.
\nIn any case, the presence of melanization, mineralization, humification, and structural development processes on the horizon indicates a pedogenic development slowed not only by the continuous rejuvenation of the materials but also by the very low temperatures.
\nThe soils have originated from volcanic ashes alternating with sands, lapilli, and pumice. In superficial cases, well drained, they present several A horizons of dark colors with good structural development buried by volcanic sands that in turn are covered by lapilli and pumice; this indicates that they have suffered several periods of rejuvenation. In addition, the A horizon meets all the requirements of an umbric epipedon with andic properties, for which reason the soils have been considered as moderately evolved.
\nThe physical-chemical dynamics of these soils is controlled by the presence of allophone, an amorphous material originating from the alteration of volcanic ash, constituted by Si in tetrahedral site, Al in tetrahedral and octahedral sites, and other octahedral ions with high variable load or high capacity of cationic exchange (CEC), 25–50 cmol(+)/kg of soil, anionic retention power (mainly phosphates), high affinity for humus and high porosity; and these allophones establish with it strong bonds that result in the accumulation of organic matter in the soil.
\nThe humus-allophane interaction gives the soil particular properties such as high porosity constituted by many fine pores and medium observed in many cases and high retention of water or moisture at different tensions as a result of the high microporosity and the presence of allophane and organic matter.
\nThe description and interpretation of the external and internal characteristics of one of the 13 modal profiles representative of the different coverages and uses and in accordance with the heights and their symbol are presented below. The methodology used follows the guidelines and procedures for description and interpretation of the 2013 IGAC in its semi-detailed study of Caldas soils.
\nTaxonomy: Typic hapludand.
\nCartographic unit: Cedral Consociation. Symbol: VS24262.
\nGeographical location: Department: Caldas. Municipality: Manizales Site: finca: El Cedral.
\nGeographical coordinates: X: 851051, 2843; Y: 1049817,0675; Height: 2444 m above sea level.
\nLandscape: mountain. Type of relief: Andean peaks.
\nShape of the terrain: slopes, peaks, and troughs.
\nLithology: alternating layers of volcanic ash, lapilli, and sands, on granitic lavas.
\nEnvironmental climate: cold and humid.
\nAverage annual rainfall: 1800–2000 mm. Average annual temperature: 8–15°C.
\nEdaphic climate: temperature regime: mesic. Moisture regime: udic.
\nErosion: Class: pluvial water. Type: furrows. Degree: moderate.
\nMass movements: Class: deformations. Type: cow’s foot. Frequency: frequent.
\nSurface stoniness: there is none.
\nRocky outcrops: there is none.
\nFloods: there is none.
\nEncharcamientos: there is none.
\nWater level: not found.
\nNatural drainage: good (good).
\nEffective depth: moderately deep.
\nLimited by: alternating layers of pyroclasts.
\nDiagnostic horizons: Epipedon: umbric. Endopedon: there is none.
\nDiagnostic characteristics: andic properties, mesic temperature regime, and umbric epipedon.
\nNatural vegetation: secondary vegetation.
\nCurrent use: forest.
\nLimitations of use: cold weather and slope.
\nDescribed by: William Chavarriaga Montoya. Date: April 2014 (Table 2).
\nNo. | \nCoverage | \nAltitude range | \n
---|---|---|
1 | \nWeedy grass | \nHigh: >2800 m above sea level | \n
2 | \nSecondary vegetation | \nHigh: >2800 m above sea level | \n
3 | \nSecondary vegetation | \nMedium: 2600–2800 m above sea level | \n
4 | \nSecondary vegetation | \nLow: 2400–2600 m above sea level | \n
5 | \nMosaic of pastures with natural spaces | \nHigh: >2800 m above sea level | \n
6 | \nMosaic of pastures with natural spaces | \nMedium: 2600–2800 m above sea level | \n
7 | \nMosaic of pastures with natural spaces | \nUnder: 2400–2600 m above sea level | \n
8 | \nDense forest of high ground | \nHigh: >2800 m above sea level | \n
9 | \nHigh, dense forest of firm ground | \nMedium: 2600–2800 m above sea level | \n
10 | \nDense forest of the mainland | \nLow: 2400–2600 m above sea level | \n
11 | \nClean grass | \nHeight: >2800 m above sea level | \n
12 | \nClean grass | \nMedium: 2600–2800 m above sea level | \n
13 | \nClean grass | \nLow: 2400–2600 m above sea level | \n
List of systems under evaluation (coverage and altitude range).
