Viable cell counts of Lactobacillus acidophilus ATCC 4356 under stress conditions and the control after 14 h of inoculation.
\r\n\t
",isbn:"978-1-83968-388-6",printIsbn:"978-1-83968-387-9",pdfIsbn:"978-1-83968-389-3",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!1,hash:"61ec2bad4fc3f7060fd64b91fa12e82c",bookSignature:"Ph.D. Vicente Vanaclocha",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10574.jpg",keywords:"Prevalence, Incidence, Worldwide Differences, Red Flags, Moyamoya and School Performance, Medical Treatment, Surgical Treatment, Genetic Markers, Immunologic Factors, Recommended Anesthetic Agents, Source of Intraoperative Complications, Post-Operative ICU Management",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"September 23rd 2020",dateEndSecondStepPublish:"October 21st 2020",dateEndThirdStepPublish:"December 20th 2020",dateEndFourthStepPublish:"March 10th 2021",dateEndFifthStepPublish:"May 9th 2021",remainingDaysToSecondStep:"3 months",secondStepPassed:!0,currentStepOfPublishingProcess:4,editedByType:null,kuFlag:!1,biosketch:"Dr. Vicente Vanaclocha is a Chief of Neurosurgery at the University Hospital of Navarra and head of Neurosurgery Service of San Jaime Hospital in Torrevieja. He has over 25 years of experience in neuro-oncology and minimally invasive surgery techniques. He is a pioneer in many areas in neurosurgery (treatment of brain tumors, Chiari Malformation, and sacroiliac joint disorders).",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"199099",title:"Ph.D.",name:"Vicente",middleName:null,surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha",profilePictureURL:"https://mts.intechopen.com/storage/users/199099/images/system/199099.jpeg",biography:"Vicente Vanaclocha is Chief of Neurosurgery. Doctor of Medicine from the University of Valencia, he has over 25 years experience in neuro-oncology, minimally invasive and minimally invasive surgery techniques. Specialist in neurosurgery both nationally and internationally (including the General Medical Register of England and stay at the Groote Schuur Hospital in Cape Town, South Africa) has been Chief of Neurosurgery at the University Hospital of Navarra and head of Neurosurgery Service of San Jaime Hospital in Torrevieja. He was also associate professor of neurosurgery at the Faculty of Medicine of the University of Navarra and is a professor of neuroanatomy at the Catholic University of Valencia also serving as an editorial board member of repute.\nCurrently he is Associate Professor at the University of Valencia.",institutionString:"University of Valencia",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"7",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"University of Valencia",institutionURL:null,country:{name:"Spain"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"16",title:"Medicine",slug:"medicine"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"297737",firstName:"Mateo",lastName:"Pulko",middleName:null,title:"Mr.",imageUrl:"https://mts.intechopen.com/storage/users/297737/images/8492_n.png",email:"mateo.p@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"6546",title:"Treatment of Brachial Plexus Injuries",subtitle:null,isOpenForSubmission:!1,hash:"24a8e7c7430e86f76fb29df39582855a",slug:"treatment-of-brachial-plexus-injuries",bookSignature:"Vicente Vanaclocha and Nieves Sáiz-Sapena",coverURL:"https://cdn.intechopen.com/books/images_new/6546.jpg",editedByType:"Edited by",editors:[{id:"199099",title:"Ph.D.",name:"Vicente",surname:"Vanaclocha",slug:"vicente-vanaclocha",fullName:"Vicente Vanaclocha"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6550",title:"Cohort Studies in Health Sciences",subtitle:null,isOpenForSubmission:!1,hash:"01df5aba4fff1a84b37a2fdafa809660",slug:"cohort-studies-in-health-sciences",bookSignature:"R. Mauricio Barría",coverURL:"https://cdn.intechopen.com/books/images_new/6550.jpg",editedByType:"Edited by",editors:[{id:"88861",title:"Dr.",name:"René Mauricio",surname:"Barría",slug:"rene-mauricio-barria",fullName:"René Mauricio Barría"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1373",title:"Ionic Liquids",subtitle:"Applications and Perspectives",isOpenForSubmission:!1,hash:"5e9ae5ae9167cde4b344e499a792c41c",slug:"ionic-liquids-applications-and-perspectives",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/1373.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"57",title:"Physics and Applications of Graphene",subtitle:"Experiments",isOpenForSubmission:!1,hash:"0e6622a71cf4f02f45bfdd5691e1189a",slug:"physics-and-applications-of-graphene-experiments",bookSignature:"Sergey Mikhailov",coverURL:"https://cdn.intechopen.com/books/images_new/57.jpg",editedByType:"Edited by",editors:[{id:"16042",title:"Dr.",name:"Sergey",surname:"Mikhailov",slug:"sergey-mikhailov",fullName:"Sergey Mikhailov"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"371",title:"Abiotic Stress in Plants",subtitle:"Mechanisms and Adaptations",isOpenForSubmission:!1,hash:"588466f487e307619849d72389178a74",slug:"abiotic-stress-in-plants-mechanisms-and-adaptations",bookSignature:"Arun Shanker and B. Venkateswarlu",coverURL:"https://cdn.intechopen.com/books/images_new/371.jpg",editedByType:"Edited by",editors:[{id:"58592",title:"Dr.",name:"Arun",surname:"Shanker",slug:"arun-shanker",fullName:"Arun Shanker"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"878",title:"Phytochemicals",subtitle:"A Global Perspective of Their Role in Nutrition and Health",isOpenForSubmission:!1,hash:"ec77671f63975ef2d16192897deb6835",slug:"phytochemicals-a-global-perspective-of-their-role-in-nutrition-and-health",bookSignature:"Venketeshwer Rao",coverURL:"https://cdn.intechopen.com/books/images_new/878.jpg",editedByType:"Edited by",editors:[{id:"82663",title:"Dr.",name:"Venketeshwer",surname:"Rao",slug:"venketeshwer-rao",fullName:"Venketeshwer Rao"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"26403",title:"Effect of Environmental Stresses on S-Layer Production in Lactobacillus acidophilus ATCC 4356",doi:"10.5772/28334",slug:"effect-of-environmental-stresses-on-s-layer-production-in-lactobacillus-acidophilus-atcc-4356",body:'\n\t\tThe gastrointestinal tract (GTI) is the organ with the largest surface area in the human body, having in an adult between 150 and 200 m2 (Holzapfel et al., 1998). Interesting in this context is the fact that a huge number of microorganisms live and interact with the host in the stomach and gut. The GIT of an adult human is estimated to harbour about 1013–1014 viable bacteria, i.e. 10 times the total number of eukaryotic cells in all tissues of man\'s body (Holzapfel et al., 1998; Velez et al., 2007). In the gastrointestinal tract, the bacteria are affected both by the physiological conditions (such as low pH, bile salt and enzymes) and by other microorganisms which exist in the GIT. Because of the presence of enzymes, salts and acids in the gastric juice, the environmental conditions in the stomach are destructive to a number of microorganisms (Holzapfel et al., 1998). The microbial community in the gastrointestinal tract is complex and consists of several hundred species, of which lactic acid bacteria constitute a minor proportion. Lactic acid bacteria (LAB) are Gram-positive bacteria which excrete lactic acid as a main fermentation product into the medium. This biochemical definition associates lactic acid bacteria of different phylogenetic branches of bacterial evolution: the “low GC” taxa, e.g. Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Streptococcus, and the “high GC” genus Bifidobacterium. Species of these genera can be found in gastrointestinal tract of man and animal (Klaenhammer et al., 2005; Klein et al., 1998; Mathur & Singh, 2005). They have also been involved since time immemorial in food processing and food preservation, and are applied in particular for the manufacturing of dairy products, fermented meat, vegetables, bread and ensilage (Pouwels et al., 1998). Several lactic acid bacteria have the potential to promote the health of the host or to prevent and treat diseases. Such bacteria are referred to as probiotic, meaning ‘for life’ (Latin pro=for and biotic=life) (Herich & Levkut, 2002; Marteau & Rambaud, 2002; Mercenier et al., 2002; Ouwehand et al., 2003). The strains of LAB used as probiotics usually belong to species of the genera Lactobacillus, Enterococcus, and Bifidobacterium (Klein et al., 1998). The effects of probiotic microorganisms on the host have been discussed extensively in the literature. It has been proposed that probiotics possess several advantageous properties, such as antagonistic actions, production of antimicrobial substances, modulation of immune responses, and impact on the metabolic activities of the gut (Marteau & Rambaud, 2002; O\'Toole & Cooney, 2008; Sanders & Klaenhammer, 2001). In vitro and animal studies have further shown inhibitory effects of probiotic bacteria to be mediated by their interference with the adhesion of gastrointestinal pathogens or with toxins produced by the pathogenic microorganisms (O\'Toole & Cooney, 2008; Sullivan & Nord, 2002). However, beneficial influence of probiotics has been demonstrated in clinical studies (De Roos & Katan, 2000; Kos et al., 2008; Mishra et al., 2008; O\'Toole & Cooney, 2008; Park et al., 2008; Resta-Lenert & Barrett, 2003; Sanders & Klaenhammer, 2001). Some possible health effects include immune system stimulation, cholesterol lowering, prevention and treatment of diarrhea, prevention of cancer recurrence, improvement in lactose intolerance, and reduction of allergy (De Roos & Katan, 2000; Mercenier et al., 2002; Reid, 1999; Sanders & Klaenhammer, 2001). The most common probiotic strains belong to two genera, Lactobacillus and Bifidobacterium (Sanders & Klaenhammer, 2001; Sullivan & Nord, 2002). Some strains of Lactobacillus are found as natural commensals of the GIT, the oral cavity and the female uro-genital tract of animals and humans (Pouwels et al., 1998). Also, Lactobacilli are of considerable technological and commercial importance because of their role in the manufacturing and preservation of many fermented food products (Schar-Zammaretti et al., 2005). Lactobacillus acidophilus is one of the major species of the genus Lactobacillus found in human and animal intestines (Frece et al., 2005). Nowadays, Lactobacillus acidophilus strains are commonly used as probiotic (Sanders & Klaenhammer, 2001), and marketed as capsules, powders, enriched yogurts, yogurt-like products, and milk (De Roos & Katan, 2000). Adhesion to intestinal epithelial cells is an important prerequisite for colonization of probiotic strains in the gastrointestinal tract (Altermann et al., 2004; Kos et al., 2003). This is mediated either non-specifically by physico-chemical factors (such as hydrophobicity) or, specifically, by adhesive bacterial surface molecules and epithelial receptor molecules (such as S-layer, fibronectin and mucin-binding proteins) (Holzapfel et al., 1998).
\n\t\tIn the intestinal tracts of mammals and avians, species of the genera Lactobacillus, Enterococcus, Streptococcus and Bifidobacterium are the dominant indigenous lactic micro-biota. Commonly recovered Lactobacillus isolates from the human gastrointestinal tract include L. acidophilus, L. salivarius, L. casei, L. plantarum, L. fermentum, L. brevis and L. reuteri. The findings that colonization by lactobacilli and other lactic acid bacteria improves infection resistance of the host have led to the production and consumption of probiotics (Kosin & Rakshit, 2006). The probiotics must resist multiple stresses including the GIT conditions and food processing. An important attribute for certain probiotic bacteria functions are survival and growth in the intestinal tract (Sanders & Klaenhammer, 2001). The gastric juice contains hydrochloric acid, which induces an extremely low pH. The fasting pH in the stomach is approximately 1.5, while the pH increases to between 3.0 and 5.0 when food is eaten (Cotter & Hill, 2003). In the intestine, the conditions are less extreme because of in the intestine pH is higher than the stomach, but the bacteria still have to endure bile and pancreatic juices (intestinal fluids). Other factors affecting microbial life in this environment are immunoglobulins, defensins, a continuously regenerating epithelium, peristaltic movement of intestinal content, and a viscous mucus layer (Dunne et al., 2001; Tannock et al., 1999). Moreover, probiotics used in food technology are exposed to various adverse conditions during processing, such as temperature changes, acidity, osmotic and oxidative stress (Kosin & Rakshit, 2006). Such stresses may reduce the physiological activity of the cells and readily kill the cells. Once the cells have survived the stresses, they can colonize and grow to adequate numbers to provide the beneficial effect to the host. Survival mechanisms exhibited by bacteria when confronted with stress are generally referred to as the stress response (De Angelis & Gobbetti, 2004; Jan et al., 2001; Kim et al., 2001). However, the ability to survive passage through the intestinal tract and potentially establish residence there is considered as an important feature. The degree of retention is likely dependent on the ability of the bacteria to interact with eukaryotic cell surfaces or with the mucosal layer surrounding these cells (Altermann et al., 2004). Several factors contribute to the interaction of Lactobacilli with the host tissues, such as cell surface hydrophobicity (Vadillo-Rodriguez et al., 2005; Van der Mei et al., 2003), autoaggregation (Kos et al., 2003), lipoteichoic acids (Granato et al., 1999) and external surface proteins (such as S-layer, fibronectin and mucin-binding proteins) (Altermann et al., 2004; Avall-Jaaskelainen & Palva, 2005; Frece et al., 2005; Kos et al., 2003; Kosin & Rakshit, 2006; Pouwels et al., 1998; Velez et al., 2007; Ventura et al., 2002). Surface layer (S-layer) has been identified as the outermost structure of cell envelope in numerous organisms from the domains Bacteria (in both Gram-positive and Gram-negative Eubacteria) and Archaea (Debabov, 2004; Sara & Sleytr, 2000). S-layer proteins are non-covalently bound to the cell wall and assemble into surface layers with high degrees of positional order often completely covering the cell wall, and can be disintegrated into monomers by denaturing agents such as urea or guanidine hydrochloride (Avall-Jaaskelainen & Palva, 2005; Engelhardt & Peters, 1998; Lortal et al., 1992; Sleytr et al., 2001). The S-layer has been detected in a few species of the genus Lactobacillus (Avall-Jaaskelainen & Palva, 2005). Lactobacilli surface layer proteins (S-layers) are generally monomolecular crystalline arrays exhibiting a morphologically similar, oblique lattice structure and representing 10-15% of the total protein content of the bacterial cell wall (Avall-Jaaskelainen & Palva, 2005; Jakava-Viljanen et al., 2002). Several reports have appeared in which functions of S-layer are described or assumed (Boot et al., 1993; Jakava-Viljanen et al., 2002; Sara & Sleytr, 2000). However, no general function has been identified for S-layer proteins, but several lactobacillar S-layers have