Overview of papers on the histological performance of plasma coated 3D electrospun scaffolds (no PCL and PLLA)
\r\n\tOne basic topic is that of expression manipulation: combining, expanding etc, and the applications of this scholar topic needs focusing on.
\r\n\r\n\tThe general topic of "polynomials" is very large, and here the focus is both on scholar/student basics of it, and on applications of some special polynomials in science and research.
\r\n\r\n\tAn important topic of the book is "algebraic curve". Here the approaches are multiple: basic/scholar on one hand, and applications on the other hand. It must be noticed the use of algebraic curves properties in the field of differential equations, for example for finding the singularities.
\r\n\r\n\tGrobner basis is a very modern and applied topic of algebra. Here we must outline the great importance of Grobner basis and polynomial ideals manipulation, in the differential equations field, an example being in fast finding normal forms of differential systems.
\r\n\r\n\tRelated to this last topic of the book, but applying to all specified topics, it must be noticed the importance of numeric algorithms. The importance of software algorithms in all fields of science is continuously increasing. Therefore, computational approach of the specified algebraic topics is very useful, with applications in other mathematical and scientific fields.
",isbn:"978-1-83968-393-0",printIsbn:"978-1-83968-392-3",pdfIsbn:"978-1-83968-394-7",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"2a81efb05ce334905cc672188033b15d",bookSignature:"Dr. Adela Ionescu",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/9907.jpg",keywords:"expand, factoring, combining, simplifying, random polynomials, special polynomials, orthogonal polynomials, polynomial factorization, two variables polynomials, homogenization, parameterization, singularity, monomial order, polynomial ideal, leading monomial, normal form",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"November 26th 2019",dateEndSecondStepPublish:"December 17th 2019",dateEndThirdStepPublish:"February 15th 2020",dateEndFourthStepPublish:"May 5th 2020",dateEndFifthStepPublish:"July 4th 2020",remainingDaysToSecondStep:"10 days",secondStepPassed:!1,currentStepOfPublishingProcess:2,editedByType:null,kuFlag:!1,editors:[{id:"146822",title:"Dr.",name:"Adela",middleName:null,surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu",profilePictureURL:"https://mts.intechopen.com/storage/users/146822/images/system/146822.jpg",biography:"Dr. Adela Ionescu is a lecturer at the University of Craiova, Romania. She received her PhD degree from the Polytechnic University of Bucharest, Romania. Her research focuses on development and implementation of new methods in the qualitative and computational analysis of differential equations and their applications. This includes constructing adequate models for approaching the study of different industrial phenomena from a dynamical system standpoint and also from a computational fluid dynamics standpoint. By its optimizing techniques, the aim of the modeling is to facilitate the high understanding of the experimental phenomena and to implement new methods, techniques, and processes. Currently, Dr. Ionescu is working in developing new analytical techniques for linearizing nonlinear dynamical systems, with subsequent applications in experimental cases. The bifurcation theory and its applications in related fields is also a domain of interest for her. She has published six monographs and few scientific papers in high-impact journals. She is also a member of few scientific international associations and has attended more than 45 international conferences.",institutionString:"University of Craiova",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Craiova",institutionURL:null,country:{name:"Romania"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"15",title:"Mathematics",slug:"mathematics"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"287827",firstName:"Gordan",lastName:"Tot",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/287827/images/8493_n.png",email:"gordan@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6217",title:"Computational Fluid Dynamics",subtitle:"Basic Instruments and Applications in Science",isOpenForSubmission:!1,hash:"0fb7b242fd063d519b361e5c2c99187b",slug:"computational-fluid-dynamics-basic-instruments-and-applications-in-science",bookSignature:"Adela Ionescu",coverURL:"https://cdn.intechopen.com/books/images_new/6217.jpg",editedByType:"Edited by",editors:[{id:"146822",title:"Dr.",name:"Adela",surname:"Ionescu",slug:"adela-ionescu",fullName:"Adela Ionescu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4816",title:"Face Recognition",subtitle:null,isOpenForSubmission:!1,hash:"146063b5359146b7718ea86bad47c8eb",slug:"face_recognition",bookSignature:"Kresimir Delac and Mislav Grgic",coverURL:"https://cdn.intechopen.com/books/images_new/4816.jpg",editedByType:"Edited by",editors:[{id:"528",title:"Dr.",name:"Kresimir",surname:"Delac",slug:"kresimir-delac",fullName:"Kresimir Delac"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3794",title:"Swarm Intelligence",subtitle:"Focus on Ant and Particle Swarm Optimization",isOpenForSubmission:!1,hash:"5332a71035a274ecbf1c308df633a8ed",slug:"swarm_intelligence_focus_on_ant_and_particle_swarm_optimization",bookSignature:"Felix T.S. Chan and Manoj Kumar Tiwari",coverURL:"https://cdn.intechopen.com/books/images_new/3794.jpg",editedByType:"Edited by",editors:[{id:"252210",title:"Dr.",name:"Felix",surname:"Chan",slug:"felix-chan",fullName:"Felix Chan"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3621",title:"Silver Nanoparticles",subtitle:null,isOpenForSubmission:!1,hash:null,slug:"silver-nanoparticles",bookSignature:"David Pozo Perez",coverURL:"https://cdn.intechopen.com/books/images_new/3621.jpg",editedByType:"Edited by",editors:[{id:"6667",title:"Dr.",name:"David",surname:"Pozo",slug:"david-pozo",fullName:"David Pozo"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"47898",title:"Plasma Modified Textiles for Biomedical Applications",doi:"10.5772/59770",slug:"plasma-modified-textiles-for-biomedical-applications",body:'In the textile market industry, technical textiles are one of the fastest growing businesses. Part of that industry consists of textiles for medical and healthcare applications and are responsible for a continuous increase in its market potential [1]. Next to their need in hospital environments, there is a growing demand in other sectors such as the food and hotel industry, due to stricter hygiene regulations. In most cases biomedical textile meets a well-defined set of requirements such as minimizing non-specific protein adsorption, drug delivery coatings or the presence of active functional coatings and most importantly excellent biocompatibility (blood-, tissue-or cyto-compatibility) [2]. In general there are very few materials meeting all these characteristics, while at the same time offering the needed structural and mechanical properties. Furthermore, depending on the application, the production process has to be cost-effective and approved by local legislation.
In order to meet all these requirements, numerous modification techniques have been developed in the past [3-5]. Most of these techniques lead to the incorporation of extra/new functionalities and might lead to a change in surface free energy. For most biomedical applications, the preservation of material bulk properties such as elasticity, strength, ductility, structural integrity etc. is critical. For biomedical end-products, the use of solvents and chemicals based surface treatment techniques are reduced to a strict list approved by local legislation. Chemical-free techniques such as γ-radiation, UV treatments, corona discharges etc. have led to some excellent results in the field of tissue engineering [6, 7]. One of those solvent-free techniques that have been around for over a century, has more recently found its way into the biomedical field: non-thermal plasma technology.
Over time, it has extensively been proven that non-thermal plasma technology can profoundly change the surface properties of polymer films (PP, PET, PU, etc.) as well as material characteristics (adhesion, printability, dyeing etc.) of more complex substrates such as industrially produced textile [8-14]. Alongside the growing interest in tissue engineering and the booming of the electrospinning industry at the end of last century, non-thermal plasma technology found its way into the biomedical field. Today non-thermal plasma treatment can be considered as a well-established technique for the surface treatment of (bio)materials.
Before the start of the 21st century, the majority of contributions to scientific literature was focussing on oxygen plasma treatments at low pressures and the corresponding response on cell adhesion, growth and proliferation. Although today there is still a steady stream of publications on these low pressure oxygen plasmas, there is a growing interest in atmospheric pressure plasma treatments as they offer a number of practical advantages. In the next chapter part, a detailed overview will be given on plasma technology in general and the different treatments possible. After that, the chapter will continue on the use of plasma technology for (bio)medical textiles, according to the application. At the end there will be a critical conclusion and a look forward to the possible future of plasma technology for the biomedical textile industry.
A plasma is a gaseous mixture of ions, radicals, electrons and neutrals. Plasma is often referred to as the fourth state of matter, as its properties fundamentally differ from solids, liquids and gasses and the change of state can be obtained by adding energy to a gas, similar to the transition from solid to liquid to gas. In 1929, Langmuir was the first to actually define a plasma, but already in the 19th century plasma was used on an industrial scale for the generation of ozone (Siemens) [15].
Plasma itself can be divided up into two categories: 1) thermal or equilibrium and 2) non-thermal or non-equilibrium plasma. Thermal or hot plasmas have temperatures of 4000 K or higher and are considered to be in a thermal equilibrium, meaning that both heavy ions and electrons have the same temperatures. Well known applications include plasma spraying, wide arc spraying, and thermal plasma chemical vapour deposition (TPCVD), thermal plasma synthesis of fine powders (nm), thermal plasma (toxic) waste destruction, thermal plasma densification of powders, thermal plasma metallurgy, thermal plasma extractive metallurgy etc. For non-thermal or cold plasma, only the electrons are accelerated via e.g. an applied electrical field, causing a thermal inequilibrium between the electrons and the heavy particles. This results in the formation of a plasma at lower temperatures. Due to this difference in operating temperature between thermal and non-thermal plasmas, they are often referred to as ‘hot’ and ‘cold’ plasmas respectively. Although referred to as cold plasma, temperatures of up to 1000 K can be reached. For biomedical applications, non-thermal plasma treatments are preferred with a degree of ionization of 1% or lower as this results in a discharge that can be sustained at room temperature (290-330 K), thus avoiding thermal degradation of thermo-sensitive materials. In the next paragraphs, the focus will be on the sources that are used to drive the discharge, as they are an excellent way to distinguish between the ways a plasma can be generated, independent of the set-ups possible.
The different non-thermal or cold discharges discussed in the following parts have all proven their usefulness as well as their limitations. Over time, applications have been found for each different type of discharge in all branches of the industry: automotive, packaging, textiles, aerospace, catalysis, waste treatment, (bio)medical etc. [9, 13, 16-18]. The number of plasma reactor designs is nearly limitless and complete reviews have been written on that topic alone, as design changes are made to optimize the plasma treatment for their specific application [19]. Most of the designs available today can be linked to one of the plasma sources discussed here.
A corona discharge reactor typically consists out of a cathode wire and an anode, which is normally the material that needs treatment. The first developed systems were powered by a DC source working in a pulsed mode and were operated at atmospheric pressure. When turned on, the system generates a lighting crown build out of many streamers, hence the name corona [9]. Pulses are used that are shorter than the time necessary to form an arc, thus avoiding the transition to the spark regime. In the middle of 20th century, the first corona discharge systems were patented for the incorporation into industrial textile production systems [20]. Later on, the systems were adapted to work with high frequency sources (radio-frequency (RF), microwave (MW) and AC) and today a number of commercial systems are available from companies such as Tech Sales Company, Air Liquide, Acxys Technologies etc. These modern high-tech set-ups are able to quickly and efficiently treat delicate structures such as electrospun sheets. One of the main disadvantages of corona treatment is that the streamers always form at the same sports, resulting in an inhomogeneous treatment of the exposed surfaces. To solve this particular problem, there has been a shift to the usage of silent discharges [16].
A silent discharge, also known as a dielectric barrier discharge (DBD), is powered either via a high frequency AC or an RF source. What makes the DBD stand out against other systems, is its higher and broad pressure operating range (5-105 Pa) [21, 22]. In 1857, Siemens was the first to use a DBD in a successful attempt to generate ozone and to this day it remains one of the most important industrial applications of the DBD [15].
A DBD reactor typically consists of 2 electrodes, of which at least 1 is covered with a dielectric material such as glass, ceramic or quartz. The voltage used to drive the discharge can start as low as 0.5 kV and can be increased up to a few 100 kV. The generated plasma is a collection of many small micro-discharges or streamers. The dielectric material is able to limit the discharge current, giving cause to very short-lived micro-discharges (1-10 ns) that are distributed homogeneously across the electrode. In some specific cases, the streamers can be avoided altogether and a true glow regime can be obtained, which is considered the best case for homogeneous treatments [9].
DBD set-ups have one major advantage compared to most other systems: the possibility to operate in a higher pressure range makes it possible to avoid extensive vacuum equipment. This results in a lower operating cost and faster treatment cycles, thus allowing them to be implemented in industrial surface modification processes. The low heat generation at elevated pressures allows for a wider range of applications, including plasma chemistry, grafting, polymerization, cleaning... These applications are not always as easily feasible in systems powered with a different source.