Profile no: VS24262 internal profile features.
The soils of the Consociación el Cedral formed of volcanic ash are moderately deep, well drained, with moderate structural development. These soils have brownish and yellowish brown A/C genetic horizons respectively and umbric diagnostic horizon with andic properties, for which the consideration is reiterated as moderately evolved soils (Tables 3 and 4).
\nReference | \nHorizon | \nAltitude (m) | \nBulk density (g/cm3) | \nReal density (g/cm3) | \nTotal porosity (%) | \nMacro (%) | \nMeso (%) | \nMicro (%) | \nDispersión coefficient (%) | \n
---|---|---|---|---|---|---|---|---|---|
SV24262-A | \nA | \n2444 | \n1.05 | \n2.41 | \n56.43 | \n24.25 | \n13.25 | \n18.93 | \n11.42 | \n
SV24262-Bb | \nBb | \n2444 | \n1.01 | \n2.55 | \n60.39 | \n43.84 | \n6.81 | \n9.74 | \n13.33 | \n
Reference | \nHorizon | \nHumidity retention | \n|||||||
---|---|---|---|---|---|---|---|---|---|
Saturation (%) | \n0.1 b | \n0.3 b | \n1 b | \n3b | \n5b | \n10 b | \n15 b | \n||
CG24262-A | \nA | \n85.30 | \n69.95 | \n34.12 | \n33.48 | \n31.04 | \n27.91 | \n23.34 | \n20.07 | \n
PL24262-C | \nC | \n27.53 | \n22.57 | \n11.01 | \n10.80 | \n10.02 | \n9.01 | \n7.53 | \n6.48 | \n
Reference | \nHorizon | \nAltitude (m) | \nSieve (#10) (2 mm) (%) | \nSieve (#20) (0.84 mm) (%) | \nSieve (#35) (0.5 mm) (%) | \nSieve (#60 )(0.25 mm) (%) | \nSieve (#>60) (<0.25 mm) (%) | \n
---|---|---|---|---|---|---|---|
SV24262-A | \nA | \n2444 | \n87.8 | \n3.48 | \n2.88 | \n1.48 | \n4.36 | \n
SV24262-Bb | \nBb | \n2444 | \n92.8 | \n1.52 | \n3.36 | \n1.24 | \n1.08 | \n
Reference | \nHorizon | \nAltitude (m) | \nStability index | \nDPM (mm) | \nState aggregation | \nHydraulic conductivity (K) (mm/h) | \nMoisture of threat (m3) | \n
---|---|---|---|---|---|---|---|
SV24262-A | \nA | \n2444 | \n0.08 | \n5.10 | \n94.16 | \n145.51 | \n3,041,010 | \n
SV24262-Bb | \nBb | \n2444 | \n0.06 | \n5.33 | \n97.68 | \n138.90 | \n626,831 | \n
Physical properties VS24262.
Id. sample | \nHeight (masl) | \npH | \nAluminum (cmol(+)/kg) | \nNitrogen (%) | \nO.M cold weather (%) | \nPhosphorus (mg/kg) | \nPotassium (cmol(+)/kg) | \nCalcium (cmol(+)/kg) | \nMagnesium (cmol(+)/kg) | \nSodium (cmol(+)/kg) | \nSulfur (mg/kg) | \n
---|---|---|---|---|---|---|---|---|---|---|---|
SV24262-A | \n2444 | \n5.3 | \n\n | 0.59 | \n16.46 | \n22 | \n0.05 | \n1.43 | \n0.14 | \n0.319 | \n16.67 | \n
SV24262-Bb | \n2444 | \n4.7 | \n0.2 | \n0.54 | \n14.36 | \n104 | \n0.06 | \n0.93 | \n0.09 | \n0.235 | \n8.32 | \n
Chemical properties VS24262.
The results of the chemical analyses indicate that they are strongly acidic reaction soils with pH values between 4.7 and 5.3 with restrictions for K and Mg, whose Potencial De Hidrógenos (pH) is extremely low; they have medium to high values of S and high values of matter organic of soil (MO) and N, with MO being responsible for the CIC due to the low presence of clays. They do not contain aluminum contents that represent a toxicity hazard for many plant species.