been identified as putative adhesions with affinity for intestinal epithelial cells, extracellular matrices and/ or to lipoteichoic acid (LTA) of other bacterial species (Avall-Jaaskelainen & Palva, 2005; Buck et al., 2005; Frece et al., 2005; Garrote et al., 2004; Hynonen et al., 2002; Kos et al., 2003; Velez et al., 2007; Vidgren et al., 1992). Of the various roles proposed for the bacterial S-layer, it is a protective sheath against hostile environment (Avall-Jaaskelainen & Palva, 2005; Frece et al., 2005; Khaleghi et al., 2010, 2011; Kos et al., 2003; Schar-Zammaretti et al., 2005). Adhesive S-layers have a role in inhibition of adhesiveness of pathogenic bacteria and thus can contribute to probiotic effects of lactobacilli. To date, several lactobacilli S-layer protein-encoding genes have been cloned, sequenced and deposited in GenBank (Avall-Jaaskelainen & Palva, 2005; Velez et al., 2007). The presence of multiple S-layer protein genes seems to be quite common for bacteria (Avall-Jaaskelainen & Palva, 2005; Ben-Jacob et al., 2000; Boot & Pouwels, 1996; Jakava-Viljanen et al., 2002). Multiple S-layer genes have been identified in the genomes of L. acidophilus, L. amylovorus, L. gallinarum, L. crispatus, L. brevis, L. gasseri and L. johnsonii (Avall-Jaaskelainen & Palva, 2005; Boot & Pouwels, 1996; Jakava-Viljanen et al., 2002; Ventura et al., 2002). There is also increasing evidence that S-layer-carrying bacteria may use S-layer variation, by expressing alternative S-layer protein genes, for adaptation to different stress factors such as the immune response of the host for pathogens and drastic changes in the environmental conditions for nonpathogens (Boot & Pouwels, 1996; Frece et al., 2005; Jakava-Viljanen et al., 2002; Pouwels et al., 1998; Sara & Sleytr, 2000). According to Pouwels’ study (1998), phase variation or antigenic variation, as a result of inversion of the slp segment, might enable Lactobacillus acidophilus bacteria to better adhere to specific regions of the mucosa. Variation in S-layer gene expression as a response to environmental changes has also been described in Geobacillus stearothermophilus, Bacillus anthracis, and Campylobacter fetus (Boot & Pouwels, 1996; Mignot et al., 2002).
\n\t\t\tThere is some evidence that the surface properties of microorganisms are dependent on the growth conditions and the composition of the fermentation medium (Schar-Zammaretti et al., 2005; Waar et al., 2002; Dufrene & Rouxhet, 1996; Millsap et al., 1997). Schar-Zammaretti (2005) suggested that S-layer protein is preferentially expressed under different fermentation media. Furthermore, it has been shown that the S-layer production is changed with the change in medium (such as bile salt, penicillin G) (Khaleghi et al., 2010, 2011).
\n\t\t\tThe aim of this study was to gain more knowledge about S-layer production and slpA gene expression in different growth conditions (pH and temperature) in Lactobacillus acidophilus ATCC 4356. Moreover, the reassembly of S-layer subunits was studied under these stresses.
\n\t\t\tThe S-layer proteins of Lactobacilli are relatively small, 25 kDa to 71 kDa in size (Avall-Jaaskelainen & Palva, 2005), whereas the molecular masses of S-layers in other bacterial species range up to 200 kDa (Sara & Sleytr, 2000). The Lactobacillar S-layers are highly basic proteins with calculated isoelectric point values ranging from 9.35 to 10.4. Yet, all the other S-layer proteins characterized are weakly acidic (Avall-Jaaskelainen & Palva, 2005). Evidence shows that the S-layer protein is important for Lactobacillus acidophilus (Frece et al., 2005; Khaleghi et al., 2010, 2011; Kim et al., 2001; Toba et al., 1995).
\n\t\t\t\t\n\t\t\t\t\tLactobacillus acidophilus strains isolated from humans and animals, which belong to DNA homology groups A, are reported to possess a slpA gene, while the strains which belong to the DNA homology groups B appear not to have an slpA gene (Boot et al., 1993). According to Boots\' study (1995, 1996, 1996c), there are two S-layer protein encoding genes, slpA and slpB, in Lactobacillus acidophilus ATCC 4356; of the two, slpA is active and slpB is silent in normal growth conditions. The two S-protein genes are located 6-kb apart on the chromosome, in a reverse orientation relative to each other. The slpA gene is interchanged with the slpB gene through inversion of a chromosomal fragment in a fraction of a culture (0.3% of the cell growth under laboratory conditions). Thus, it seems that S-layer variation of non-pathogenic lactobacilli has the same function as S-layer variation for pathogenic organisms such as Campylobacter fetus, namely to circumvent an immune response of the infected host (Boot & Pouwels, 1996; Boot et al., 1995, 1996b, 1996c).
\n\t\t\t\tTherefore, the present study investigated the effects of some stresses on the S-layer production, reassembly of S-layer subunits, and slpA gene expression.
\n\t\t\t\tTo study the effect of heat and pH stresses on S-layer production and slpA gene expression, the Lactobacillus acidophilus ATCC 4356 was cultivated in MRS broth (Merck) for heat stress (30, 45, 50 and 55 oC) (Kim et al., 2001); for pH stress, MRS broth was adjusted to pH 3-7 (adjusted with HCl and NaOH) (Jan et al., 2001; Lorca et al., 1998). The pH and temperature of the control culture (MRS broth) were 6.5 and 37 oC, respectively, according to manufacturer\'s recommendation and as described previously (Boot et al., 1993; Silva et al., 2005; Smit et al., 2001).
\n\t\t\t\t\t\n\t\t\t\t\t\t\tLactobacillus acidophilus ATCC 4356 was obtained from the Germany Type Culture Collection and was cultivated anaerobically (in jar with Anaerocult A-strip, Merck) in MRS broth (Merck) at 37 oC (Boot et al., 1993; Smit et al., 2001). Lactobacillus casei ATCC 393 was used as negative control for isolation of S-layer.
\n\t\t\t\t\t\tFor isolation of S-layer and total RNA, the recommended optical density is 0.7 at 695 nm (the end of log phase) (Boot et al., 1993; Smit et al., 2001) and 0.2-0.4 at 600 nm (mid-log phase), respectively (Boot et al., 1995). But in this study, we compared slpA gene expression and S-layer production at the same time. In addition, the S-layer production was compared in OD600= 0.4 and OD600= 0.7. Therefore, S-layer protein and total RNA were isolated in exponentially growing cells (OD600 ≈ 0.4). Also, S-layer protein was extracted at OD600= 0.7. For extraction of S-layer, Lactobacillus acidophilus ATCC 4356 was cultivated anaerobically in MRS broth at 37 oC. In general, 100 ml of pre-warmed MRS medium (under stress conditions and control) was inoculated 1: 100 (v/v) with an overnight culture and cultivated until the optical density at 600 nm reached 0.4 and 0.7. Cells were harvested by centrifugation at 15000 ×g for 15 min at 4 oC. The cells were washed twice with 100 ml of ice-cold water. The cell pellet was extracted with 0.1 volume of 4 M guanidine hydrochloride (pH 7) for one hour at 37 oC and centrifuged at 18000 ×g for 15 min. The supernatant, containing S-layer protein monomers, was dialyzed against water at 4 oC for 16-24 h (Boot et al., 1993). The dialyzed extracts were analyzed by SDS-PAGE (Smit et al., 2001). SDS-PAGE of protein samples was carried out using Precision Plus Protein Standard [low molecular weight marker (10-250 kDa) - Biorad]. The samples were run on 12% polyacrylamide gel at 100 V. Protein bands were visualized by Coomassie blue staining. Protein concentration was determined according to Bradford\'s method (Bradford, 1976). For normalization of the measured absorption values, BSA (Merck) was used.