It should be noted that occasionally in literature also the term corona discharge or corona treatment is used in connection with DBDs, although most authors prefer to use this term only for discharges between bare metal electrodes without dielectric.
Non-thermal plasmas generated via a DC discharge are in most cases formed in a closed set-up between two electrodes at very low pressures (10-1 – 10 pa) [21, 22]. As the current is increased, different types of discharges can be obtained. The Townsend discharge is a self-sustaining discharge, typically characterized by a low current. A higher current results in a drop of voltage and a glow discharge is generated. The glow discharge regime is the desired regime for surface modifications, as it guarantees a homogeneous treatment al throughout the reactor. Increasing the discharge current still further results in a fast increase of voltage until an arc is formed, allowing for the charge to dissipate and the voltage drops almost completely. One of the biggest advantages today of DC discharges, is that it is a well understood process, allowing for a high control over the process and its different parameters.
The DC current can be driven through the system in a continuous manner, or it can be pulsed. For biomedical applications in general, there are two advantages in doing the latter: first of, higher discharge powers can be applied without the otherwise inevitable thermal damage caused by the heating of the electrodes and secondly, if used for the coating applications, it renders a more homogeneous coating. One of the main disadvantages of the DC driven systems is the direct exposure of the electrodes to the plasma environment, making them prone to corrosion if exposed to certain reactive monomers.
Radiofrequency (RF) and microwave (MW) discharges are generated using high frequency electromagnetic fields [21-23]. RF discharges have a relatively wide frequency operating range between 1 – 100 MHz, but in most cases a fixed frequency of 13.56 MHz is applied. Concerning the operating pressure, a wider range, compared to DC systems, (1-103 Pa) is possible, but with the exception of a few, high-vacuum equipment is needed, which is expensive, drastically increases treatment times and are hard to implement in continuous production processes. For the treatment of biomedical materials, it is most likely the most applied discharge, as it is the plasma treatment technique of choice for the popular oxygen plasma treatments and several systems are commercially available.
Microwave discharges are operated at a higher frequency range, usually fixed at 2.45 GHz. The pressure range is more versatile compared to RF and DC discharges, with a range between 1 Pa and 105 Pa. Higher pressures lead in most cases to an increase of heat transfer from the electrodes to the substrate, making it a less than ideal situation for the treatment of textiles and nonwovens. This limitation results in the same treatment restrictions as the previously discussed discharges.
To finalize this chapter part on plasma technology, some special attention will be given to atmospheric pressure plasma jets (APPJ’s). Operating a plasma in a confined space has certain advantages when it comes to the control of the physics and chemistry taking place, but sometimes there are cases where it would be more desirable if the plasma could be free from any geometrical confinements. APPJ’s, also referred to as plasma plumes are an ideal solution and are excellent tools for the treatment of geometrically larger and more complex surfaces such as textile fibers [24].
APPJ’s can be powered with any of the sources discussed before, but all deal with the same problem: how to avoid the transition from glow to arc. For DC sources this can either be achieved via the use of hollow cathode discharges with sub mm dimension or the use of resistive barrier discharges. For the DBD systems driven by high frequency AC sources, the dielectric barrier itself is the solution, as it prevents the discharge current to increase to the point of arcing. Under some special circumstances the DBD’s can generate an uniform diffuse plasma that is filament free. For the RF powered APPJ, either a set-up similar to the DBD set-up can be used, or the metal electrodes are left bare. For the latter, cooling of the electrodes is required, as well as an excellent control of the flow rate in order to minimise the risk of arcing [24]. Finally it is also possible to generate a plasma plume, using a microwaves to drive the plasma, but it is limited to a strict set of geometrical parameters which has been described in more detail by Park et al. [25].
It would be possible to give an extended description on the different set-ups available today, but it would lead to far out of the scope of this chapter. Laroussi and Akan already wrote a complete review on the different set-ups available. Also Shütze el al. wrote a compact review on the physics behind several set-ups [22]. Since that time also a number of commercial systems have become available on the market (crf Plasmatreat®, PlasmaSpot®, PlasmaStream®...). The applicability of the APPJ for the treatment of biomedical textile will be covered in the following chapter part 3: Plasma and textile: the biomedical applications.
In order to have an understanding of what is happening at the plasma-material interface, it is critical to have a basic knowledge about the possible effects the different active species have on a substrate exposed to them.
During the production process and storage of (bio)materials, they can be exposed to a number of solvents, greases, volatiles components etc. These contaminants will adsorb and accumulate on the material surface over time, resulting in an altered, non-reproducible surface with a likely reduced product performance. A typical example in the biomedical field, is the adsorption of low molecular weight carbon species onto a pristine titanium sample, when exposed to ambient air. When used as an implant material, this surface pollution results in a reduced cell adhesion, proliferation and growth and in some cases even results in cell death [26, 27].
Any volatile surface contamination that is exposed to a non-thermal plasma, will be removed in a few seconds [28]. Prolonged exposure to the plasma will not only result in the removal of the adsorbed contamination but will cause etching of the top layers of the material surface [29-32]. Depending on the density and hardness of the exposed material, more intense discharges and/or extended exposure are required to obtain a notable effect. As (biomedical) textiles are in most cases build out of relatively soft materials, the etching effect cannot be overseen and will introduce a certain nano-roughness on the fiber surface. For in-vitro and in-vivo applications this change in surface topography can have a benign effect, as it can amplify the other effects plasma has on cell adhesion and proliferation [33-35].
Plasma activation or plasma treatment is the exposure of a surface to the reactive particles present in the plasma. This mixture of reactive particles will result in the incorporation of radical sites on the surface, up to the depth of a few 10 nm. Depending on the gas used to maintain the plasma, these sites will react (in)directly with other radicals present, recombining into a broad variety of functional groups. These new functional groups have a high impact on surface properties such as wettability and surface free energy, which in turn might have a positive effect on material-material and material-cell interactions.
In most cases an increase in hydrophilicity is pursued to enhance the materials histological performance. For some applications such as the surface of heart valves, the insides of needles and tubes or artificial stents, any adhesion of cells and proteins is highly unwanted, as it can lead to blockages resulting in premature failure of the biomedical device. Instead of using typical gas feeds for plasma treatment (noble gasses, oxygen, dry air, nitrogen...), fluorinated gasses such as CF4 are used which result in the formation of super hydrophobic surfaces with water contact angles of 150° and higher. These fluorinated surfaces prevent cells and proteins from effectively adhering on the surface and thus guaranteeing an optimal performance of the implant material [11, 36, 37].
Plasma activation is definitely not the only technique available for the introduction of new functional groups onto a surface, but as it is non-invasive and chemical-free, it guarantees the preservation of even the most delicate structures.
Non-thermal plasmas are not only applied for plasma treatments, but can also be used as an initiation medium for radical polymerization, resulting in the deposition of a wide variety of thin films. In order to optimize the bonding between the thin film and the biomaterial, the deposition process is preceded by a plasma treatment, introducing radical sites that allow covalent bonding of the polymer to the substrate surface. The polymerization process itself can happen via two different reaction pathways: plasma polymer grafting simply uses the radical sites introduced via plasma treatment to initiate the chain reaction. In other words, during the polymerization process itself, no plasma is used and the monomer is not exposed to the plasma. This results in the incorporation of the monomer as such, thus preserving its functional groups.
For plasma polymerization this is not the case. The plasma is used as an initiation medium and remains active during the entire polymerization reaction. This has as a consequence that the monomer is exposed to the reactive plasma, forming initiation sites on both the substrate surface as well as on the monomer. In contrast to chemical initiation, plasma is not as specific as to where the radicals are formed, using any functional groups of the polymer precursor as well to initiate the chain reaction. This results in a highly cross-linked, pinhole free and completely amorphous thin film that significantly differs from its traditional counterpart and adheres to almost any surface. Varying the discharge power gives a high control over the amount of functionalities preserved in the film. From a biomedical viewpoint this is an interesting application, as functional group density plays a critical role in the growth and proliferation of cells and differs for the type of cells used.
Optimal modern wound dressings should assure a moisture wound bed, help drainage, remove debris of the wound surface, provide optimal thermal stability, might be removed without trauma of the wound bed and wound edge, be antiallergenic and without immunogenicity [38]. Over the years wound dressings have experienced a continuous development stimulated by a better understanding of wound healing and bacterial growth mechanisms. In more recent years research has shifted to targeted therapy by including different pharmaceutical compounds (e.g., antiseptics, analgetics, or growth factors) in to wound dressings. The continuous presence, or controlled release of active substances, can tremendously stimulate the healing process.
Non-thermal plasma technology has been part of this development process in many different aspects of wound healing treatments. The review of the literature dealing with the use of plasma technology for the enhancement of wound dressings will be divided according to the purpose of the treatment: wound monitoring, enhancement antimicrobial properties, intermediate bonding, and adhesion.
Successful wound treatment cannot be achieved without keeping its two major aspects in mind: maintaining a decent hydrophilicity and a high antimicrobial efficiency.
In two different papers Persin et al. compared a few different treatment methods on viscose fibers to address both of these aspects [39, 40]. In a first reaction pathway, a two-step process consisting of an oxygen plasma treatment, followed by the immobilization of AgCl particles, is followed. The alternative pathway consists of a single-step treatment of the cellulose fibers with an ammonia plasma. The single-step treatment resulted in a 30-fold increase in water uptake while the immobilization of the silver particles only had a marginal effect. For the antimicrobial properties of the wound dressings, the reverse trend was found. The single-step treatment only had an effect on Gram-positive bacteria, while the steady release of silver ions resulted in a quasi-complete destruction of both Gram-positive and Gram-negative bacteria. The authors therefore suggest to use a different treatment for different wound-healing applications, depending on the risk of infection. In a third paper from the same authors, a closer look is taken on the ageing of the plasma treated surfaces and the effect on the water up-take [35]. The study showed that 4 days after the treatment, the water contact angle increased with 15° and the oxygen concentration decreased with less than 1%. These numbers suggest that there is a limited shelf-lifetime of the modified wound dressings. Hacker et al. followed an alternative strategy for the immobilization of Ag particles by plasma polymerizing PEG onto electrospun PU mats, followed by soaking in AgNO3 and UV treatment, resulting in the incorporation of metallic silver [41]. Water-uptake tests revealed a significant increase of hydrosorption after 24 hours. The steady release of silver particles had a detrimental effect on the viability of both Gram-positive and –negative bacteria while at the same time no cytotoxic effects were noted on the adhesion and proliferation of fibroblasts. Further on in the chapter, other strategies will be discussed to obtain antibacterial properties for other applications, but it is already clear that the incorporation of silver particles with the help of plasma technology is a successful pathway for the improvement of wound dressings.
SEM micrographs (3000×) of the (a) plasma modified nonwoven, (b) AAc coated nonwoven, (c) PP-g-collagen nonwoven, and (d) PP-g-collagen-g-PNIPAAm nonwoven [126].
Next to increasing the hydrophilicity of surfaces, plasma are also known to promote the adhesion between layers. Gajanan et al. published two papers where plasma technology was used to improve the adhesion between an electrospun material and a woven support structure [42, 43]. In the first article chitosan was used as a raw material for the electrospinning process. In the second article, the chitosan was mixed with silk fibroin. For both cases a 100% cotton gauze was used as support material. Out of the different DBD plasma treatments, using He+1% O, the combination of a pre-and post-treatment gave the best results. Flex durability tests showed that there was a 4-fold increase in adhesion between the electrospun material and the cotton gauze. On top of that SEM images showed that the plasma treatment resulted in a reduction of the fibers’ delamination after repetitive flexing.
As explained earlier in section 2.3, plasma can be used to graft new side chains on polymer substrates. The goal of grafting can either be to introduce new functional groups and use their properties as such, or to introduce them as intermediates that can be used in consecutive reactions. In biomedical surface engineering the latter is quite popular as the list of products that can be used is limited, meaning that in most cases there is a sub-optimal affinity between coating and substrate. Chen et al. used a PP-non-woven as a substrate on which acrylic acid was grafted. The newly introduced carboxylic acid functionalities were used to either covalently bond collagen or chitosan, on which the thermo sensitive polymer PNiPAAm was immobilized of which each step is depicted in figure 1. Above 32° C, the wound dressing becomes hydrophobic and releases the stored moisture, which in turn resulted in an enhanced wound healing [44, 45]. Lin et al. used an oxygen low pressure plasma to activate a PE non-woven substrate, followed by the grafting of N-isopropyl acrylamide [46]. This intermediate was then used for the covalent bonding of bovine gelatin. In-vivo tests revealed that the covered wound healed completely (reached the maturation phase) and much faster compared to the PE control.