\nThe physical-chemical dynamics of this soil is controlled by the presence of allophane, caused by the alteration of volcanic ash; this component has an affinity for humus, and establishes with it strong bonds that result in the accumulation of organic matter in the soil.
\nThe humus-allophane interaction gives the soil particular properties such as high porosity, high water retention, and high capacity for nutrient retention (CICA); however, most of the electrical charge is not available to retain nutrients at the soil pH; this load only appears when the pH rises, such as occurs when the floors are limed. The load, which depends on the pH, is called variable load (CICV) and is the one that is present in this soil. A feature that distinguishes soils of volcanic origin, due to the presence of allophane, is the low availability of phosphorus; however, the analytical results of this soil show average contents of this element, undoubtedly due to the presence of apatite in volcanic materials.
\nThe dark brown color of these soils is generated by the accumulation and high levels of MO in the first horizon resting on clear materials. The texture is sandy loam, while the laboratory results obtained indicate coarser textures (sandy and sandy loam) due to difficulties that arise in the analysis by interference of the allophone. The structure is in subangular, thin, and moderately developed blocks. The porosity is high, (56.43 and 60.39%) for horizons A and Bb, respectively, with a large predominance of macro pores. The apparent density presents low values, normal for soils derived from volcanic ash. The conditions of aeration and drainage are good. The consistency is friable, not plastic, and not sticky in the described horizons.
\nFigure 1 illustrates the moisture contents (%) and the soil moisture tension (Bars), information that indicates that as the soil tension increases, the moisture content decreases and what is related in this measure when the tension is zero (0) the ground is at the point of saturation.
\nMosaic of soil profiles in pits for different cover systems and at different altitude ranges in volcanic soils in Colombia (secondary vegetation; pasture mosaic with natural spaces; weeds; weedy grasses; clean pastures; and high, dense forest mainland).
Such soil water behavior is evident for both horizons: A and Bb. The humidity retention is high at different stresses as a probable result of the presence of allophane and high levels of organic matter.
\nThis measure is considered to be of great value in the study and in correspondence with the studied problematic as it is the mass removal of the soils; its meaning allows us to understand the capacity of these soils to retain water and to increase in volumetric and gravimetric terms the natural condition of the soil, that is, its volume of water content and its corresponding weight. The analysis starts from the consideration of the apparent density expressed in dry weight (1.05 and 1.01) and that allows to calculate the weight of a surface of soil (1 hectare). Determining its saturation point (80.35 and 41.38%) allows to quantify the water that can hold the soil in each horizon and that correspond to values of 3,041,010 and 626,831 m3; this in sum equals 3,667,841 m3 of water per hectare in the investigation of moisture threat.
\nBy virtue of the above findings, water or humidity threat allows us to suggest the potentiality of moisture retention at the time of sampling and the determination of the saturation point for a soil that was not in rainy weather conditions. Such values constitute a powerful argument to estimate the extraordinary erosive capacity of the soil water storage and retention factor in the study and the increase of the soil susceptibility to the mass removals the pending factor is added to this, mountain relief, gravity, geomorphology, lack of protection of the soil of the natural or wooded vegetation cover and poor pasture management due to overgrazing.
\nIn other words, the difference between the water retained to saturation and field capacity is the water that intervenes mainly in the phenomena of mass removals. Another implication is that: 3667.8 tons of water migrate from horizon A, toward C constituted by pyroclastics; there increases the speed of infiltration and in contact of moisture with the buried soil or horizon Bb the water hangs (drain hanging) thanks to the slope of the slope and the horizon becomes a plane of sliding.
\nThe dispersion coefficients of 12.38% on average for the sampled horizons qualify the soil as stable. The variables DPM (weighted average diameter) with average value (5.22) as well as the state of aggregation (95.92%) allow one to assess the soil as very stable or in its defect state of very high aggregation (>90%). Conversely, the stability index < 1.0 warns of the presence of large aggregates that determine and indicate instability with aggregates greater than 5 mm, as confirmed by the DPM (5.22), and susceptibility to soil mass removals. Stability indexes greater than 1 would be ideal and would indicate predominance of intermediate aggregates well distributed in the soil. The usable humidity (12.8%) however for the soil is an average value of available water or useful water or vegetable water supply.
\nOn the other hand, the saturated hydraulic conductivity (Ks) determined in the laboratory with values of 145.51 and 138.9 mm/h allows to identify the speed with which the water permeates the soil; therefore, it is a measure of the permeability as an intrinsic character of the soil. Such values indicate a very fast hydraulic conductivity and/or permeability.