\n\t\t\t\t\tS-layer self-assembly subunits were studied by the negative staining technique. To prepare the TEM samples, several droplets of the dialyzed protein were pipetted onto the carbon-coated grids and left for 1-16 h to immobilize the proteinaceous structures. Samples were washed once with distilled water and then stained with 2% uranyl acetate for two minutes (Avall-Jaaskelainen et al., 2002; Smit et al., 2001). The grids were dried by nitrogen flow and studied by Zeiss/CEM 902 a transmission electron microscopy (TEM) at 60 kV.
\n\t\t\t\t\tFor isolation of total RNA, L. acidophilus ATCC 4356 cells were grown in MRS broth (under stress conditions and control) until they reached an optical density of approximately OD600=0.4. The cells were subsequently harvested by centrifugation (5000 ×g for 10 min at 4 C) and washed with an ice-cold TE buffer (Boot et al., 1995). The total RNA was isolated using a protective RNeasy Minikit (Qiagen) according to the manufacturer’s recommendations, and then treated with deoxyribonuclease I (DNase I, RNase-free; Fermentas) at 37 C for 30 min according to manufacturer’s recommendations.
\n\t\t\t\t\tThe reverse transcription (RT) of the RNA samples was performed with 150 ng of total RNA and 0.5 µg of Oligo dT primer using a First Strand cDNA Synthesis kit (Fermentas) at 42 C for 60 min, as recommended by the manufacturer. Forward and reverse primers were designed for the slpA gene of Lactobacillus acidophilus ATCC 4356 as follows: slpA forward (5\'-TGG CCG TTC TTG AAT GTG TA-3\') and slpA reverse (5\'-ACA TCA ACG CTG CAA ACA TC-3\'). These primers generated a 154 bp PCR product in the PCR reaction.
\n\t\t\t\t\t\t16S rRNA was used as the internal control gene based on previously reported primers (Trotha et al., 2001) that generate a 370 bp PCR product.
\n\t\t\t\t\t\tThe final volume of the PCR reaction was 25 µl with the following components: 1 µl cDNA (≈ 7.5 ng), 1 µl (100 pmol/µl) from each primer, 0.5 µl dNTPs mix, 0.5 µl MgCl2, and 0.25 µl (5 U/µl) Taq DNA polymerase (Fermentas). The Mastercycler (Eppendorf) was programmed as follows: initial denaturation for 5 min at 94 C; 30 cycles at 94 C for 45 sec, 54 C for 30 sec, 72 C for 30 sec, and a final extension at 72 C for 8 min. The PCR products (and 50 bp DNA ladder, Fermentas) were separated on a 1% agarose gel and visualized by ethidium bromide staining.
\n\t\t\t\t\tAll the experiments and measurements were repeated at least three times. All the statistical analyses were performed using SPSS and Excel 2003 software. All the experimental results were analyzed using mean descriptive statistics, the correlation coefficient, and a single-factorial analysis of variance. A value of P<0.05 was regarded as statistically significant.
\n\t\t\t\t\tThe growth curve of Lactobacillus acidophilus ATCC 4356 showed that it took approximately 8 h to reach OD600= 0.4 and approximately 14 h to reach OD600= 0.7 (Data not shown). It is important to know that Lactobacillus acidophilus ATCC 4356 was live and grew after 14 h under stress conditions. However, the results indicated that Lactobacillus acidophilus was not live in 50 oC, 55 oC, pH 3 and 4 after 14 h (Table 1). In this study, pH 5, 6, and 7, as well as temperatures 30 oC and 45 oC were chosen as the stress conditions.
\n\t\t\t\t\tCulture condition | \n\t\t\t\t\t\t\t\tCell count (CFU/ml) | \n\t\t\t\t\t\t\t
Control*\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t\t9.6 × 109\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
pH 3 | \n\t\t\t\t\t\t\t\tNo growth | \n\t\t\t\t\t\t\t
pH 4 | \n\t\t\t\t\t\t\t\tNo growth | \n\t\t\t\t\t\t\t
pH 5 | \n\t\t\t\t\t\t\t\t8.38 × 106\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
pH 6 | \n\t\t\t\t\t\t\t\t7.24 × 108\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
pH 7 | \n\t\t\t\t\t\t\t\t9.03 × 109\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
30 oC | \n\t\t\t\t\t\t\t\t8.98 × 108\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
45 oC | \n\t\t\t\t\t\t\t\t3.63 × 107\n\t\t\t\t\t\t\t\t | \n\t\t\t\t\t\t\t
50 oC | \n\t\t\t\t\t\t\t\tNo growth | \n\t\t\t\t\t\t\t
55 oC | \n\t\t\t\t\t\t\t\tNo growth | \n\t\t\t\t\t\t\t
* pH 6.5 & 37 oC. | \n\t\t\t\t\t\t\t
Viable cell counts of Lactobacillus acidophilus ATCC 4356 under stress conditions and the control after 14 h of inoculation.
The surface proteins of Lactobacills acidophilus ATCC 4356 were extracted by treatment of whole cells with 4M guanidine hydrochloride, and analyzed by SDS-PAGE. One dominant band of 43-46 kDa, which is known as the S-protein (Boot et al., 1993; Smit et al., 2001) and a few faint bands were visible on gel (Fig. 1b). In the mid-log-phase (OD600=0.4), S-protein production was low in control group, so the 43-46 kDa band was not seen on gel clearly (Fig. 1a, c; lane 1). However, in the control group with OD600=0.7, a 43-46 kDa band was visible on SDS-PAGE gel (Fig. 1b, d; lane 1).
\n\t\t\t\t\tUnder stress conditions (OD600=0.4 & 0.7), S-protein band was visible and the band became sharper in pH 5 and 45 oC (Fig. 1). It seemed that S-protein bands were not different in pH 6, 7 and the control (Fig. 1b).
\n\t\t\t\t\tNo protein bands (43-46 kDa) were visible on SDS-PAGE gel from isolated protein of Lactobacillus casei ATCC 393.
\n\t\t\t\t\tTo determine the total proteins, the Bradford method was used. The total proteins were compared between the control and the group under stress conditions. In the case of pH 5 and 45 oC, total protein content was higher than others (Fig. 2). Moreover, the total protein production level was lowest at 30 oC (p< 0.001). In pH 6, 7 and control, the protein content was almost similar. After comparing the results of total protein analysis under stress and control conditions, the range of difference in protein content was similar in OD600 = 0.4 and 0.7.
\n\t\t\t\t\tSDS-PAGE gel (12% polyacrylamide) analysis of isolated surface proteins of Lactobacillus acidophilus ATCC 4356 at: a) mid-log phase (OD600= 0.4) and b) exponential growth phase (OD600= 0.7) under pH stress (lane 1, control; lane 2, pH 5; lane 3, pH 6; lane 4, pH 7). c) mid-log phase (OD600= 0.4) and d) exponential growth phase (OD600= 0.7) under heat stress (lane 1, control; lane 2, 30 ºc; lane 3, 45 ºc). M, Protein marker.