The results discussed above show that plasma technology can be a valid, solvent-free alternative for the permanent fixation of technically advanced layers onto standard substrates. Most of the studies on adhesion and intermediate bonding are relatively new and more research is needed to see if the obtained results can be extrapolated to other materials and applications.
In modern society the development of ‘smart’ materials is a hot topic (crf smartphones, smartwatches, smart-TV’s etc.). In the wound care industry similar developments are taking place and several groups are doing research on so-called ‘smart bandages’. The idea behind smart bandages is that they autonomously could monitor the wound and signal in case of infection or other irregularities. A few groups working on biosensors have successfully incorporated plasma technology in their biosensor production process.
Phair et al. used a corona discharge in ambient air to activate carbon fiber threads in order to improve their electro-analytical performance [47]. Via a redox probe set, the ion exchange rate was determined as a function of plasma treatment time. The results showed that the incorporation of carboxyl groups resulted in better electron transfer kinetics. Exposing the prototype bandage to whole blood proved that they were capable of detecting urates.
Zhou et al. developed a biosensor based on self-quenching fluorocarbons [48]. These fluorocarbons were stored in lipid vessels which were immobilized on a pp-non-woven that was plasma coated with maleic anhydride using a commercial RF discharge system. Upon contact with both Gram positive and negative bacteria, the lipid vessels released the fluorocarbons, allowing for a visual infection detection mechanism. In combination with the simultaneous release of antibacterial products using the same release system, they believe it is possible to make a quasi-autonomous or ‘smart’ bandage.
The collection of reviewed papers shows that non-thermal plasma technology can play an important role in the development of smart bandages, allowing for low-cost personalized wound care treatment.
Within the section on wound dressings already a part on antibacterial properties of plasma treated fibers has been included, but the applicability of these modified textiles goes much further than wound treatment alone and is highly wanted for other (bio)medical applications such as surgical gowns, sutures etc. as well as in the food industry and catering business [49]. The study on antimicrobial finishes of fibers and meshes has been quite extensive and between 25 and 30 papers will be reviewed here. A wide variety of substrates has been modified, ranging from natural-based products such as cellulose and wool to PP, polyesters, polysulfons, polyamides, carbon composites etc.
As for the modification itself, a distinction can be made between alterations involving the immobilization of metal nanoparticles (Ag, Cu) and all other treatments. To this day, the controlled release of silver particles is by far the most effective technique to inhibit the attachment and growth of both Gram positive and negative bacteria [50-65]. Most of the research groups use a non-thermal plasma to increase the wettability and nano-roughness of the textile substrate in order to enhance the uptake of silver nanoparticles (either via AgNO3 or Agn) or a plasma polymer coating with controlled release properties. Antibacterial tests involving micro-organisms such as E. Coli, S. Aureus and C. Albicans show in most cases a bactericidal efficiency of more than 99.9%.
Other research groups followed less known pathways with mixed success. Yao et al. did an Ar low pressure plasma pretreatment of PVDF-HFP/PU fibrous membranes, followed by the UV grafting of 4-vinylpyridine and a quaternization of the introduced pyridine group using hexyl bromide [66]. Anti-bacterial essays showed a killing efficiency of 99.9999 % for both E-Coli and S. Aureus strains (See figure 2). Despite the excellent performance of the fibers, the commercial applicability remains limited due to relatively expensive production process in a competitive business environment.
Different research groups did a plasma pretreatment on cotton and polyproplyne (PP) nonwovens respectively, followed by the immobilization of natural products [67-69]. Vaideki et al compared the uptake of neem leaf extract before and after RF air plasma treatment and found that both the increase in wettability as well as the surface etching resulted in a superior adsorption of the extract [67]. Nitkyakalyani et al made a mix of herbal plant parts that were dried and grinded after which they were dissolved so the PP could be soaked in it [68]. A wide variety of both Gram positive and negative bacteria were tested and excellent antimicrobial activity was noted. Although the use of natural products is a pro in some cases, it is difficult to obtain a certain consistency in the production process and there is always a certain risk of product pollution. Strnad et al. treated cellulose fibers with an RF O2 plasma to increase the adsorption of chitosan [69]. The antimicrobial tests revealed a modest effect against S. Aureus and no effect against E-Coli. Antifungal tests using several fungi strings resulted in modest antifungal behavior.
Some groups simply applied a plasma treatment as such, using reactive gasses such as CF4 and hydrazine to obtain the desired antimicrobial effect. Uygun et al. did a pretreatment of chitosan powder using a RF hydrazine plasma [70]. Chemical analysis shows a significant increase in the number of primary amines present. Using the modified chitosan for the electrospinning of nano-fibers results in a nonwoven that has a better moisture uptake and an enhanced antibacterial effect for Gram-positive bacteria. Canal et al. and Virk et al. used an Ar-CF4 post discharge plasma with mixed results. The treatment of wool, polyamide and Sontara® resulted in a heightened bacterial resistance, while the treatment of cotton had no effect at all [71, 72].
Just as described in the intermediate bonding paragraph of the wound treatment section, plasma is used for the grafting of intermediate layers that are used for the immobilization of antibacterial components. Degoutin et al. used a low pressure RF Ar plasma to graft acrylic acid onto a PP nonwoven [73]. The carboxylic acid functionalities were used for the immobilization of gentamicin, which is known to be 99% bactericidal as was confirmed by the testing with E. Coli. Gawish et al. used a He plasma for the grafting of glycylmethacrylate, which was used for the covalent bonding of cyclodextrines [74]. These macromolecules are known for the controlled release of active components, in this case biocides with antimicrobial and insect repellent properties. These experiments confirm that plasma grafting is a versatile technique that forms the basis for subsequent reactions.
In general it can be concluded that the incorporation of silver micro-and nano-particles is still the golden standard for the production of antibacterial textiles. Non-thermal plasma technology can be a useful tool for the immobilization of the metal particles and plasma deposited coatings are ideal for the controlled release. Plasma treatments as such can generate highly antimicrobial surfaces, as was proven, amongst others, by Yao et al. [66], but only after the right selection of precursors and discharge gasses.
SEM images of (a) and (d) filter paper (control), (b) and (e) pristine, and (c) and (f) modified PU fibrous membranes after immersed in PBS suspension of (a)–(c) S. Aureus, or (d)–(f) E. Coli at 107 cells/mL for 4 h. PU fibrous membranes were electrospun from 10% (w/v) solutions in THF and DMF (1:1, v/v) [127].
Technical textiles for tissue engineering applications are one of the youngest branches in the textile industry, but in a just a few decades they have become a major player on the biomedical market and the number of publications dealing on the theme of tissue engineering applications has exponentially grown. The idea behind tissue engineering is that (stem) cells are extracted from a patient with a malfunctioning organ. The retrieved healthy cells are seeded on a culture plate and grown to a full culture [3, 4, 75]. Once enough cells can be harvested, they are seeded onto a 3D nanofibrous scaffold. After a certain incubation period, allowing the cells to grow and differentiate into the scaffold, the nonwoven is implanted into the patient in order to restore the organ functionality or replace the organ as such. By treating patients with their own cells, immuno-response can be reduced to an absolute minimum and it is considered to be a constructive solution for the transplant waiting list issue.
In this specific chapter part, both the enhancement of cell culture applications as well as soft tissue engineering will be discussed together, as they are closely related and in some cases even overlap. This chapter part will therefore be subdivided into a first section dealing with plasma treatment as such and its effect on cell growth, adhesion, proliferation and differentiation and a second section handling plasma grafting and polymerization, talking in more detail about adhesion and homogeneity of the deposited coatings as well as the histological properties.
The most widely used polymer collection for the production of nonwoven scaffolds for tissue engineering is the biodegradable polymer family. Polylactic acid(PLLA), polylactic-glycolic acid (PLGA), Polycaprolacton (PCL)... are well established biomaterials due to the fact that after implantation they get broken down by the body in harmless end products (ideally CO2 and H2O) that can be secreted by the body, making a second surgery no longer necessary [13, 76]. The mechanical and structural properties of these materials are sufficient for their field of applications. The biocompatibility and bioactivity on the other hand are mediocre at best and often inhibit the migration and differentiation of cells into the textile scaffold structure [77, 78]. The surface treatment of these scaffolds is rather complicated, as the pore size limits the infiltration efficiency of (wet)-chemical treatments and often degrade the structural stability of the delicate nano-fibers. Gas-based treatments such as non-thermal plasmas are promising to penetrate more easily into the electrospun scaffold structure and are at the same time known for the fact that they only alter the surface without affecting the bulk, guaranteeing the mechanical and structural integrity of the modified biomaterial [14, 79].
The contact angle of PCL electrospun scaffolds lies between 120° and 140°, indicating a hydrophobic surface, which is not well liked by most cells. After treatment with either air, Ar, NH3 or O2 plasmas, all research groups were able to reduce the contact angle to less than 5° [80-85]. The XPS results reveal an increase in the oxygen content with the incorporation of a mixture of C-O, C=O and O-C=O functional groups. Prabhakaran et al. seeded neurolemmocytes (or Schwann) cells onto the nanofibrous scaffolds and found an increase in proliferation rate at all times, with a maximum of 17% compared to the untreated material after 10 days, compared to the untreated scaffolds [80]. They claim that the treatment is as effective as a collagen coating, making it a cost-effective alternative for nerve cell regeneration applications. Yan et al. found that after plasma treatment with NH3+O2 had no influence on the mechanical properties of the non-woven. After seeding with MC3T3 osteoblasts a 2-3 times increase in cell adhesion was found in the first 24 hours and after 7 days the proliferation was increased by a factor of 6, making the plasma treatment an excellent tool for the introduction of osteo-inductive properties [81, 84]. Martins et al. came to the same conclusions after treating their PCL nano-textile scaffolds both with Ar and O2 plasma [82]. Seeding 3 different cell lines (L929, ATDC5 and Saos-2) covering a wide variety of cell-types, resulted in a significant increase in both adhesion and proliferation for all cells. Min et al. tested the O2 plasma treated PCL nano-textile with primary astrocytes and noted an increase in adherence and viability in the first 24 hours [83]. Jeon et al. used a nano-sized template to enhance the nano-roughness introduced by the plasma [85]. After seeding MG63 osteoblasts a dramatic increase in cell adhesion and proliferation were noted as well as an elongated morphology compared to both untreated PCL and PCL treated without the nano-sized template, showing that both the surface chemistry and topography have a significant influence on the histological performance of the PCL electrospun scaffolds. Finally Blackstone et al. used a CF4 plasma to further increase the contact angle of the non-woven in order to obtain a superhydrophobic scaffold [86]. After seeding a mixture of fibroblasts, keranocytes and MCF-7 cancer cells, they were able to sort out the cancer cells by applying a fixed amount of stress to the textile. The recovered cancer cells did not change in morphology, allowing for post-sorting analysis, making the development of a low cost cancer detection device possible.
Photographs of water droplets taken immediately after contacting (a) non-treated, (b,c) oxygen plasma-treated and (d,e) ammonia plasma-treated PLGA nanofibers. Treatment time was varied from (b,d) 30 to (c,e) 180 s [128].
PLLA and PLGA both exhibit the same hydrophobic properties as PCL non-woven, giving water contact angles situated between 130° and 150°. After a plasma treatment with the typical discharge gasses (O2, Ar, NH3...) a decrease in contact angle was found to a minimum, ranging between 20° and 45° as depicted in figure 3 [87-89]. XPS reveals that PLLA is less robust compared to PCL as the initial increase in oxygen content is reversed when the substrate is over-treated, resulting in etching/degradation of the polymer structure [88]. Both Park et al. and Dolci et al. seeded fibroblasts (NIH 3T3 and MEF) after NH3 and air treatments respectively and similar results for the increase in viability and elongated morphology were found [88, 90]. Liu et al. did a study on the adhesion behavior before and after O2 plasma treatment of pMSC cells in the first hour after seeding [89]. Results revealed that both the adhesion and cell morphology were greatly improved as can be seen from figure 4. These results show that plasma treatment is indeed a valid option for the culturing of stem cells.