\nThe high humidity retention or high levels of saturation at the different tensions were confirmed as fundamental detonators of the mass removal of the studied soils, as a consequence of the instability of soil aggregates to water, high porosity, and high hydraulic conductivity and their relation with the mineralogy of these soils of volcanic origin, the high rainfall regimes of the region, the altitudinal position, slopes or inclination of the terrain that condition a high relative threat by mass movements.
\nInter-variable correlations were found that facilitate explaining the phenomenon of mass removal in the area, among them some of significant order referring to the association between the variable “Humidity-Threat” and the organic matter for all the coverages analyzed. There is a negative effect of intervention on forests on the stability of soil aggregates.
\nThere is a significant and positive relationship between the stability of the soil structure with the OM content and the degree of soil cover.
\nIt is possible to explain the variations in the stability of aggregates, by the combined action of OM content and the degree of soil cover; however, this last variable is the most significant of the two.
\nThe management of soils against mass removal should consult systems that involve minimal disturbance of the soil and the greatest possible protection through forest coverings, as ways to promote a stable structure and, consequently, promote the resistance of soils to water erosion.
\nWe believe financial barriers should not prevent researchers from publishing their findings. With the need to make scientific research more publicly available and support the benefits of Open Access, more and more institutions and funders are dedicating resources to assist faculty members and researchers cover Open Access Publishing Fees (OAPFs). In addition, IntechOpen provides several further options presented below, all of which are available to researchers, and could secure the financing of your Open Access publication.
",metaTitle:"Waiver Policy",metaDescription:"We feel that financial barriers should never prevent researchers from publishing their research. With the need to make scientific research more publically available and support the benefits of Open Access, more institutions and funders have dedicated funds to assist their faculty members and researchers cover the APCs associated with publishing in Open Access. Below we have outlined several options available to secure financing for your Open Access publication.",metaKeywords:null,canonicalURL:"/page/waiver-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\\n\\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\\n\\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\\n\\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\\n\\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\\n\\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\\n\\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\\n\\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\\n\\nDownload Waiver Request Form
\\n\\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\\n\\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'At IntechOpen, the majority of OAPFs are paid by an Author’s institution or funding agency - Institutions (73%) vs. Authors (23%).
\n\nThe first step in obtaining funds for your Open Access publication begins with your institution or library. IntechOpen’s publishing standards align with most institutional funding programs. Our advice is to petition your institution for help in financing your Open Access publication.
\n\nHowever, as Open Access becomes a more commonly used publishing option for the dissemination of scientific and scholarly content, in addition to institutions, there are a growing number of funders who allow the use of grants for covering OA publication costs, or have established separate funds for the same purpose.
\n\nPlease consult our Open Access Funding page to explore some of these funding opportunities and learn more about how you could finance your IntechOpen publication. Keep in mind that this list is not definitive, and while we are constantly updating and informing our Authors of new funding opportunities, we recommend that you always check with your institution first.
\n\nFor Authors who are unable to obtain funding from their institution or research funding bodies and still need help in covering publication costs, IntechOpen offers the possibility of applying for a Waiver.
\n\nOur mission is to support Authors in publishing their research and making an impact within the scientific community. Currently, 14% of Authors receive full waivers and 6% receive partial waivers.
\n\nWhile providing support and advice to all our international Authors, waiver priority will be given to those Authors who reside in countries that are classified by the World Bank as low-income economies. In this way, we can help ensure that the scientific work being carried out can make an impact within the worldwide scientific community, no matter where an Author might live.
\n\nThe application process is open after your submitted manuscript has been accepted for publication. To apply, please fill out a Waiver Request Form and send it to your Author Service Manager. If you have an official letter from your university or institution showing that funds for your OA publication are unavailable, please attach that as well. The Waiver Request will normally be addressed within one week from the application date. All chapters that receive waivers or partial waivers will be designated as such online.
\n\nDownload Waiver Request Form
\n\nFeel free to contact us at oapf@intechopen.com if you have any questions about Funding options or our Waiver program. If you have already begun the process and require further assistance, please contact your Author Service Manager, who is there to assist you!