Extracted surface proteins (extracted in mid-log phase) were compared in control and the group under stress conditions by Bradford method. (a) Control (pH 6.5 & 37 oC); (b) pH 5; (c) pH 6; (d) pH 7; (e) 30 oC; (f) 45 oC. Error bars represent standard deviations of the mean values of results from three independent experiments.
To assess the change in S-layer protein content of the cell wall under stress conditions by transmission electron microscopy (TEM), we chose 45 oC in which S-layer production was highest (Fig. 2). In the electron microscopy study, the presence of the S-layer on the outer surface of Lactobacillus acidophilus ATCC 4356 was clearly demonstrated (Fig. 3). In particular, the bacterial surface was completely covered with an S-layer in the control (Fig. 3a, b), but an excess of S-layer protein was found at the both ends of the bacterial cell under stress condition (Fig. 3c, d).
\n\t\t\t\t\tElectron microscopic images of Lactobacillus acidophilus ATCC 4356. a, b: Lactobacillus acidophilus ATCC 4356 was completely covered by the S-layer in the control. c, d: an excess of S-layer was found at the both ends of the bacterial cell at 45ºc. S-layer protein was indicated by black arrow (scale bar (a, c) = 2.5 μm and scale bar (b, d) = 0.6 μm).
The crystallization of S-layer was investigated by TEM. S-protein, which was isolated by guanidine hydrochloride, aggregated readily upon removal of the salt by dialysis, and formed a white precipitate. Analysis of these precipitates by TEM showed that they were composed exclusively of crystalline lattice (Fig. 4). It seems that the reassembly of S-layer subunits was similar in the group under stress condition (45ºc) and control. The results indicated that S-layer has two-fold (p2) symmetry with a periodicity of 11.3 and 5.5 nm in the control. After comparing the lattice parameters, we found that they were similar (under stress condition and control).
\n\t\t\t\t\tNegatively stained TEM image of isolated S-layer from Lactobacillus acidophilus ATCC 4356. a) The control (37 ºc); b) 45 ºc (scale bar = 100nm).
The results indicated that the stress influenced slpA gene expression. Interestingly, the slpA gene expression increased in pH 5 and 45 oC. Under pH stress, comparison of the slpA gene expression showed that in the pH 6 and 7, the slpA gene expression was lower than that in the control (Fig. 5a) (p< 0.001). In addition, the slpA gene expression decreased at 30 oC, and the slpA gene expression was highest at 45 oC (Fig. 5b) (p< 0.001). However, major differences in the slpA gene expression were observed between the control and the group under stress conditions (Fig. 5).
\n\t\t\t\t\tComparison of slpA gene expression under control and stress conditions (a: pH stress; b: heat stress) as compared to expression of housekeeping gene (16S RNA) in the same reaction to normalize the data. Error bars represent standard deviations of the mean values of results from three independent experiments.
To investigate the effects of pH and heat stresses on S-layer production and slpA gene expression (OD600 = 0.4 and 0.7) in Lactobacillus acidophilus ATCC 4356, we studied the survival of bacteria under stress conditions for 14 h. It was found that in pH 3, 4 and the temperatures 50-55 oC, Lactobacillus acidophilus ATCC 4356 could not survive. Then, pH 5, 6, and 7, as well as temperatures 30 oC and 45 oC were chosen as the stress conditions. SDS-PAGE gel (12% polyacrylamide) of S-layer protein showed that a single dominant band (43-46 kDa) was visible (Fig. 1). According to the previous studies, Lactobacillus acidophilus ATCC 4356 has S-layer protein with 43 kDa molecular weight (Boot et al., 1993; Smit et al., 2001). Also, Lactobacillus acidophilus ATCC 4356 has been used as positive control for S-layer protein in other studies (Fitzsimons et al., 2003; Frece et al., 2005). In our study, S-layer extraction was carried out according to Boot\'s method (Boot et al., 1993) in Lactobacillus acidophilus ATCC 4356 and Lactobacillus casei ATCC 393 (as negative control), and the results were compared together. As S-layer is the outermost structure of cell envelope in Lactobacillus acidophilus ATCC 4356, the extracted protein was only from cell wall without lysis of bacterial cells. In SDS-PAGE gel, there was one dominant band of 43-46 kDa and a few faint bands which were not 43 kDa. But there was no protein band in negative control. Therefore, we confirmed that these proteins are S-layer proteins. The S-layer protein was isolated with 4 M guanidine hydrochloride. During the mid-log phase (OD600 = 0.4), the S-layer protein production was low in the control group, but it was clearly visible in OD600 = 0.7 (Fig. 1, lane 1). Under stress conditions, the production of S-layer protein increased at pH 5 and 45oC. However, the increase in S-protein production was found in OD600 = 0.4 and 0.7 (Fig. 1, 2). Evidence showed that S-layer production was increased under stress conditions (Khaleghi et al., 2010, 2011) and medium components (Schar-Zammaretti et al., 2005). It was found that S-layer proteins were present during all growth phases of Lactobacillus acidophilus M92 under heat stress (Frece et al., 2005). This suggested that the S-layer protein is preferentially expressed under conditions which are not optimal for bacterial growth. It has been proposed that S-layer plays a role as a protective sheath in Lactobacillus acidophilus ATCC 4356. In addition, some studies identified that the S-layer proteins of Lactobacilli were important for hydrophobicity, autoaggregation and adherence of this bacteria to different host surfaces (Frece et al., 2005; Greene & Klaenhammer, 1994; Hynonen et al., 2002; Kos et al., 2003; Pelletier et al., 1997; Sillanpaa et al., 2000; Toba et al., 1995; Vadillo-Rodriguez et al., 2004, 2005; Van der Mei et al., 2003).
\n\t\t\tTransmission electron microscopic analysis showed that Lactobacillus acidophilus ATCC 4356 was completely covered by S-layer at 37 oC. Also, S-layer covered the bacterial cells at 45 oC, but an excess of S-protein was found at the both ends of the bacterial cell (Fig. 3). It seems that the S-layer protein has a protective role for Lactobacillus acidophilus ATCC 4356. Previously, the excess of S-layer was found at the site of separation of the two daughter cells in Clostridium thermosaccharolyticum, which prevented the exposure of the newly synthesized parts of the cell wall to the environment. It has been proposed that several bacteria produce an excess of S-protein to ensure complete coverage of the cell wall during cell division, and either store excess S-layer protein in the peptidoglycan layer or secrete it into the environment (Boot & Pouwels, 1996).
\n\t\t\tBecause of the adhesion role of S-layer to the epithelial cells in Lactobacilli, it is important to investigate of the self-assembly ability of S-protein monomers under stress conditions. One of these stresses is heat stress that Lactobacillus is encountered it during food processing. According to the investigation, the TEM images showed that dialyzed S-protein monomers were able to recrystalized at 45 oC as same as 37 oC. The S-layer structure was an oblique lattice with p2 symmetry, and its parameters were respectively 11.3 and 5.5 nm. This finding was corresponded to the lattice parameters in Lactobacillus acidophilus ATCC 4356 (Smit et al., 2001), Lactobacillus helveticus ATCC 12046 (Lortal et al., 1992) and Lactobacillus brevis ATCC 14869 (Jakava-Viljanen et al., 2002).