As PLLA, PLGA and PCL all show similar histological effects after exposure to a wide variety of plasmas, it is no surprise that blends of PLLA and PCL exhibit similar behavior. Chandasekaran et al. exposed such a co-polymerized fiber mesh to an air plasma treatment and studied the effects on fibroblast growth and proliferation [91]. In both cases a significant increase was noted and stimulation of extra cellular matrix formation was found, opening up the possibility for skin tissue regeneration applications.
SEM images of pMSCs on Plasma treated PLLA nanofibers (NFS) and pristine PLLA NFS. (A–D) pMSCs on PLLA NFS after cultured for 10 min, 20 min, 30 min,60 min, respectively; (E–H) pMSCs on P-PLLA NFS after cultured for 10 min, 20 min, 30 min,60 min, respectively; (a–h) higher magnification for (A–H) [129].
The biodegradability of the textile scaffold material is not required in every case and sometimes has to be avoided all together (tissue culture ‘plates’, vascular grafts...) as the loss of the mechanical framework would result in the permanent failure of the implant. A polystyrene electrospun scaffold was treated by Baker et al. with a low pressure Ar plasma, followed by the seeding of smooth muscle cells [92]. The in-vitro tests revealed a significant increase in cells and an alignment with the electrospun material. The excellent results show that the polystyrene electrospun scaffold could be a valid alternative for 2D tissue culture plates. Zandén et al. treated a PU fiber mesh with an oxygen plasma in an attempt to improve the interaction with red blood cells [93]. SEM images showed that prolonged exposure to the plasma resulted in a reduction of the fiber diameter and finally the degradation of the structure. As was the case with PLLA and PCL, a significant increase in hydrophilicity was noted due to the incorporation of polar functional groups. The in-vitro tests revealed that there was no significant difference between the adhesion of red blood cells before and after treatment. This shows that not all plasma treatments have a positive effect on biocompatibility and that the treatment gas and operation parameters should be carefully selected.
The final paragraph of this chapter part on plasma treatment for tissue engineering will go over the possibilities to use non-thermal plasmas to stimulate the formation of apatite on flexible scaffold structures. Yang et al. immersed an Ar plasma treated PCL fiber structure in an SBF 10 solution for a period of 7 days [94]. In the first 24 hours, already a CaP coating had grown on the fibers, consisting of nano-apatite and dicalcium phosphate dehydrate. After 7 days a structure closely resembling bioapatite was found. Luo et al. performed the same analysis on air plasma treated PEEK (reinforced with carbon fiber) and whereas the untreated PEEK resulted in no apatite formation, a fully grown apatite layer could be found on the treated nonwoven scaffold [95]. Other research groups made a solution of PCL mixed with hydroxyapatite/CaCO3 which was electrospun, resulting in a composite nano-textile which was followed by an oxygen/air plasma treatment [96, 97]. After seeding hFOB osteoblasts, a significant proliferation rate was noted, as well at the first signs of mineralization similar to human bone as depicted in figure 5. These papers show that plasma activation of polymeric nonwoven scaffolds is an excellent tool for the promotion of apatite growth.
Mineralization of hFOB on PCL/HA-P nanofibrous scaffolds at different magnifications: (a) mineral deposition 5000× (6 days), (b) mineral deposition 10000× (6 days), (c) mineral deposition 15000× (6 days), (d) apatite-like morphology of natural bone 15000× (10 days) [130].
In general it can be concluded that non-thermal plasma treatments, both at lower and elevated pressures, are excellent tools for the stimulation of the histological properties of a wide variety of cells seeded onto flexible scaffolds for tissue culture and tissue engineering applications.
The tissue engineering nanofibrous scaffold materials subjected to plasma grafting and plasma polymerization are, in the majority of the papers reviewed, more or less the same ones used for plasma activation, PCL being the most popular one. A minority of papers investigated less obvious material choices that are inherently not (sufficiently) biocompatible, but once coated exhibit sufficient bioactive properties, as will be discussed in the last paragraph of this chapter part.
Guex et al. coated a PCL mesh using a combination of ethylene and CO2 in an Ar discharge in order to restore the functionality of damaged myocardium [98]. After seeding extracted mesenchymal stem cells onto the modified electrospun scaffold, it was implanted in a rodent model. Post-mortem analysis revealed a stabilized cardiac functionality as well as an attenuated dilation. Zander et al. covalently bonded lamilin proteins onto an air plasma treated PCL scaffold [99]. PC12 neuron-like cells were seeded onto the modified substrate and analysis showed a positive correlation between the neuron outgrowth and the concentration of the immobilized proteins. Xie et al followed a similar strategy, immobilizing dopamine [100]. The dopamine coating itself was then used to immobilize fibronectin, which significantly stimulated the attachment, spreading and cytoskeletal development of NIH 3T3 cells. Furthermore it was proven that the coatings could be used for the controlled release of active substances. Ma et al. used a combination of air plasma and wet carboiimide chemistry to graft gelatin onto both random and aligned PCL fiber meshes [101]. The spreading and proliferation of endothelial cells was greatly enhanced and the cells aligned themselves along the fibers, which was not the case for the untreated material. Finally Hegeman et al. performed a degradation study of PCL nanofibrous scaffolds coated with amine containing polymers and showed that the incorporation of oligomers in the deposited films can leach out, causing cell death [102]. Storage of the coated nano-textiles in liquid media removed the low molecular weight residue, solving the problem. Overall, the literature shows that PCL nonwoven scaffolds, either activated or coated, can be used for a wide variety of tissue engineering applications, exhibiting excellent bioactive properties. It is essential though to use the right set of parameters and avoid the inclusion of unreacted products as this can have a detrimental effect on the histological performance of the 3D electrospun scaffold.
Several research teams used non-thermal plasmas to immobilize bioactive macromolecules (collagen, cRGD peptides and heparin respectively) onto a PLLA nano-textile scaffold, after which they were seeded with either BOECs, hMSC or endothelial cells [78, 103-106]. In all cases a positive influence was found on the scaffold’s histological properties. Park et al. also obtained an increase in adhesion and proliferation after seeding NIH 3T3 fibroblasts onto PLLA nano-textile scaffolds that were grafted with an acrylic acid coating using a low pressure O2 plasma [107]. He et al and Chan et al. performed a similar procedure compared to Feng et al. to immobilize collagen onto PLLA-PCL electrospun scaffolds [108, 109]. The first group successfully seeded hCAEC’s, showing the possibilities for vascular grafts (see figure 6), while the Chan et al. studied the enhancement of the adsorption properties of MSC cells in the first hour after seeding, proving that coated nonwoven scaffolds are more efficient than plasma treated samples, which in turn are more effective then untreated samples.
A rather large number of publications can be found on a variety of other biomaterials that are not always biodegradable such as PDMS, PU, PET, silk fibroin, cellulose, PHBV... Most of these textile scaffolds get coated with well-known bioactive macromolecules such as collagen, galactose, lamilin, peptides, or polymer films containing functional groups that are well-liked by cells, such as primary amines or carboxylic acids [92, 110-118]. A whole spectrum of cells is seeded on the coated textile scaffolds, ranging from osteoblasts and fibroblasts to endothelial cells, nerve cells and even stem cells. Discussing all of them again would lead to far, especially as the effects are similar to the histological performance of the coated PCL and PLLA textiles. Therefore the results have been summarized in table 1.
Fluorescent micrographs of HUVECs cultured on PU (A and B), plasma treated PU (P-PU) (C and D), P-PU/PLGA (E and F), and plasma treated (P-PU/PLGA) films for 3 s (G and H). Cells were stained with Texas-Red Maleimide C2 for cell membrane and nuclei were stained with Hoechst33258. Images are 40× (A, C, E, and G) and 400× (B, D, F, and H) magnified [131].
\n\t\t\t\tScaffold material\n\t\t\t | \n\t\t\t\n\t\t\t\tPlasma treatment\n\t\t\t | \n\t\t\t\n\t\t\t\tDeposited coating\n\t\t\t | \n\t\t\t\n\t\t\t\tCell line\n\t\t\t | \n\t\t\t\n\t\t\t\tHistological Effects\n\t\t\t | \n\t\t\t\n\t\t\t\tAuthors\n\t\t\t | \n\t\t\t\n\t\t\t\tReference\n\t\t\t | \n\t\t
\n\t\t\t\tSilk fibroin\n\t\t\t | \n\t\t\tRF Ar low pressure | \n\t\t\tHeparin | \n\t\t\tL929 EVC | \n\t\t\tBetter proliferation | \n\t\t\tWang et al. | \n\t\t\t[110] | \n\t\t
\n\t\t\t\tPDMS\n\t\t\t | \n\t\t\tRF Ar low pressure | \n\t\t\tpNIPAm | \n\t\t\taoSMC | \n\t\t\tSmooth muscle cell formation | \n\t\t\tRayatpishesh et al. | \n\t\t\t[111] | \n\t\t
\n\t\t\t\tPU\n\t\t\t | \n\t\t\tRF O2 low pressure | \n\t\t\tGalactose | \n\t\t\tHepG2/C3A | \n\t\t\tImproved albumin secretion | \n\t\t\tChien et al. | \n\t\t\t[112] | \n\t\t
\n\t\t\t\tPCL + starch\n\t\t\t | \n\t\t\tRF O2 low pressure | \n\t\t\tVinyl sulphonic & phosphonic acid | \n\t\t\tFibronectin Vitronectin Saos-2 | \n\t\t\tEnhanced protein adsorption & better cell growth and proliferation | \n\t\t\tLópez-Pérez et al. | \n\t\t\t[113] | \n\t\t
\n\t\t\t\tPET\n\t\t\t | \n\t\t\tRF C2H4 low pressure | \n\t\t\tNH3\n\t\t\t | \n\t\t\tHUVEC | \n\t\t\tBetter growth and proliferation | \n\t\t\tSavoji et al. | \n\t\t\t[114] | \n\t\t
\n\t\t\t\tPES\n\t\t\t | \n\t\t\tMW O2 low pressure | \n\t\t\tCollagen | \n\t\t\tUSSC | \n\t\t\tExcellent infiltration | \n\t\t\tShabani et al. | \n\t\t\t[115] | \n\t\t
\n\t\t\t\tPS\n\t\t\t | \n\t\t\tAr | \n\t\t\tLamilin | \n\t\t\tSmooth muscle cells | \n\t\t\tEnhanced differentiated phenotype | \n\t\t\tBaker et al. | \n\t\t\t[92] | \n\t\t
\n\t\t\t\tPSU\n\t\t\t | \n\t\t\tRF air cleaner | \n\t\t\tMethacrylic acid + F3GA | \n\t\t\tBSA | \n\t\t\tFast purification small scale proteins | \n\t\t\tMa et al. | \n\t\t\t[116] | \n\t\t
\n\t\t\t\tCellulose\n\t\t\t | \n\t\t\tAPPJ Ar | \n\t\t\tf-Cyclodextrines | \n\t\t\tFatty acids | \n\t\t\tExcellent inclusion & no cytotoxicity | \n\t\t\tNada et al. | \n\t\t\t[117] | \n\t\t
\n\t\t\t\tPC-PU\n\t\t\t | \n\t\t\tRF O2 low pressure | \n\t\t\tPDMS | \n\t\t\tL929 | \n\t\t\tCytocompatibility | \n\t\t\tArjun et al. | \n\t\t\t[118] | \n\t\t
Overview of papers on the histological performance of plasma coated 3D electrospun scaffolds (no PCL and PLLA)
Of all the textiles for biomedical applications, sutures are probably the most low-tech. The amount of research conducted to improve the performance of surgical sutures is therefore not as extensive. Traditionally sutures were either non-biodegradable, requiring removal afterwards or biodegradable, but lacking the necessary mechanical strength and flexibility [49]. Eventually glycolide and lactide polymers such as PLLA and PLGA found their way into the suture market, introducing the required mechanical properties combined with biodegradability. Yet, as has been discussed earlier in the chapter, these biodegradable polymers do not always exhibit the wanted bioactive surfaces. A small number of research groups have investigated if non-thermal plasma technology can help to further improve the performance of medical sutures, of which a brief overview will be given.