\n\nNote: All data represented above was collected by IntechOpen from 2013 to 2017.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10244},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15650}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateEndThirdStepPublish",topicId:"10"},books:[{type:"book",id:"10761",title:"Glaciology",subtitle:null,isOpenForSubmission:!0,hash:"bd112c839a9b8037f1302ca6c0d55a2a",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10761.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10762",title:"Cosmology",subtitle:null,isOpenForSubmission:!0,hash:"f28a2213571fb878839bcbacb9827a1d",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10762.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8485",title:"Weather Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"eadbd6f9c26be844062ce5cd3b3eb573",slug:null,bookSignature:"Associate Prof. Muhammad Saifullah",coverURL:"https://cdn.intechopen.com/books/images_new/8485.jpg",editedByType:null,editors:[{id:"320968",title:"Associate Prof.",name:"Muhammad",surname:"Saifullah",slug:"muhammad-saifullah",fullName:"Muhammad Saifullah"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10404",title:"Evapotranspiration - Recent Advances and Applications",subtitle:null,isOpenForSubmission:!0,hash:"babca2dea1c80719111734cc57a21a4c",slug:null,bookSignature:"Dr. Amin Talei",coverURL:"https://cdn.intechopen.com/books/images_new/10404.jpg",editedByType:null,editors:[{id:"335732",title:"Dr.",name:"Amin",surname:"Talei",slug:"amin-talei",fullName:"Amin Talei"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7724",title:"Climate Issues in Asia and Africa - Examining Climate, Its Flux, the Consequences, and Society's Responses",subtitle:null,isOpenForSubmission:!0,hash:"c1bd1a5a4dba07b95a5ae5ef0ecf9f74",slug:null,bookSignature:" John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/7724.jpg",editedByType:null,editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10556",title:"Petrology",subtitle:null,isOpenForSubmission:!0,hash:"be71a270b1196a96cdc1162f64f9a966",slug:null,bookSignature:"Prof. Ali Ismail Al-Juboury",coverURL:"https://cdn.intechopen.com/books/images_new/10556.jpg",editedByType:null,editors:[{id:"58570",title:"Prof.",name:"Ali",surname:"Al-Juboury",slug:"ali-al-juboury",fullName:"Ali Al-Juboury"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10210",title:"Solar Planets and Exoplanets",subtitle:null,isOpenForSubmission:!0,hash:"b7f57c0e93406f0925482b204ad392ec",slug:null,bookSignature:"Dr. Joseph John Bevelacqua",coverURL:"https://cdn.intechopen.com/books/images_new/10210.jpg",editedByType:null,editors:[{id:"115462",title:"Dr.",name:"Joseph",surname:"Bevelacqua",slug:"joseph-bevelacqua",fullName:"Joseph Bevelacqua"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10850",title:"Extreme Weather",subtitle:null,isOpenForSubmission:!0,hash:"a5cc0122cbb90c28905e22dc439e6e14",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10850.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10851",title:"Volcanology",subtitle:null,isOpenForSubmission:!0,hash:"e25288216b83d0a2459f77c612ead09f",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10851.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10849",title:"Earthquake Forecasting",subtitle:null,isOpenForSubmission:!0,hash:"2a5ddc8f109bb194466cff2367c26400",slug:null,bookSignature:"",coverURL:"https://cdn.intechopen.com/books/images_new/10849.