\n\t\t\tAccording to the investigation of slpA gene expression, it was found that the slpA gene expression increased at 45 oC and pH 5. It proves that S-layer is very important for Lactobacillus acidophilus ATCC 4356, and is a protective sheath for the bacteria. In the pH 6, 7 and 37 oC, the slpA gene expression was lower than that in the control. It is not known why the slpA gene expression was different from the S-protein production in pH 6 and 7. It has been suggested that, either a little inversion has happened on slpA and slpB in unfavorable growth conditions or the presence of HCl and NaOH, used for adjusting of pH, can influence or block slpA gene expression. Another explanation could be that the S-layer mRNA has a relatively long half-life of 15 min and it can be repeatedly translated. As S-layer proteins represent 10-15% of the total amount of proteins in Lactobacillus cells, their transcription and secretion mechanisms must be efficient and tightly regulated. Multiple promoters precede several S-layer genes (Boot & Pouwels, 1996) including S-layer genes of Lactobacillus acidophilus (Boot et al., 1996a) and Lactobacillus brevis (Vidgren et al., 1992) and are likely to ensure efficient transcription of these genes. Also, the half-lives of mRNA-encoding lactobacillar S-layer proteins are relatively high, approximately 15 min, which enables efficient protein translation (Boot et al., 1996a). In addition to the actively transcribed S-layer protein gene (slpA), Lactobacillus acidophilus has also the silent slpB gene. The inversion of the slp segment causes an interchange of the active and the silent S-layer genes, which resembles a mechanism of phase variation in expression of bacterial surface antigen (Avall-Jaaskelainen & Palva, 2005; Boot & Pouwels, 1996; Boot et al., 1996b; Pouwels et al., 1998). It was found that the frequency of inversion was high (1/300), yet all attempts to demonstrate expression of the slpB gene have so far been unsuccessful (Boot et al., 1996b; Pouwels et al., 1998). Phase variation or antigenic variation, as a result of inversion of the slp segment, might enable Lactobacillus acidophilus bacteria to better adhere to specific regions of mucosa (Pouwels et al., 1998).
\n\t\tIn conclusion, we found that environmental conditions influenced the S-layer protein and slpA gene expression. Nevertheless, it seems that high temperature (45 oC) did not influence the self-assembly of S-layer monomers.
\n\t\t\tFor future investigations, the slpB gene expression and adhesion of Lactobacillus acidophilus to the epithelial cells should be studied under stress and control conditions.
\n\t\tThis work was supported by the Graduate Studies Office and Research Office of the University of Isfahan and International Center for Science, High Technology and Environmental Sciences.
\n\t\tThe largest research object of modern perinatology and neonatology is preterm and growth retarded children. Despite the rapid development of perinatal care and the early prevention of many pathologies, worldwide perinatal morbidity and mortality remain high [1, 2, 3, 4].
The results of the scientific researches prove that perinatal pathologies play a leading role in the formation of illness, death, disability, social and biological disarray, and different types of neurodevelopmental disorders [5, 6, 7, 8, 9, 10]. It is known that birth is a complicated biological process regulated by numerous signal molecules and biologically active substances. The fetal inflammatory response plays a major role in the pathogenesis of premature birth [11]. In addition to prematurity, the hypoxic-ischemic changes in feto-placental system can result in different perinatal pathologies, such as acute intraventricular bleeding, periventricular leukomalation, necrotic enterocolitis, bronchial lung dysplasia, myocardial dysfunction, sepsis, etc. [12, 13, 14, 15].
Uteroplacental ischemia and circulatory changes in maternal-fetal system are the main chain in formation intrauterine hypoxia and different perinatal pathologies [16, 17, 18]. Previous investigations confirmed the significant role of endothelial function in the formation of different pregnancy pathologies and birth defects [19, 20, 21, 22]. The pathogenetic mechanisms of the formation of endothelial dysfunction during uteroplacental ischemia have not yet been investigated. Present chapter explores the role of vascular tone regulators of endothelial genesis in formation of microcirculatory and ischemic changes in preterm infants.
Adaptation of the child to the extrauterine life significantly depends on the morpho-functional maturity of the organism, and it is more intense and more complicated in preterm babies than mature children [23, 24, 25].
The progress of all complicated pathophysiologic processes occurring in the newborn after birth significantly depends on cardiorespiratory adaptation [23, 24]. The changes in the cardiovascular and respiratory functions in the body related to the primarily changes in the microcirculation [25]. Microcirculatory changes are not only clinical symptoms of various pathologies of perinatal period but also one of the major factors that aggravate their course [26, 27].
HIE is one of the most serious birth complications accompanying with microcirculatory changes of different severity [28]. The pathogenesis of vascular changes in preterm infants is quite complicated and involves series of biochemical and molecular reactions (Figure 1). Persistent membrane depolarization results in excessive presynaptic glutamate release which follows with a series of cellular changes. The activation of NMDA receptors stimulates profound Ca2+ influx, which mediates cascades to cell death. Primary energy failure associated with the depletion of oxygen prevents oxidative phosphorylation, and the disrupting Na-K pump activity is followed by anaerobic metabolism with accumulation of lactic acid. With the restoration of blood flow, there is a brief period of normalization of cerebral metabolism called a latent period. The reperfusion is necessary for the recovery and stopping of processes leading to necrotic neuronal injury during the primary phase of injury. However when the brain has not recovered from the initial injury, the reperfusion can simultaneously cause additional (delayed) injury, and mitochondrial dysfunction continues. When cerebral ischemia is more acute and prolonged, especially in the result of accompanying pathological processes (infection, hereditary factors, environmental and other damaging factors), primary injury is followed by secondary injury, which is often characterized by subsequent resulting in more serious neurological and somatic disintegration in development [29]. Secondary injury is often associated with edema of the brain cells. Compensatory restoration of energy reactions is followed by the intracellular edema and by more complex inflammatory response cascade with the presence of free oxygen radicals [30].
The pathogenesis of hypoxic-ischemic encephalopathy [33].
Increased amount of free radicals and nitric oxide (NO), increased synthesis of nitric oxide synthase (NOS), activated intercellular adhesion, and apoptosis are the tightly connected chains of this pathological process (10–13). However it is confirmed that endothelial NOS (eNOS) genesis plays very important role in maintaining pulmonary blood flow and preventing pulmonary hypertension. Some experimental studies suggested that inhibiting NOS could prevent further brain injury [31]. Selective inhibition of NO of neuronal genesis is more promising in the direction of pathogenetic treatment of HIE in newborn infants [31, 32, 33].
The severity of inflammatory processes is correlated with the activation of different mediators, especially cytokines and adhesion molecules. These molecules cause to the migration of leukocytes to the inflammation center and compact adhesion of migrated leukocytes to vascular endothelium [34, 35]. The main stimulus factor for the synthesis of inflammatory mediators is the activation of endothelial cells of the fetus. Thus, endothelial dysfunction is the main factor that stimulates intracellular and vascular adhesion and leads to the activation of fetal leukocytes [36, 37].
There is much to be investigated how the inflammatory response to hypoxia is regulated and the complete role of different mediators as well as vasoregulatory, anti-inflammatory, and apoptosis molecules under physiological and pathological conditions is unknown. The goal of this chapter is to present the results of recent investigations about the role of vasoregulatory markers in the formation of microcirculatory disorders in hypoxic-ischemic encephalopathy of preterm infants.