Loh et al. performed a study, using both activation and deposition, analyzing the hydrolytic degradation rate of commercially available synthetic absorbable sutures [119, 120]. Dexon (PGA), Vicryl (PGLA), PDS11 (PpDO) and Maxon were either coated with parylene or treated by a number of different plasma gasses. Using the right set of plasma treatment parameters significantly increased the degradation rate of Vicryl and PDS11, while for Dexon and Maxon only marginal differences were found. The plasma coating process, using parylene, resulted in an increase in tensile strength, most likely due to the hydrophobic character of the coating. Saxena et al. published 3 papers on plasma grafting of PP sutures [121-123]. In all the articles an RF O2 plasma was used to activate the monofilament, followed by the immersion in an acrylic acid solution. The introduced carboxylic acid groups were then used to successfully immobilize chitosan. While the first 2 articles elaborates on the preservation of the mechanical properties and the surface chemical characterization, the second article focusses more on the antimicrobial, in-vitro and in-vivo properties. The viability of both E. Coli and S. Aureus were reduced with more than 90%. The in-vitro studies revealed excellent adhesion and proliferation of MC3T3 cells and the in-vivo use in a rodent resulted in a better quality of tissue integration and a minimal inflammatory response. The grafting of acrylic acid onto a monofilament for improved antimicrobial functionality was inspired by Gupta at al. who grafted acrylic acid onto PET monofilaments, obtaining similar antimicrobial results [124, 125].
Left: Zone of inhibition against E. Coli (a) control PP suture and (b) drug-loaded PP suture (degree of grafting, 5%). Middle: Zone of inhibition against K. Pneumonia (a) control PP suture and (b) drug-loaded PP suture (degree of grafting, 5%). Right: Zone of inhibition against S. Aureus (a) control PP suture and (b) drug-loaded PP suture (degree of grafting, 5%) [132].
Albeit being a rather low-tech application, plasma technology is still able to improve the performance of medical sutures. If the results found for tissue engineering applications would be applied for monofilament applications, it is beyond doubt that the biomedical properties could be further enhanced.
In this chapter a broad range of applications has been reviewed where non-thermal plasma technology could play a beneficial role in the biomedical performance of technical textiles. Albeit being more limited in the number of functional groups that can be incorporated and the limited stability over time, plasma activation still leads to improvements in cell viability, adhesion, proliferation and differentiation as well as better adsorption and chemical bonding of bioactive and bactericidal macromolecules. Plasma grafting and polymerization is equally able to do all of the above, while having access to a wider variety of functional groups and results in more stable surfaces. The incorporation of low molecular weight species into the coatings has to be avoided at all costs as they can have a detrimental effect on the cells viability. Up to now, the low pressure systems are by far the most used treatment systems, as the physics behind the process are well understood and multiple systems are commercially available. In the last decade there has been a growing interest in atmospheric pressure systems as they are more low-cost and can be more easily incorporated in textile production systems and it is our personal believe that atmospheric pressure systems such as the plasma jets will become the most prominently used set-ups. All in all it can be concluded that non-thermal plasma technology has earned its place in the (bio)medical textile market and will continue to do so in the future.
This chapter has received funding from the European Research Council under the European Union\'s Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement n. 279022.
The drill pipe joint is an important part of drill pipe, which is used to connect the drill pipe to form a drilling string. It always adopts a larger wall thickness and larger outer diameter, which can increase the drill string strength and protect drill pipe. In the process of drilling, when the inclination of the well is larger or the drill string is subjected to larger lateral force, the drill pipe joint will contact with the borehole wall or the inner wall of the casing, which can cause both the serious drill string wear and the heavy casing wear.
\nAt present, there are lots of anti-wear technologies of the drill pipe joint, such as drill string hardbanding, rubber drill pipe protector, casing pipe blast joint, etc. Among them, hardbanding is the process of bonding the hardbanding alloy with the parent steel of the drill pipe (Figure 1), which has the advantages of stable performance, simple operation, and easy maintenance [2]. At the moment, hardbanding is the most effective measure to reduce the wear of drill pipe and casing among these anti-wear technologies [3]. However, with the development of oil and gas exploration and drilling technology, complex well structures, such as deep well, extended reach well, horizontal well, and highly-deviated well, are being used more and more widely. In addition, the formation structures, such as strong abrasive formation, fractured formation, etc., are becoming more and more complex in the process of oil drilling. All of these put forward higher requirements for anti-wear and anti-friction characteristics of hardbandings, so the development of new hardbanding materials has already been the task of top priority [4, 5, 6].
\nHardbanding welding process and morphology after welding [1].
With the gradual solution of the problems in the field application of hardbanding materials, many new hardbanding materials are introduced constantly, and the varieties of hardbandings are becoming more and more abundant. For this paper, the development and application of hardbanding materials for drill pipe joints were reviewed. Furthermore, the development of a new hardbanding material independently developed by our team was reviewed. Finally, the weaknesses and development orientation of hardbanding materials were pointed out.
\nThe development process of the hardbanding material is divided into two stages: the first stage is the cemented carbide material stage (from the 1930s to the early 1990s); the second stage is the “casing-friendly” material stage (from the 1990s to the present) [7].
\nThe cemented carbide hardbanding material was invented and marketed by Hughes Tool Company in the 1930s, which was designed to prevent the abrasive wear of drill pipe joints in the open hole section and improve the service life of drill pipe. This hardbanding material is composed of low carbon steel matrix and carbide particles, which is a very effective method of protecting drill pipe joints in shallow wells (<1500 m) and vertical wells (well deviation below 2°) [8, 9].
\nBut as wells become more complex, the depth of the well is getting deeper, and the angle of the well is getting larger. The casing failures caused by the hardbanding of cemented carbide became more and more serious, which had aroused wide concern [10]. A lot of experimental studies have shown that during rotary drilling and tripping, the cemented carbide particles embedded in it will be soon exposed, because of the relatively soft base alloy of this wear-resistant belt. These exposed cemented carbide particles will cause serious abrasive wear on the casing wall and finally cause the casing failure.
\nIn order to avoid the loss caused by casing failure, it was decided to stop using the cemented carbide hardbandings. Only the smooth drill pipes without hardbanding or other anti-wear technologies (such as rubber drill pipe protector, casing pipe blast joint, etc.) were allowed. Other anti-wear technologies could reduce casing wear to some extent but were generally faced with many problems, such as high cost, complex structure, difficult installation, low life, easy to cause downhole accidents, etc. [11].
\nTherefore, the major technical service companies began to develop new materials to replace the cemented carbide material. These materials are generally characterized by low friction, small wear to the casing, and high hardness, which can protect the drill pipe joint to a certain extent. Since then, the development of drill pipe joint hardbanding material has entered the stage of “casing-friendly” material.
\n“Casing-friendly” material has a low friction factor, resulting in lower casing wear. Small friction and friction heat can be produced when this hardbanding material is in contact with the inner wall of the casing. There are two main types of “casing-friendly” materials: one is the “amorphous” hardbanding material; the other one is the “crystalline” hardbanding material. The crystalline material refers to a material in which atoms follow a certain law in the arrangement. On the other hand, the material whose internal atoms are arranged in an irregular state is called the amorphous material [12, 13].
\nIn 1990, Liquidmetal Technologies LTD developed a chromium alloy hardbanding material, named Armacor MTM. This material is an “amorphous” chromium alloy, the microstructure of which has no grain boundary and is distributed in a single atomic structure. The outstanding feature of this metal structure is that it has a very low friction factor. Therefore, the wear of the casing is very small, which can greatly reduce the wear of the casing. It is the first kind of “casing-friendly” hardbanding material, which represents a significant improvement in hardbanding technology. But because the “amorphous” hardbanding has only a very thin layer with poor abrasion performance under the high pressure, the main shortcoming of this hardbanding material is insufficient wear-resistant ability, which makes the drill pipe joint not well protected [14].
\nSubsequently, the Liquidmetal Technologies company has developed some new hardbanding materials, such as Armacor MStar and Armacor TMax. Till now, Armacor MStar material is their most casing-friendly material [15]. Armacor TMax material is their hardest, most wear-resistant material, which is ideal for open-hole drilling environments. In addition to this, as amorphous materials, these materials can lead to improved corrosion resistance and resistance to reactivity at elevated temperatures (oxidation, vulcanization), which are suitable for geothermal well drilling and deep well drilling.
\nAt the end of 1992, Arnco Technology Trust, Ltd., developed a new generation of chromium carbide hardbanding material—ARNCO 200XT™. The hardbanding can effectively reduce the wear of the casing and ensure the durability of the drill pipe joint in the open hole section, which can minimize the wear of the drill pipe joint. However, with ARNCO 200XT, it is easy to generate micro-cracks in the application and welding process. Although it has no influence in the use process, all the cracked parts should be removed during the reapplication and welding. Subsequently, the company has developed many hardbanding materials, such as ARNCO 100XT, ARNCO 300XT, ARNCO 150XT, and ARNCO 350XT, to overcome the problems existing in ARNCO 200XT [16]. The tool performances of these hardbanding materials are shown in Figure 2.
\nArnco Technology has led the hardbanding industry since pioneering the use of casing-friendly hardbanding two decades ago. To better understand the development of “crystalline” hardbanding materials, a more detailed introduction can be found in the following:
ARNCO 100XT hardbanding alloy [17]. ARNCO 100XT is an iron-base alloy containing chromium, manganese, and molybdenum, which can be welded seamlessly. Because of the above 50 rockwell hardness, the drill pipe joint can be well protected. The inherent low coefficient of friction is the most significant characteristic of Arnco100 XT hardbanding alloy. In the series of products of ARNCO, its anti-friction performance is the best, which can effectively reduce the wear caused by the contact between drilling pipe string and casing to extend the service life.
ARNCO 300XT hardbanding alloy [18]. As the “third-generation” product of Arnco Technology, ARNCO 300XT is an iron-base alloy including nickel, boron, and niobium, which is a chrome-free metal material with little environmental pollution. ARNCO 300XT can be directly welded on the worn 100XT and 150XT hardbandings, which increases its applicability. Because of the above 60 rockwell hardness, its wear resistance is much stronger, which can be used in the open hole in extreme grinding geological structure. Besides, the wear on the casing can be reduced effectively, which can obtain the lowest radial wear on the inside-wall of the casing.
ARNCO 150XT hardbanding alloy [19]. As the “fourth-generation” product of Arnco Technology, ARNCO 150XT is a kind of advanced crack-free and casing-friendly hardbanding, which inherited the advantages of ARNCO 100XT and ARNCO 300XT. The wear-resistant capacity of ARNCO 150XT is between ARNCO 100XT and ARNCO 300XT, and the anti-friction capacity is higher than ARNCO 300XT and ARNCO 100XT. It’s worth mentioning that repair welding can proceed under various external conditions without any crack, which can further enhance its applicability. Specifically, it can prevent the hydrogen sulfide corrosion and withstand high torque and high temperature in severe drilling conditions in extended reach wells, deep wells, and horizontal well, because of its maintaining of a certain toughness.
ARNCO 350XT hardbanding alloy [20]. As the “latest-generation” product of Arnco Technology, the wear resistance of ARNCO 350XT is further enhanced (compared with the ARNCO 300 XT), and the damage to the casing is further reduced, which is at present the strongest wear-resistant performance among Arnco Company’s products. It can be easily welded to new drill pipe joints and can be directly welded to on the ARNCO 100XT, ARNCO 150XT, ARNCO 350XT, and most other crack-free hardbandings without removing the original hardbandings.
NonMagXT™ hardbanding [21]. The appearance of nonmagnetic drill pipes raises an even newer requirement for hardbandings. NonMagXT™ is a newly developed nonmagnetic hardbanding, which is a patent-pending iron-based alloy system. This hardbanding features clear advantages over nickel and other iron-based nonmagnetic hardband products, which can enable easy, crack-free application onto stainless steel. It can also deliver exceptional wear resistance, greater ductility, and resistance to damage while in service.
Tool performances of ARNCO hardbanding materials [16].
The development of new hardbanding materials with high performance has already attracted the attention of the industry. Many technical service companies have developed new materials. Major products can be found in the following:
\nPostle Industries has developed some new hardbanding materials, such as Duraband® NC hardbanding and Tuffband® NC hardbanding:
\nDuraband® NC from Hardbanding Solutions is a 100% crack-free casing-friendly hardbanding, which can provide maximum protection of the tool joint and casing as well as workstring completion tubing [22]. Duraband® NC consists of a hard but tough tool steel matrix with a high volume of tightly packed micro-constituents, which ensures a non-cracking hard band with excellent wear resistance in open hole drilling as well as being casing friendly.