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10952",title:"Soil Science",subtitle:null,isOpenForSubmission:!0,hash:"0aa879d595f22de7f134b32189042eb0",slug:null,bookSignature:"",coverURL:"//cdnintech.com/web/frontend/www/assets/cover.jpg",editedByType:null,editors:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:62},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:12,limit:12,total:11},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"875",title:"Ecosystem",slug:"environmental-sciences-forestry-science-ecosystem",parent:{title:"Forestry Science",slug:"environmental-sciences-forestry-science"},numberOfBooks:3,numberOfAuthorsAndEditors:80,numberOfWosCitations:103,numberOfCrossrefCitations:50,numberOfDimensionsCitations:146,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"environmental-sciences-forestry-science-ecosystem",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"7629",title:"Forest Degradation Around the World",subtitle:null,isOpenForSubmission:!1,hash:"29f17114445c20431aaaa24f31c2ef99",slug:"forest-degradation-around-the-world",bookSignature:"Mohd Nazip Suratman, Zulkiflee Abd Latif, Gabriel De Oliveira, Nathaniel Brunsell, Yosio Shimabukuro and Carlos Antonio Costa Dos Santos",coverURL:"https://cdn.intechopen.com/books/images_new/7629.jpg",editedByType:"Edited by",editors:[{id:"144417",title:"Dr.",name:"MOHD NAZIP",middleName:null,surname:"SURATMAN",slug:"mohd-nazip-suratman",fullName:"MOHD NAZIP SURATMAN"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"5539",title:"Forest Ecology and Conservation",subtitle:null,isOpenForSubmission:!1,hash:"6bd160f6d1da73fc253dfe6c4df7c095",slug:"forest-ecology-and-conservation",bookSignature:"Sumit Chakravarty and Gopal Shukla",coverURL:"https://cdn.intechopen.com/books/images_new/5539.jpg",editedByType:"Edited by",editors:[{id:"101105",title:"Dr.",name:"Gopal",middleName:null,surname:"Shukla",slug:"gopal-shukla",fullName:"Gopal Shukla"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"902",title:"Tropical Forests",subtitle:null,isOpenForSubmission:!1,hash:"55286837c680e9be2bc357abf678212e",slug:"tropical-forests",bookSignature:"Padmini Sudarshana, Madhugiri Nageswara-Rao and Jaya R. Soneji",coverURL:"https://cdn.intechopen.com/books/images_new/902.jpg",editedByType:"Edited by",editors:[{id:"79318",title:"Dr.",name:"Padmini",middleName:null,surname:"Sudarshana",slug:"padmini-sudarshana",fullName:"Padmini Sudarshana"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:3,mostCitedChapters:[{id:"31970",doi:"10.5772/33085",title:"A Review of Above Ground Necromass in Tropical Forests",slug:"a-review-of-above-ground-necromass-in-tropical-forests",totalDownloads:2703,totalCrossrefCites:9,totalDimensionsCites:29,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Michael Palace, Michael Keller, George Hurtt and Steve Frolking",authors:[{id:"93962",title:"Dr.",name:"Michael",middleName:null,surname:"Palace",slug:"michael-palace",fullName:"Michael Palace"},{id:"93987",title:"Dr.",name:"Michael",middleName:null,surname:"Keller",slug:"michael-keller",fullName:"Michael Keller"},{id:"93989",title:"Dr.",name:"Steve",middleName:null,surname:"Frolking",slug:"steve-frolking",fullName:"Steve Frolking"},{id:"93992",title:"Dr.",name:"George",middleName:null,surname:"Hurtt",slug:"george-hurtt",fullName:"George Hurtt"}]},{id:"31972",doi:"10.5772/31523",title:"Measuring Tropical Deforestation with Error Margins: A Method for REDD Monitoring in South-Eastern Mexico",slug:"measuring-tropical-deforestation-with-error-margins-a-method-for-redd-monitoring-in-south-eastern-me",totalDownloads:2717,totalCrossrefCites:2,totalDimensionsCites:22,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Stéphane Couturier, Juan Manuel Núñez and Melanie Kolb",authors:[{id:"87605",title:"Dr",name:"Stéphane",middleName:null,surname:"Couturier",slug:"stephane-couturier",fullName:"Stéphane Couturier"},{id:"93234",title:"MSc.",name:"Juan",middleName:null,surname:"Nunez",slug:"juan-nunez",fullName:"Juan Nunez"},{id:"145885",title:"MSc.",name:"Melanie",middleName:null,surname:"Kolb",slug:"melanie-kolb",fullName:"Melanie Kolb"}]},{id:"31964",doi:"10.5772/33217",title:"Dispersion, an Important Radiation Mechanism for Ectomycorrhizal Fungi in Neotropical Lowland Forests?",slug:"dispersion-an-important-radiation-mechanism-for-ectomycorrhizal-fungi-in-neotropical-lowland-forests",totalDownloads:2934,totalCrossrefCites:10,totalDimensionsCites:13,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Bernard