Several clinical and experimental studies confirmed the role of endothelial dysfunction in the pathogenesis of hypoxic-ischemic brain injury. The prospective clinical trial of Azerbaijan Medical University Neonatology group (ACTRN12612000342819) determined that the eNOS activity is declined in the background of increased NO concentrations depending on the severity of HIE [38].
The aim of the same study was also to study of the peripheral blood concentrations of vasoregulatory mediators of endothelial genesis in the pathogenesis of microcirculatory changes in newborn children with the birth asphyxia. It investigated 240 preterm infants with a high risk of HIE during early neonatal period. The main groups of children were classified into four groups depending on the degree of the microcirculation changes. The first group included preterm infants without microcirculatory changes of the body. The children with mild-degree microcirculatory disorders (continued less than 1 day and self-regenerating peroral and acrocyanosis, capillary refilling time duration less than 3 s) were included in the second group. The third group consisted of children with moderate microcirculatory disorders (such as peroral and acrocyanosis, marbling of the skin, capillary refilling time up to 7 s and continuing from 1 day up to 3 days). The fourth group consisted of children with severe microcirculatory disorders (acute peroral and acrocyanosis, marbling of the skin continuing more than 3 days, capillary refilling time with the duration of more than 7 s and continuing more than 3 days). The parameters were compared with the data of 2 control groups, which consisted of infants without perinatal and neonatal pathologies: 22 healthy preterm infants were included in control 1 and 30 healthy term infants in control 2.
Depending on the magnitude of the microcirculatory defects, the levels of vasoregulatory markers included in the study is shown in Table 1. The statistically significant reduction in eNOS activity in the first few days of life is noticeable, depending on the degree of severity of the microcirculatory disturbances. However toward the end of the early neonatal period in mild and moderate group children, eNOS concentrations significantly increased compared with children with severe microcirculatory changes and control groups.
The level of vasoregulatory indicators in microcirculatory disturbances in children with HIE risk (p<0,05 in comparison with children with 0-none of, 1- mild, 2-moderate, 3-severe microcirculatory changes, and with # - Control 1, ^ - Control 2 infants).
As shown in Table 1, during severe microcirculation defects, NO synthesis of vascular endothelium remains at very low levels. In contrast, NO levels in the early days of the neonatal period were noted to significantly increase in infants with severe microcirculatory disturbances, and in the dynamics of the neonatal period, regardless of the microcirculatory changes severity, it is observed the increase of NO concentrations. At the same time, vasoconstrictor endothelin-1 levels rise during mild and moderate grades of microcirculation changes, while in infants with severe changes, it is reduced. This also proves once again that severe microcirculation disturbances lead to a violation of blood supply both in peripheral and vital organs during acute brain damage. We suggest that the lack of adequate levels of endothelin-1 synthesis, which is vasoconstrictor mediator of vascular endothelium in addition to decreased endothelial NOS activity, becomes one of the main points in the pathophysiology of HIE in preterm infants.
The follow-up results of these children included in this study identified significant relationships between peripheral endothelial vasoregulatory markers in the perinatal period and the formation of developmental disorders at an early age [39]. It was found that, in the presence of high concentrations of NO, early eNOS activity was insufficient in infants with moderate-to-severe neurodevelopmental disorders compared to neonates with mild neurologic changes or without evidence of neurological impairment (Table 2). These findings suggest that depressed eNOS activity and increased non-endothelial NO synthesis play also important roles in the formation of developmental impairments.
Blood concentrations of vasoregulatory markers in the early neonatal period by study groups. 1st group: HIE infants diagnosed with moderate-to-severe neurodevelopmental disorders or cerebral palsy; 2nd group: HIE infants with mild neurologic changes at an early age; 3rd group: HIE infants without evidence of neurological impairment in the post-neonatal period; control group: healthy preterm infants. ap<0,05 is considered statistically significant between main groups (1-2, 1-3, 2-3), and between main and control groups (1-c, 2-c, 3-c).
It is known that there is a disturbance of vasoregulation in the pathogenesis of various pathologies of the HIE and prenatal period [40, 41, 42]. Depending on the complexity of the pathological process and the degree of morphologic and functional immaturity of the body, hypoxic-ischemic lesions can lead to generalized system damage from mild to generalized severe dysfunctions and changes [43, 44, 45, 46, 47]. Acceleration of blood supply to vital organs during HIE is accompanied by peripheral vasospasm. However, the depletion of vascular tone’s regulating mechanisms during the severe and long-lasting processes leads to the tissue hypoxia and acidosis [40, 41, 42, 43, 44, 45, 46, 47]. This often leads to changes in vital organs, especially in brain tissue whose results are with changes that cannot be restored.
It is considered that statistically significant increase of NO levels in peripheral blood circulation during severe hypoxic changes is due to the exhaustion of endothelial NOS sources and the activation of non-endothelial NO synthesis sources. It is likely that in high endothelin-1 levels in children, mild and moderate changes are likely to compensate for an increase in peripheral vein tone and vital organs to maintain normal blood circulation. Reduced vasoconstrictor endothelium-1 levels in children with severe HIE symptoms are likely to be associated with decreased vascular tone and tissue hypoperfusion. In conclusion, the changes of capillary blood circulation in the result of endothelial dysfunction have the main role in the pathogenesis of hypoxic-ischemic inflammation in preterm infants.
The authors sincerely thank Science Development Foundation under the President of the Azerbaijan Republic for providing specific reagent kits (Grant SDF-2010-1(1)-40/28-M-2). We also thank the staff of the Clinical Biochemistry Laboratory of Azerbaijan Medical University for assistance with biomarker analysis.
The authors declare no conflict of interests.
In line with the Principles of Transparency and Best Practice in Scholarly Publishing, below is a more detailed description of IntechOpen's Advertising Policy.
",metaTitle:"Advertising Policy",metaDescription:"IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.",metaKeywords:null,canonicalURL:"/page/advertising-policy",contentRaw:'[{"type":"htmlEditorComponent","content":"1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\\n\\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\\n\\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\\n\\n4. IntechOpen has blocked all the inappropriate types of advertising.
\\n\\n5. IntechOpen has blocked advertisement of harmful products or services.
\\n\\n6. Advertisements and editorial content are clearly distinguishable.
\\n\\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\\n\\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\\n\\n9. Please send any complaints about advertising to: info@intechopen.com.
\\n"}]'},components:[{type:"htmlEditorComponent",content:'1. IntechOpen partners with third-party companies to serve ads and/or collect certain information when you visit our website. These companies may collect non-personally identifiable information (not including your name, address, email address or telephone number) during your visit to IntechOpen's website.
\n\n2. All advertisements and commercially sponsored publications are independent from editorial decisions and are linked to reader behaviour.
\n\n3. IntechOpen does not endorse any product or service marked as an advertisement on IntechOpen website.
\n\n4. IntechOpen has blocked all the inappropriate types of advertising.
\n\n5. IntechOpen has blocked advertisement of harmful products or services.
\n\n6. Advertisements and editorial content are clearly distinguishable.
\n\n7. Editorial decisions will not be influenced by current or potential advertisers and will not be influenced by marketing decisions.
\n\n8. Advertisers have no control or influence over the results of searches a user may conduct on the website by keyword or search topic.
\n\n9. Please send any complaints about advertising to: info@intechopen.com.