\nTuffband® NC is a high hardness hardbanding which can meet different application requirements [23]. When used by itself, it is especially suitable for casing-friendly hardbanding applications. When casing protection is not a factor, it can be used as a weld matrix with tungsten carbide (WC). Tuffband® NC is applied crack free and prevents spalling even under the most extreme drilling conditions and is 100% rebuildable.
\nTE Metal Works specialize in 100% nonmagnetic applications for all directional and vertical drilling. TE NM1X hardbanding developed by TE Metal Works is an alloy which is 100% nonmagnetic and 100% crack free [24]. This hardbanding will outlast 3 times the length of non-mag welding alloys.
\nHBK series hardbandings are developed by Kooben Technology [25]. Kooben is only one company in China with the ability to research, develop, and manufacture hardbanding. Kooben’s hardbanding product line now has three grades. They are HBK 100, HBK 150, and HBK 300, which are suitable for any application. The performances of their hardbandings are similar to those of Arnco hardbandings. They can offer at the industry’s most competitive prices and are compatible with all Arnco hardbandings. Besides, the client testing phase of nonmagnetic hardbanding wire has begun. In addition, Kooben is also one of the few companies in the world that have nonmagnetic hardbanding wire products.
\nIn addition to Kooben products, some “casing-friendly” materials can be occasionally reported on the Internet, and most of them imitate the foreign products. For example, Nate707J hardbanding material developed by Xi’an Nate Petroleum Technology Co., Ltd., is an iron-based amorphous hardbanding alloy, whose wear resistance is basically equivalent to that of ARMACOR Mstar and 3.8–3.9 times of that of ARNCO 100XT [26]; BoTn3000 hardbanding material produced by Shanghai BoTeng Welding Consumables Co., Ltd., is a chrome-free hardbanding material with high hardness and good wear resistance, which has reached the advanced level of similar products abroad [27]. In addition, some China units, universities, research institutes, and other institutions are studying the production of new hardbanding materials. Although China’s “casing-friendly” hardbanding materials have started, some hardbanding materials have made great progress. Some properties are even better than similar foreign hardbanding materials. However, most of them are still in the research and experimental stage and have not been mass-produced and put into application [28].
\nAt present, mechanical properties and wear resistance of hardbandings have been dramatically advanced. Although such improvements have been made, hardbandings and casings still suffer from friction and wear issues. The materials of existing hardbanding products are mostly iron-base alloy materials, so the problem of wear and tear is always unavoidable because of the pairwise similarity of elements. Therefore, if nonmetallic materials with high wear resistance are used to produce hardbandings, the wear problem will be greatly solved.
\nPolycrystalline diamond (PCD) is widely used in oil and mining explorations due to the advantages of homogeneous hardness, good toughness, and easy processing. And furthermore, PCD has a high wear resistance and low friction coefficient. Even in a high-temperature environment, it can also maintain its excellent performance. Thus PCD is obviously an ideal hardbanding material which could accomplish the optimum balance of drill string improvement and casing wear reduction [29].
\nZhang et al., of the China University of Petroleum, Beijing, has developed a new hardbanding material (shown in Figure 3), called PCD reinforced WC matrix composite (PCD composite for short), which is a kind of homogeneous composite material of fine property [30]. This hardbanding material has a strong resistance to wear, which can be very good to prevent the drilling pipe joint wear in the strong abrasive formation. Because of the extremely weak wear of the iron foundation material, the casing can be well protected with small friction factor and friction resistance.
\nSchematic description of PCD composite hardbanding.
In order to understand the relationship between the raw material’s properties and its tool performance, the material properties and drill pipe hardbanding performance of this PCD composite were investigated [29]. We find that the excellent anti-friction property and reasonable hardness of this PCD composite hardbanding are the primary reasons for its enhanced tool performance. Besides, a height difference was found at the border between the PCD part and the WC matrix part, which is advantageous to form lubricant film to improve the lubricating performance. To better understand its performance, the friction and casing wear properties of PCD composite hardbanding were also investigated. The results indicate that as the applied load and sliding speed steadily increase, the friction coefficients of PCD composites decrease. In addition, the casing wear rates increase with increasing load but decline with sliding velocity. The dominant wear mechanism of the PCD composite is the micro-cutting wear, accompanied by adhesive wear [31].
\nDue to the poor thermal stability of PDC, the performance will be affected in high-temperature geothermal wells and deep wells [32]. In many polycrystalline diamond composites, the thermally stable polycrystalline (TSP) diamond can exhibit excellent anti-friction and good anti-abrasion, which also can be achieved in an environment of high temperature and super high pressure and thermally stable up to 1200°C. Thus, in order to improve the thermal stability, the TSP was used to replace the PCD to produce this hardbanding. By proving experimentation, TSP composites could satisfy the requirements of protecting the casing and the drill pipe at the same time when drilling deep holes. This perfect performance is dependent on the adsorbed lubricating liquid on the rubbing surface and the formation of height difference between the TSP part and the WC matrix part [33].
\nThe overall results demonstrate that the PCD composite series hardbandings are extremely promising for drill pipe hardbanding applications.
\n\n
At present, the research on hardbanding materials is still in the stage of “casing-friendly” materials. The hardbanding material is mainly developed to the directions of high wear resistance, high casing friendliness, and high rewelding.
Although more and more hardbanding products appear, ARNCO series hardbandings developed by Arnco Technology companies are still the best hardbanding materials. The latest products ARNCO 350XT and 150XT are the best products with wear-resisting performance, which can guarantee 100% no crack.
In China, some “casing-friendly” hardbanding materials can be occasionally reported on the Internet, and most of them imitate the foreign products. The material performance has still a certain gap compared with mature products. Chinese research institutions should pay attention to the development of new wear-resistant belt materials to accelerate the development of a reasonable price. If the excellent performance of new wear-resistant belt material can be obtained, then China’s capacity for independent research and technology level will be enhanced.
PCD composite series hardbandings, which are extremely promising for drill pipe hardbanding applications. This hardbanding material has a strong resistance to wear, a good casing protected with small friction factor, and friction resistance.
This work was supported by National Key R&D Program of China (Grant No. 2016YFE0202200), the Fundamental Research Funds for the Central Universities (Grant No. 2652017070), Research Foundation of Key Laboratory of Deep Geo-drilling Technology, Ministry of Land and Resources (Grant No. PY201805), International S&T Cooperation Program of China (Grant No. 2012DFR70160), and the National Natural Science Foundation of China (No. 41672365).
\nIntechOpen celebrates Open Access academic research of women scientists: Call Opens on February 11, 2018 and closes on March 8th, 2018.
",metaTitle:'Call for Applications: "IntechOpen Women in Science 2018" Book Collection',metaDescription:"IntechOpen celebrates Open Access academic research of women scientists: Call Opens on February 11, 2018 and closes on March 8th, 2018.",metaKeywords:null,canonicalURL:"/page/women-in-science-book-collection-2018/",contentRaw:'[{"type":"htmlEditorComponent","content":"On February 9th, 2018, which marks the official celebration of UNESCO’s International Day of Women and Girls in Science, we have announced we are seeking contributors for the upcoming “IntechOpen Women in Science 2018” Book Collection. The program aims to support women scientists worldwide whose academic needs include quality assurance, peer-review, fast publishing, collaboration among complementary authors, immediate exposure, and post-publishing citations reporting.
\\n\\nAPPLYING FOR THE “INTECHOPEN WOMEN IN SCIENCE 2018” OPEN ACCESS BOOK COLLECTION
\\n\\nWomen scientists can apply for one book topic, either as an editor or with co-editors, for a publication of an OA book in any of the scientific categories that will be evaluated by The Women in Science Book Collection Committee, led by IntechOpen’s Editorial Board. Submitted proposals will be sent to designated members of the IntechOpen Editorial Advisory Board who will evaluate proposals based on the following parameters: the proposal’s originality, the topic’s relation to recent trends in the corresponding scientific field, and significance to the scientific community.
\\n\\nThe submissions are now closed. All applicants will be notified on the results in due time. Thank you for participating!
\\n"}]'},components:[{type:"htmlEditorComponent",content:"On February 9th, 2018, which marks the official celebration of UNESCO’s International Day of Women and Girls in Science, we have announced we are seeking contributors for the upcoming “IntechOpen Women in Science 2018” Book Collection. The program aims to support women scientists worldwide whose academic needs include quality assurance, peer-review, fast publishing, collaboration among complementary authors, immediate exposure, and post-publishing citations reporting.
\n\nAPPLYING FOR THE “INTECHOPEN WOMEN IN SCIENCE 2018” OPEN ACCESS BOOK COLLECTION
\n\nWomen scientists can apply for one book topic, either as an editor or with co-editors, for a publication of an OA book in any of the scientific categories that will be evaluated by The Women in Science Book Collection Committee, led by IntechOpen’s Editorial Board. Submitted proposals will be sent to designated members of the IntechOpen Editorial Advisory Board who will evaluate proposals based on the following parameters: the proposal’s originality, the topic’s relation to recent trends in the corresponding scientific field, and significance to the scientific community.
\n\nThe submissions are now closed. All applicants will be notified on the results in due time. Thank you for participating!