Moyersoen",authors:[{id:"94510",title:"Dr.",name:"Bernard",middleName:null,surname:"Moyersoen",slug:"bernard-moyersoen",fullName:"Bernard Moyersoen"}]}],mostDownloadedChaptersLast30Days:[{id:"66710",title:"Deforestation in India: Consequences and Sustainable Solutions",slug:"deforestation-in-india-consequences-and-sustainable-solutions",totalDownloads:960,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"forest-degradation-around-the-world",title:"Forest Degradation Around the World",fullTitle:"Forest Degradation Around the World"},signatures:"Rima Kumari, Ayan Banerjee, Rahul Kumar, Amit Kumar, Purabi Saikia and Mohammed Latif Khan",authors:[{id:"276688",title:"Prof.",name:"Mohammed Latif",middleName:null,surname:"Khan",slug:"mohammed-latif-khan",fullName:"Mohammed Latif Khan"},{id:"279797",title:"Dr.",name:"Purabi",middleName:null,surname:"Saikia",slug:"purabi-saikia",fullName:"Purabi Saikia"},{id:"279806",title:"MSc.",name:"Rima",middleName:null,surname:"Kumari",slug:"rima-kumari",fullName:"Rima Kumari"},{id:"279807",title:"BSc.",name:"Ayan",middleName:null,surname:"Banerjee",slug:"ayan-banerjee",fullName:"Ayan Banerjee"},{id:"285660",title:"Dr.",name:"Amit",middleName:null,surname:"Kumar",slug:"amit-kumar",fullName:"Amit Kumar"},{id:"285661",title:"MSc.",name:"Rahul",middleName:null,surname:"Kumar",slug:"rahul-kumar",fullName:"Rahul Kumar"}]},{id:"31959",title:"Structure, Diversity, Threats and Conservation of Tropical Forests",slug:"structure-diversity-threats-and-conservation-of-tropical-forests",totalDownloads:7195,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Madhugiri Nageswara-Rao, Jaya R. Soneji and Padmini Sudarshana",authors:[{id:"79318",title:"Dr.",name:"Padmini",middleName:null,surname:"Sudarshana",slug:"padmini-sudarshana",fullName:"Padmini Sudarshana"},{id:"120847",title:"Dr.",name:"Madhugiri",middleName:null,surname:"Nageswara-Rao",slug:"madhugiri-nageswara-rao",fullName:"Madhugiri Nageswara-Rao"},{id:"120848",title:"Dr.",name:"Jaya",middleName:null,surname:"Soneji",slug:"jaya-soneji",fullName:"Jaya Soneji"}]},{id:"31964",title:"Dispersion, an Important Radiation Mechanism for Ectomycorrhizal Fungi in Neotropical Lowland Forests?",slug:"dispersion-an-important-radiation-mechanism-for-ectomycorrhizal-fungi-in-neotropical-lowland-forests",totalDownloads:2934,totalCrossrefCites:10,totalDimensionsCites:13,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Bernard Moyersoen",authors:[{id:"94510",title:"Dr.",name:"Bernard",middleName:null,surname:"Moyersoen",slug:"bernard-moyersoen",fullName:"Bernard Moyersoen"}]},{id:"31961",title:"Direct and Indirect Effects of Millipedes on the Decay of Litter of Varying Lignin Content",slug:"direct-and-indirect-effects-of-millipedes-on-the-decay-of-litter-of-varying-lignin-content",totalDownloads:3413,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Grizelle González, Christina M. Murphy and Juliana Belén",authors:[{id:"82355",title:"Dr.",name:"Grizelle",middleName:null,surname:"Gonzalez",slug:"grizelle-gonzalez",fullName:"Grizelle Gonzalez"},{id:"92822",title:"MSc.",name:"Christina M.",middleName:null,surname:"Murphy",slug:"christina-m.-murphy",fullName:"Christina M. Murphy"},{id:"92832",title:"BSc.",name:"Juliana",middleName:null,surname:"Belen",slug:"juliana-belen",fullName:"Juliana Belen"}]},{id:"31974",title:"Exchange of Carbon Between the Atmosphere and the Tropical Amazon Rainforest",slug:"exchange-of-carbon-between-the-atmosphere-and-the-tropical-amazon-rainforest",totalDownloads:2461,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Julio Tóta, David Roy Fitzjarrald and Maria A.F. da Silva Dias",authors:[{id:"79068",title:"Dr.",name:"Julio",middleName:null,surname:"Tota",slug:"julio-tota",fullName:"Julio Tota"},{id:"79116",title:"Prof.",name:"David",middleName:null,surname:"Fitzjarrald",slug:"david-fitzjarrald",fullName:"David Fitzjarrald"},{id:"121992",title:"Prof.",name:"Maria