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:null},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5314},{group:"region",caption:"Middle and South America",value:2,count:4818},{group:"region",caption:"Africa",value:3,count:1466},{group:"region",caption:"Asia",value:4,count:9363},{group:"region",caption:"Australia and Oceania",value:5,count:837},{group:"region",caption:"Europe",value:6,count:14778}],offset:12,limit:12,total:108152},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{hasNoEditors:"0",sort:"title"},books:[{type:"book",id:"9306",title:"2D Materials",subtitle:null,isOpenForSubmission:!0,hash:"7d1bdb7cdf5a05ed67443906889aaf71",slug:null,bookSignature:"Dr. Karthikeyan Krishnamoorthy",coverURL:"https://cdn.intechopen.com/books/images_new/9306.jpg",editedByType:null,editors:[{id:"278690",title:"Dr.",name:"Karthikeyan",surname:"Krishnamoorthy",slug:"karthikeyan-krishnamoorthy",fullName:"Karthikeyan Krishnamoorthy"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9442",title:"A Comprehensive Approach in Medico Legal Examination in Sexual Assault Cases",subtitle:null,isOpenForSubmission:!0,hash:"fa63d39e368a24bc2fe15356bed434b4",slug:null,bookSignature:"Dr. Adithi Shetty and Dr. B Suresh Shetty",coverURL:"https://cdn.intechopen.com/books/images_new/9442.jpg",editedByType:null,editors:[{id:"300329",title:"Dr.",name:"Adithi",surname:"Shetty",slug:"adithi-shetty",fullName:"Adithi Shetty"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10082",title:"Accelerators and Colliders",subtitle:null,isOpenForSubmission:!0,hash:"7774bddf707cc21601de7051625e30b6",slug:null,bookSignature:"Dr. Ozan Artun",coverURL:"https://cdn.intechopen.com/books/images_new/10082.jpg",editedByType:null,editors:[{id:"255462",title:"Dr.",name:"Ozan",surname:"Artun",slug:"ozan-artun",fullName:"Ozan Artun"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9951",title:"Acetic Acid-Production and Applications in the Food Industry",subtitle:null,isOpenForSubmission:!0,hash:"d7666e2b4abc4663a3418bdf3f2c2fd5",slug:null,bookSignature:"Dr. Miguel Fernández-Niño",coverURL:"https://cdn.intechopen.com/books/images_new/9951.jpg",editedByType:null,editors:[{id:"158295",title:"Dr.",name:"Miguel",surname:"Fernández-Niño",slug:"miguel-fernandez-nino",fullName:"Miguel Fernández-Niño"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9073",title:"Acne",subtitle:null,isOpenForSubmission:!0,hash:"6a7a4ab615c572fa07a704b44a35b0cf",slug:null,bookSignature:"Dr. Usma Iftikhar",coverURL:"https://cdn.intechopen.com/books/images_new/9073.jpg",editedByType:null,editors:[{id:"310225",title:"Dr.",name:"Usma",surname:"Iftikhar",slug:"usma-iftikhar",fullName:"Usma Iftikhar"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10042",title:"Acoustics of Materials",subtitle:null,isOpenForSubmission:!0,hash:"11e8fca2f0f623d87dfbc3cf2b185e0d",slug:null,bookSignature:"Dr. Daniela Siano",coverURL:"https://cdn.intechopen.com/books/images_new/10042.jpg",editedByType:null,editors:[{id:"9960",title:"Dr.",name:"Daniela",surname:"Siano",slug:"daniela-siano",fullName:"Daniela Siano"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7800",title:"Activism in the Construction Industry",subtitle:null,isOpenForSubmission:!0,hash:"776779e213ef3e51e73bd6cd4f5676af",slug:null,bookSignature:"Dr. Nthatisi Khatleli",coverURL:"https://cdn.intechopen.com/books/images_new/7800.jpg",editedByType:null,editors:[{id:"247856",title:"Dr.",name:"Nthatisi",surname:"Khatleli",slug:"nthatisi-khatleli",fullName:"Nthatisi Khatleli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10034",title:"Adaptive Robust Control Systems",subtitle:null,isOpenForSubmission:!0,hash:"e73af24bc4df698a1c6e0fd01f6ae2c2",slug:null,bookSignature:"Dr. Mario Alberto Jordán",coverURL:"https://cdn.intechopen.com/books/images_new/10034.jpg",editedByType:null,editors:[{id:"152460",title:"Dr.",name:"Mario",surname:"Jordán",slug:"mario-jordan",fullName:"Mario Jordán"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9750",title:"Adenosine Triphosphatase - Updated View",subtitle:null,isOpenForSubmission:!0,hash:"a9df7d0f048e44e1806942eaf6a74c5f",slug:null,bookSignature:"Prof. Mohammed Khalid",coverURL:"https://cdn.intechopen.com/books/images_new/9750.jpg",editedByType:null,editors:[{id:"137240",title:"Prof.",name:"Mohammed",surname:"Khalid",slug:"mohammed-khalid",fullName:"Mohammed Khalid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10049",title:"Advanced Functional Materials",subtitle:null,isOpenForSubmission:!0,hash:"58745a56d54c143e4de8433f3d6eb62e",slug:null,bookSignature:"Dr. Nevin Tasaltin",coverURL:"https://cdn.intechopen.com/books/images_new/10049.jpg",editedByType:null,editors:[{id:"94825",title:"Associate Prof.",name:"Nevin",surname:"Tasaltin",slug:"nevin-tasaltin",fullName:"Nevin Tasaltin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8655",title:"Advances in Complex Analysis",subtitle:null,isOpenForSubmission:!0,hash:"6abcaa5b5cf98a51a769d1bce7e5ebe5",slug:null,bookSignature:"Dr. Francisco Bulnes",coverURL:"https://cdn.intechopen.com/books/images_new/8655.jpg",editedByType:null,editors:[{id:"92918",title:"Dr.",name:"Francisco",surname:"Bulnes",slug:"francisco-bulnes",fullName:"Francisco Bulnes"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:35},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:32},{group:"topic",caption:"Business, Management and Economics",value:7,count:9},{group:"topic",caption:"Chemistry",value:8,count:29},{group:"topic",caption:"Computer and Information Science",value:9,count:26},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:14},{group:"topic",caption:"Engineering",value:11,count:75},{group:"topic",caption:"Environmental Sciences",value:12,count:13},{group:"topic",caption:"Immunology and Microbiology",value:13,count:3},{group:"topic",caption:"Materials Science",value:14,count:37},{group:"topic",caption:"Mathematics",value:15,count:14},{group:"topic",caption:"Medicine",value:16,count:142},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:5},{group:"topic",caption:"Neuroscience",value:18,count:6},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:8},{group:"topic",caption:"Physics",value:20,count:20},{group:"topic",caption:"Psychology",value:21,count:2},{group:"topic",caption:"Robotics",value:22,count:6},{group:"topic",caption:"Social Sciences",value:23,count:14},{group:"topic",caption:"Technology",value:24,count:10},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:3},{group:"topic",caption:"Intelligent System",value:535,count:1}],offset:12,limit:12,total:507},popularBooks:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8416",title:"Non-Equilibrium Particle Dynamics",subtitle:null,isOpenForSubmission:!1,hash:"2c3add7639dcd1cb442cb4313ea64e3a",slug:"non-equilibrium-particle-dynamics",bookSignature:"Albert S. Kim",coverURL:"https://cdn.intechopen.com/books/images_new/8416.jpg",editors:[{id:"21045",title:"Prof.",name:"Albert S.",middleName:null,surname:"Kim",slug:"albert-s.-kim",fullName:"Albert S. Kim"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:4386},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"7878",title:"Advances in Extracorporeal Membrane Oxygenation",subtitle:"Volume 3",isOpenForSubmission:!1,hash:"f95bf990273d08098a00f9a1c2403cbe",slug:"advances-in-extracorporeal-membrane-oxygenation-volume-3",bookSignature:"Michael S. Firstenberg",coverURL:"https://cdn.intechopen.com/books/images_new/7878.jpg",editors:[{id:"64343",title:null,name:"Michael S.",middleName:"S",surname:"Firstenberg",slug:"michael-s.-firstenberg",fullName:"Michael S. Firstenberg"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7614",title:"Fourier Transforms",subtitle:"Century of Digitalization and Increasing Expectations",isOpenForSubmission:!1,hash:"ff3501657ae983a3b42fef1f7058ac91",slug:"fourier-transforms-century-of-digitalization-and-increasing-expectations",bookSignature:"Goran S. Nikoli? and Dragana Z. Markovi?-Nikoli?",coverURL:"https://cdn.intechopen.com/books/images_new/7614.jpg",editors:[{id:"23261",title:"Prof.",name:"Goran",middleName:"S.",surname:"Nikolic",slug:"goran-nikolic",fullName:"Goran Nikolic"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7087",title:"Tendons",subtitle:null,isOpenForSubmission:!1,hash:"786abac0445c102d1399a1e727a2db7f",slug:"tendons",bookSignature:"Hasan Sözen",coverURL:"https://cdn.intechopen.com/books/images_new/7087.jpg",editors:[{id:"161402",title:"Dr.",name:"Hasan",middleName:null,surname:"Sözen",slug:"hasan-sozen",fullName:"Hasan Sözen"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7123",title:"Current Topics in Neglected Tropical Diseases",subtitle:null,isOpenForSubmission:!1,hash:"61c627da05b2ace83056d11357bdf361",slug:"current-topics-in-neglected-tropical-diseases",bookSignature:"Alfonso J. Rodriguez-Morales",coverURL:"https://cdn.intechopen.com/books/images_new/7123.jpg",editors:[{id:"131400",title:"Dr.",name:"Alfonso J.",middleName:null,surname:"Rodriguez-Morales",slug:"alfonso-j.-rodriguez-morales",fullName:"Alfonso J. Rodriguez-Morales"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7610",title:"Renewable and Sustainable Composites",subtitle:null,isOpenForSubmission:!1,hash:"c2de26c3d329c54f093dc3f05417500a",slug:"renewable-and-sustainable-composites",bookSignature:"António B. Pereira and Fábio A. O. Fernandes",coverURL:"https://cdn.intechopen.com/books/images_new/7610.jpg",editors:[{id:"211131",title:"Prof.",name:"António",middleName:"Bastos",surname:"Pereira",slug:"antonio-pereira",fullName:"António Pereira"}],productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"8463",title:"Pediatric Surgery, Flowcharts and Clinical Algorithms",subtitle:null,isOpenForSubmission:!1,hash:"23f39beea4d557b0ae424e2eaf82bf5e",slug:"pediatric-surgery-flowcharts-and-clinical-algorithms",bookSignature:"Sameh Shehata",coverURL:"https://cdn.intechopen.com/books/images_new/8463.jpg",editedByType:"Edited by",editors:[{id:"37518",title:"Prof.",name:"Sameh",middleName:null,surname:"Shehata",slug:"sameh-shehata",fullName:"Sameh Shehata"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7187",title:"Osteosarcoma",subtitle:"Diagnosis, Mechanisms, and Translational Developments",isOpenForSubmission:!1,hash:"89096359b754beb806eca4c6d8aacaba",slug:"osteosarcoma-diagnosis-mechanisms-and-translational-developments",bookSignature:"Matthew Gregory Cable and Robert Lawrence Randall",coverURL:"https://cdn.intechopen.com/books/images_new/7187.jpg",editedByType:"Edited by",editors:[{id:"265693",title:"Dr.",name:"Matthew Gregory",middleName:null,surname:"Cable",slug:"matthew-gregory-cable",fullName:"Matthew Gregory Cable"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7955",title:"Advances in Hematologic Malignancies",subtitle:null,isOpenForSubmission:!1,hash:"59ca1b09447fab4717a93e099f646d28",slug:"advances-in-hematologic-malignancies",bookSignature:"Gamal Abdul Hamid",coverURL:"https://cdn.intechopen.com/books/images_new/7955.jpg",editedByType:"Edited by",editors:[{id:"36487",title:"Prof.",name:"Gamal",middleName:null,surname:"Abdul Hamid",slug:"gamal-abdul-hamid",fullName:"Gamal Abdul Hamid"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7701",title:"Assistive and Rehabilitation Engineering",subtitle:null,isOpenForSubmission:!1,hash:"4191b744b8af3b17d9a80026dcb0617f",slug:"assistive-and-rehabilitation-engineering",bookSignature:"Yves Rybarczyk",coverURL:"https://cdn.intechopen.com/books/images_new/7701.jpg",editedByType:"Edited by",editors:[{id:"72920",title:"Prof.",name:"Yves",middleName:"Philippe",surname:"Rybarczyk",slug:"yves-rybarczyk",fullName:"Yves Rybarczyk"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7726",title:"Swarm Intelligence",subtitle:"Recent Advances, New Perspectives and Applications",isOpenForSubmission:!1,hash:"e7ea7e74ce7a7a8e5359629e07c68d31",slug:"swarm-intelligence-recent-advances-new-perspectives-and-applications",bookSignature:"Javier Del Ser, Esther Villar and Eneko Osaba",coverURL:"https://cdn.intechopen.com/books/images_new/7726.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8256",title:"Distillation",subtitle:"Modelling, Simulation and Optimization",isOpenForSubmission:!1,hash:"c76af109f83e14d915e5cb3949ae8b80",slug:"distillation-modelling-simulation-and-optimization",bookSignature:"Vilmar Steffen",coverURL:"https://cdn.intechopen.com/books/images_new/8256.jpg",editedByType:"Edited by",editors:[{id:"189035",title:"Dr.",name:"Vilmar",middleName:null,surname:"Steffen",slug:"vilmar-steffen",fullName:"Vilmar Steffen"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7240",title:"Growing and Handling of Bacterial Cultures",subtitle:null,isOpenForSubmission:!1,hash:"a76c3ef7718c0b72d0128817cdcbe6e3",slug:"growing-and-handling-of-bacterial-cultures",bookSignature:"Madhusmita Mishra",coverURL:"https://cdn.intechopen.com/books/images_new/7240.jpg",editedByType:"Edited by",editors:[{id:"204267",title:"Dr.",name:"Madhusmita",middleName:null,surname:"Mishra",slug:"madhusmita-mishra",fullName:"Madhusmita Mishra"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8299",title:"Timber Buildings and Sustainability",subtitle:null,isOpenForSubmission:!1,hash:"bccf2891cec38ed041724131aa34c25a",slug:"timber-buildings-and-sustainability",bookSignature:"Giovanna Concu",coverURL:"https://cdn.intechopen.com/books/images_new/8299.jpg",editedByType:"Edited by",editors:[{id:"108709",title:"Dr.",name:"Giovanna",middleName:null,surname:"Concu",slug:"giovanna-concu",fullName:"Giovanna Concu"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7062",title:"Rhinosinusitis",subtitle:null,isOpenForSubmission:!1,hash:"14ed95e155b1e57a61827ca30b579d09",slug:"rhinosinusitis",bookSignature:"Balwant Singh Gendeh and Mirjana Turkalj",coverURL:"https://cdn.intechopen.com/books/images_new/7062.jpg",editedByType:"Edited by",editors:[{id:"67669",title:"Prof.",name:"Balwant Singh",middleName:null,surname:"Gendeh",slug:"balwant-singh-gendeh",fullName:"Balwant Singh Gendeh"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7837",title:"Geriatric Medicine and Gerontology",subtitle:null,isOpenForSubmission:!1,hash:"e277d005b23536bcd9f8550046101979",slug:"geriatric-medicine-and-gerontology",bookSignature:"Edward T. Zawada Jr.",coverURL:"https://cdn.intechopen.com/books/images_new/7837.jpg",editedByType:"Edited by",editors:[{id:"16344",title:"Dr.",name:"Edward T.",middleName:null,surname:"Zawada Jr.",slug:"edward-t.-zawada-jr.",fullName:"Edward T. Zawada Jr."}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"549",title:"Algorithm Analysis",slug:"computer-science-and-engineering-algorithm-analysis",parent:{title:"Computer Science and Engineering",slug:"computer-science-and-engineering"},numberOfBooks:1,numberOfAuthorsAndEditors:13,numberOfWosCitations:0,numberOfCrossrefCitations:1,numberOfDimensionsCitations:3,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"computer-science-and-engineering-algorithm-analysis",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"5966",title:"Heuristics and Hyper-Heuristics",subtitle:"Principles and Applications",isOpenForSubmission:!1,hash:"da699185a8b84a430d96d54bc35acdb2",slug:"heuristics-and-hyper-heuristics-principles-and-applications",bookSignature:"Javier Del Ser Lorente",coverURL:"https://cdn.intechopen.com/books/images_new/5966.jpg",editedByType:"Edited by",editors:[{id:"49813",title:"Dr.",name:"Javier",middleName:null,surname:"Del Ser",slug:"javier-del-ser",fullName:"Javier Del Ser"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:1,mostCitedChapters:[{id:"55554",doi:"10.5772/intechopen.69225",title:"Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization Problems",slug:"hyper-heuristics-and-metaheuristics-for-selected-bio-inspired-combinatorial-optimization-problems",totalDownloads:665,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Aleksandra Swiercz",authors:[{id:"203032",title:"Ph.D.",name:"Aleksandra",middleName:null,surname:"Swiercz",slug:"aleksandra-swiercz",fullName:"Aleksandra Swiercz"}]},{id:"55704",doi:"10.5772/intechopen.69236",title:"Advanced Particle Filter Methods",slug:"advanced-particle-filter-methods",totalDownloads:684,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Roi Yozevitch and Boaz Ben-Moshe",authors:[{id:"203049",title:"Prof.",name:"Boaz",middleName:null,surname:"Benmoshe",slug:"boaz-benmoshe",fullName:"Boaz Benmoshe"},{id:"203051",title:"Mr.",name:"Roi",middleName:null,surname:"Yozevitch",slug:"roi-yozevitch",fullName:"Roi Yozevitch"}]},{id:"55594",doi:"10.5772/intechopen.69222",title:"Multi‐Objective Hyper‐Heuristics",slug:"multi-objective-hyper-heuristics",totalDownloads:595,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Mashael Suliaman Maashi",authors:[{id:"201702",title:"Dr.",name:"Mashael",middleName:null,surname:"Maashi",slug:"mashael-maashi",fullName:"Mashael Maashi"}]}],mostDownloadedChaptersLast30Days:[{id:"56264",title:"Heuristics Techniques for Scheduling Problems with Reducing Waiting Time Variance",slug:"heuristics-techniques-for-scheduling-problems-with-reducing-waiting-time-variance",totalDownloads:656,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Satyasundara Mahapatra, Rati Ranjan Dash and Sateesh K. Pradhan",authors:[{id:"201253",title:"Dr.",name:"Satyasundara",middleName:null,surname:"Mahapatra",slug:"satyasundara-mahapatra",fullName:"Satyasundara Mahapatra"},{id:"203077",title:"Dr.",name:"Rati Ranjan",middleName:null,surname:"Dash",slug:"rati-ranjan-dash",fullName:"Rati Ranjan Dash"},{id:"203078",title:"Dr.",name:"Sateesh Kumar",middleName:null,surname:"Pradhan",slug:"sateesh-kumar-pradhan",fullName:"Sateesh Kumar Pradhan"}]},{id:"55704",title:"Advanced Particle Filter Methods",slug:"advanced-particle-filter-methods",totalDownloads:684,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Roi Yozevitch and Boaz Ben-Moshe",authors:[{id:"203049",title:"Prof.",name:"Boaz",middleName:null,surname:"Benmoshe",slug:"boaz-benmoshe",fullName:"Boaz Benmoshe"},{id:"203051",title:"Mr.",name:"Roi",middleName:null,surname:"Yozevitch",slug:"roi-yozevitch",fullName:"Roi Yozevitch"}]},{id:"55554",title:"Hyper‐Heuristics and Metaheuristics for Selected Bio‐Inspired Combinatorial Optimization Problems",slug:"hyper-heuristics-and-metaheuristics-for-selected-bio-inspired-combinatorial-optimization-problems",totalDownloads:665,totalCrossrefCites:0,totalDimensionsCites:2,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Aleksandra Swiercz",authors:[{id:"203032",title:"Ph.D.",name:"Aleksandra",middleName:null,surname:"Swiercz",slug:"aleksandra-swiercz",fullName:"Aleksandra Swiercz"}]},{id:"55594",title:"Multi‐Objective Hyper‐Heuristics",slug:"multi-objective-hyper-heuristics",totalDownloads:595,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Mashael Suliaman Maashi",authors:[{id:"201702",title:"Dr.",name:"Mashael",middleName:null,surname:"Maashi",slug:"mashael-maashi",fullName:"Mashael Maashi"}]},{id:"55968",title:"On the Use of Hybrid Heuristics for Providing Service to Select the Return Channel in an Interactive Digital TV Environment",slug:"on-the-use-of-hybrid-heuristics-for-providing-service-to-select-the-return-channel-in-an-interactive",totalDownloads:569,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Marcos César da Rocha Seruffo, Ádamo Lima de Santana, Carlos\nRenato Lisboa Francês and Nandamudi Lankalapalli Vijaykumar",authors:[{id:"10493",title:"Dr.",name:"Adamo",middleName:null,surname:"Lima De Santana",slug:"adamo-lima-de-santana",fullName:"Adamo Lima De Santana"},{id:"202549",title:"Dr.",name:"Marcos",middleName:null,surname:"Seruffo",slug:"marcos-seruffo",fullName:"Marcos Seruffo"},{id:"202551",title:"Dr.",name:"Nadamundi",middleName:null,surname:"Vijaykumar",slug:"nadamundi-vijaykumar",fullName:"Nadamundi Vijaykumar"},{id:"202552",title:"Dr.",name:"Carlos Renato",middleName:null,surname:"Francês",slug:"carlos-renato-frances",fullName:"Carlos Renato Francês"}]},{id:"55810",title:"Efficient Heuristics for Scheduling with Release and Delivery Times",slug:"efficient-heuristics-for-scheduling-with-release-and-delivery-times",totalDownloads:477,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"heuristics-and-hyper-heuristics-principles-and-applications",title:"Heuristics and Hyper-Heuristics",fullTitle:"Heuristics and Hyper-Heuristics - Principles and Applications"},signatures:"Nodari Vakhania",authors:[{id:"202585",title:"Prof.",name:"Nodari",middleName:null,surname:"Vakhania",slug:"nodari-vakhania",fullName:"Nodari Vakhania"}]}],onlineFirstChaptersFilter:{topicSlug:"computer-science-and-engineering-algorithm-analysis",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"6837",title:"Lithium-ion Batteries - Thin Film for Energy Materials and Devices",subtitle:null,isOpenForSubmission:!0,hash:"ea7789260b319b9a4b472257f57bfeb5",slug:null,bookSignature:"Prof. Mitsunobu Sato, Dr. Li Lu and Dr. Hiroki Nagai",coverURL:"https://cdn.intechopen.com/books/images_new/6837.jpg",editedByType:null,editors:[{id:"179615",title:"Prof.",name:"Mitsunobu",middleName:null,surname:"Sato",slug:"mitsunobu-sato",fullName:"Mitsunobu Sato"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9423",title:"Applications of Artificial Intelligence in Process Industry Automation, Heat and Power Generation and Smart Manufacturing",subtitle:null,isOpenForSubmission:!0,hash:"10ac8fb0bdbf61044395963028653d21",slug:null,bookSignature:"Prof. Konstantinos G. Kyprianidis and Prof. Erik Dahlquist",coverURL:"https://cdn.intechopen.com/books/images_new/9423.jpg",editedByType:null,editors:[{id:"35868",title:"Prof.",name:"Konstantinos",middleName:"G.",surname:"Kyprianidis",slug:"konstantinos-kyprianidis",fullName:"Konstantinos Kyprianidis"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9428",title:"New Trends in the Use of Artificial Intelligence for the Industry 4.0",subtitle:null,isOpenForSubmission:!0,hash:"9e089eec484ce8e9eb32198c2d8b34ea",slug:null,bookSignature:"Dr. Luis Romeral Martinez, Dr. Roque A. Osornio-Rios and Dr. Miguel Delgado Prieto",coverURL:"https://cdn.intechopen.com/books/images_new/9428.jpg",editedByType:null,editors:[{id:"86501",title:"Dr.",name:"Luis",middleName:null,surname:"Romeral Martinez",slug:"luis-romeral-martinez",fullName:"Luis Romeral Martinez"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10107",title:"Artificial Intelligence in Oncology Drug Discovery & Development",subtitle:null,isOpenForSubmission:!0,hash:"043c178c3668865ab7d35dcb2ceea794",slug:null,bookSignature:"Dr. John Cassidy and Dr. Belle Taylor",coverURL:"https://cdn.intechopen.com/books/images_new/10107.jpg",editedByType:null,editors:[{id:"244455",title:"Dr.",name:"John",middleName:null,surname:"Cassidy",slug:"john-cassidy",fullName:"John Cassidy"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8903",title:"Carbon Based Material for Environmental Protection and Remediation",subtitle:null,isOpenForSubmission:!0,hash:"19da699b370f320eca63ef2ba02f745d",slug:null,bookSignature:"Dr. Mattia Bartoli and Dr. Marco Frediani",coverURL:"https://cdn.intechopen.com/books/images_new/8903.jpg",editedByType:null,editors:[{id:"188999",title:"Dr.",name:"Mattia",middleName:null,surname:"Bartoli",slug:"mattia-bartoli",fullName:"Mattia Bartoli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10132",title:"Applied Computational Near-surface Geophysics - From Integral and Derivative Formulas to MATLAB Codes",subtitle:null,isOpenForSubmission:!0,hash:"38cdbbb671df620b36ee96af1d9a3a90",slug:null,bookSignature:"Dr. Afshin Aghayan",coverURL:"https://cdn.intechopen.com/books/images_new/10132.jpg",editedByType:null,editors:[{id:"311030",title:"Dr.",name:"Afshin",middleName:null,surname:"Aghayan",slug:"afshin-aghayan",fullName:"Afshin Aghayan"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10110",title:"Advances and Technologies in Building Construction and Structural Analysis",subtitle:null,isOpenForSubmission:!0,hash:"df2ad14bc5588577e8bf0b7ebcdafd9d",slug:null,bookSignature:"Dr. Ali Kaboli and Dr. Sara Shirowzhan",coverURL:"https://cdn.intechopen.com/books/images_new/10110.jpg",editedByType:null,editors:[{id:"309192",title:"Dr.",name:"Ali",middleName:null,surname:"Kaboli",slug:"ali-kaboli",fullName:"Ali Kaboli"}],productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10175",title:"Ethics in Emerging Technologies",subtitle:null,isOpenForSubmission:!0,hash:"9c92da249676e35e2f7476182aa94e84",slug:null,bookSignature:"Prof. Ali Hessami",coverURL:"https://cdn.intechopen.com/books/images_new/10175.jpg",editedByType:null,editors:[{id:"108303",title:"Prof.",name:"Ali",middleName:null,surname:"Hessami",slug:"ali-hessami",fullName:"Ali Hessami"}],productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:16},humansInSpaceProgram:{},teamHumansInSpaceProgram:{},route:{name:"chapter.detail",path:"/books/advances-in-bioengineering/plasma-modified-textiles-for-biomedical-applications",hash:"",query:{},params:{book:"advances-in-bioengineering",chapter:"plasma-modified-textiles-for-biomedical-applications"},fullPath:"/books/advances-in-bioengineering/plasma-modified-textiles-for-biomedical-applications",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var e;(e=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(e)}()