Assunção",middleName:null,surname:"Silva Dias",slug:"maria-assuncao-silva-dias",fullName:"Maria Assunção Silva Dias"}]},{id:"68528",title:"Forest Biodiversity and Deforestation in Bangladesh: The Latest Update",slug:"forest-biodiversity-and-deforestation-in-bangladesh-the-latest-update",totalDownloads:576,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"forest-degradation-around-the-world",title:"Forest Degradation Around the World",fullTitle:"Forest Degradation Around the World"},signatures:"Ahm Ali Reza and Md. Kamrul Hasan",authors:[{id:"281012",title:"Dr.",name:"Md. Kamrul",middleName:null,surname:"Hasan",slug:"md.-kamrul-hasan",fullName:"Md. Kamrul Hasan"},{id:"302258",title:"Dr.",name:"AHM Ali",middleName:null,surname:"Reza",slug:"ahm-ali-reza",fullName:"AHM Ali Reza"}]},{id:"31975",title:"Direct Sowing: An Alternative to the Restoration of Ecosystems of Tropical Forests",slug:"direct-sowing-an-alternative-to-the-restoration-of-ecosystems-of-tropical-forests",totalDownloads:2487,totalCrossrefCites:1,totalDimensionsCites:6,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Robério Anastácio Ferreira and Paula Luíza Santos",authors:[{id:"84167",title:"Dr.",name:"Roberio",middleName:null,surname:"Ferreira",slug:"roberio-ferreira",fullName:"Roberio Ferreira"}]},{id:"31966",title:"Gap Area and Tree Community Regeneration in a Tropical Semideciduous Forest",slug:"gap-area-and-tree-community-regeneration-in-a-tropical-semideciduous-forest",totalDownloads:3513,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"André R. Terra Nascimento, Glein M. Araújo, Aelton B. Giroldo and Pedro Paulo F. Silva",authors:[{id:"81737",title:"Dr.",name:"André Rosalvo Terra",middleName:null,surname:"Nascimento",slug:"andre-rosalvo-terra-nascimento",fullName:"André Rosalvo Terra Nascimento"}]},{id:"31970",title:"A Review of Above Ground Necromass in Tropical Forests",slug:"a-review-of-above-ground-necromass-in-tropical-forests",totalDownloads:2703,totalCrossrefCites:9,totalDimensionsCites:29,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Michael Palace, Michael Keller, George Hurtt and Steve Frolking",authors:[{id:"93962",title:"Dr.",name:"Michael",middleName:null,surname:"Palace",slug:"michael-palace",fullName:"Michael Palace"},{id:"93987",title:"Dr.",name:"Michael",middleName:null,surname:"Keller",slug:"michael-keller",fullName:"Michael Keller"},{id:"93989",title:"Dr.",name:"Steve",middleName:null,surname:"Frolking",slug:"steve-frolking",fullName:"Steve Frolking"},{id:"93992",title:"Dr.",name:"George",middleName:null,surname:"Hurtt",slug:"george-hurtt",fullName:"George Hurtt"}]},{id:"31965",title:"The Role of Environmental Heterogeneity in Maintenance of Anuran Amphibian Diversity of the Brazilian Mesophytic Semideciduous Forest",slug:"the-role-of-environmental-heterogeneity-in-maintenance-of-anuran-amphibian-diversity-of-the-brazilia",totalDownloads:2662,totalCrossrefCites:5,totalDimensionsCites:9,book:{slug:"tropical-forests",title:"Tropical Forests",fullTitle:"Tropical Forests"},signatures:"Tiago Gomes dos Santos,Tiago da Silveira Vasconcelos and Célio Fernando Baptista Haddad",authors:[{id:"86185",title:"Dr.",name:"Tiago",middleName:"Gomes",surname:"Dos Santos",slug:"tiago-dos-santos",fullName:"Tiago Dos Santos"},{id:"89471",title:"Dr.",name:"Tiago",middleName:null,surname:"Vasconcelos",slug:"tiago-vasconcelos",fullName:"Tiago Vasconcelos"},{id:"89473",title:"Dr.",name:"Celio",middleName:null,surname:"Haddad",slug:"celio-haddad",fullName:"Celio Haddad"}]}],onlineFirstChaptersFilter:{topicSlug:"environmental-sciences-forestry-science-ecosystem",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"book.detail",path:"/books/advances-in-extracorporeal-membrane-oxygenation-volume-3",hash:"",query:{},params:{book:"advances-in-extracorporeal-membrane-oxygenation-volume-3"},fullPath:"/books/advances-in-extracorporeal-membrane-oxygenation-volume-3",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()