\n'}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5698},{group:"region",caption:"Middle and South America",value:2,count:5172},{group:"region",caption:"Africa",value:3,count:1689},{group:"region",caption:"Asia",value:4,count:10243},{group:"region",caption:"Australia and Oceania",value:5,count:888},{group:"region",caption:"Europe",value:6,count:15647}],offset:12,limit:12,total:117315},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{sort:"dateendthirdsteppublish"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:9},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:18},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:7},{group:"topic",caption:"Computer and Information Science",value:9,count:11},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:5},{group:"topic",caption:"Engineering",value:11,count:15},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:5},{group:"topic",caption:"Materials Science",value:14,count:4},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:61},{group:"topic",caption:"Nanotechnology and Nanomaterials",value:17,count:1},{group:"topic",caption:"Neuroscience",value:18,count:1},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:6},{group:"topic",caption:"Physics",value:20,count:2},{group:"topic",caption:"Psychology",value:21,count:3},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:2}],offset:0,limit:12,total:null},popularBooks:{featuredBooks:[{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5141},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9208",title:"Welding",subtitle:"Modern Topics",isOpenForSubmission:!1,hash:"7d6be076ccf3a3f8bd2ca52d86d4506b",slug:"welding-modern-topics",bookSignature:"Sadek Crisóstomo Absi Alfaro, Wojciech Borek and Błażej Tomiczek",coverURL:"https://cdn.intechopen.com/books/images_new/9208.jpg",editors:[{id:"65292",title:"Prof.",name:"Sadek Crisostomo Absi",middleName:"C. Absi",surname:"Alfaro",slug:"sadek-crisostomo-absi-alfaro",fullName:"Sadek Crisostomo Absi Alfaro"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9139",title:"Topics in Primary Care Medicine",subtitle:null,isOpenForSubmission:!1,hash:"ea774a4d4c1179da92a782e0ae9cde92",slug:"topics-in-primary-care-medicine",bookSignature:"Thomas F. Heston",coverURL:"https://cdn.intechopen.com/books/images_new/9139.jpg",editors:[{id:"217926",title:"Dr.",name:"Thomas F.",middleName:null,surname:"Heston",slug:"thomas-f.-heston",fullName:"Thomas F. Heston"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8697",title:"Virtual Reality and Its Application in Education",subtitle:null,isOpenForSubmission:!1,hash:"ee01b5e387ba0062c6b0d1e9227bda05",slug:"virtual-reality-and-its-application-in-education",bookSignature:"Dragan Cvetković",coverURL:"https://cdn.intechopen.com/books/images_new/8697.jpg",editors:[{id:"101330",title:"Dr.",name:"Dragan",middleName:"Mladen",surname:"Cvetković",slug:"dragan-cvetkovic",fullName:"Dragan Cvetković"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9343",title:"Trace Metals in the Environment",subtitle:"New Approaches and Recent Advances",isOpenForSubmission:!1,hash:"ae07e345bc2ce1ebbda9f70c5cd12141",slug:"trace-metals-in-the-environment-new-approaches-and-recent-advances",bookSignature:"Mario Alfonso Murillo-Tovar, Hugo Saldarriaga-Noreña and Agnieszka Saeid",coverURL:"https://cdn.intechopen.com/books/images_new/9343.jpg",editors:[{id:"255959",title:"Dr.",name:"Mario Alfonso",middleName:null,surname:"Murillo-Tovar",slug:"mario-alfonso-murillo-tovar",fullName:"Mario Alfonso Murillo-Tovar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9785",title:"Endometriosis",subtitle:null,isOpenForSubmission:!1,hash:"f457ca61f29cf7e8bc191732c50bb0ce",slug:"endometriosis",bookSignature:"Courtney Marsh",coverURL:"https://cdn.intechopen.com/books/images_new/9785.jpg",editors:[{id:"255491",title:"Dr.",name:"Courtney",middleName:null,surname:"Marsh",slug:"courtney-marsh",fullName:"Courtney Marsh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7831",title:"Sustainability in Urban Planning and Design",subtitle:null,isOpenForSubmission:!1,hash:"c924420492c8c2c9751e178d025f4066",slug:"sustainability-in-urban-planning-and-design",bookSignature:"Amjad Almusaed, Asaad Almssad and Linh Truong - Hong",coverURL:"https://cdn.intechopen.com/books/images_new/7831.jpg",editors:[{id:"110471",title:"Dr.",name:"Amjad",middleName:"Zaki",surname:"Almusaed",slug:"amjad-almusaed",fullName:"Amjad Almusaed"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9376",title:"Contemporary Developments and Perspectives in International Health Security",subtitle:"Volume 1",isOpenForSubmission:!1,hash:"b9a00b84cd04aae458fb1d6c65795601",slug:"contemporary-developments-and-perspectives-in-international-health-security-volume-1",bookSignature:"Stanislaw P. Stawicki, Michael S. Firstenberg, Sagar C. Galwankar, Ricardo Izurieta and Thomas Papadimos",coverURL:"https://cdn.intechopen.com/books/images_new/9376.jpg",editors:[{id:"181694",title:"Dr.",name:"Stanislaw P.",middleName:null,surname:"Stawicki",slug:"stanislaw-p.-stawicki",fullName:"Stanislaw P. Stawicki"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7769",title:"Medical Isotopes",subtitle:null,isOpenForSubmission:!1,hash:"f8d3c5a6c9a42398e56b4e82264753f7",slug:"medical-isotopes",bookSignature:"Syed Ali Raza Naqvi and Muhammad Babar Imrani",coverURL:"https://cdn.intechopen.com/books/images_new/7769.jpg",editors:[{id:"259190",title:"Dr.",name:"Syed Ali Raza",middleName:null,surname:"Naqvi",slug:"syed-ali-raza-naqvi",fullName:"Syed Ali Raza Naqvi"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9279",title:"Concepts, Applications and Emerging Opportunities in Industrial Engineering",subtitle:null,isOpenForSubmission:!1,hash:"9bfa87f9b627a5468b7c1e30b0eea07a",slug:"concepts-applications-and-emerging-opportunities-in-industrial-engineering",bookSignature:"Gary Moynihan",coverURL:"https://cdn.intechopen.com/books/images_new/9279.jpg",editors:[{id:"16974",title:"Dr.",name:"Gary",middleName:null,surname:"Moynihan",slug:"gary-moynihan",fullName:"Gary Moynihan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7807",title:"A Closer Look at Organizational Culture in Action",subtitle:null,isOpenForSubmission:!1,hash:"05c608b9271cc2bc711f4b28748b247b",slug:"a-closer-look-at-organizational-culture-in-action",bookSignature:"Süleyman Davut Göker",coverURL:"https://cdn.intechopen.com/books/images_new/7807.jpg",editors:[{id:"190035",title:"Associate Prof.",name:"Süleyman Davut",middleName:null,surname:"Göker",slug:"suleyman-davut-goker",fullName:"Süleyman Davut Göker"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"7434",title:"Molecular Biotechnology",subtitle:null,isOpenForSubmission:!1,hash:"eceede809920e1ec7ecadd4691ede2ec",slug:"molecular-biotechnology",bookSignature:"Sergey Sedykh",coverURL:"https://cdn.intechopen.com/books/images_new/7434.jpg",editedByType:"Edited by",editors:[{id:"178316",title:"Ph.D.",name:"Sergey",middleName:null,surname:"Sedykh",slug:"sergey-sedykh",fullName:"Sergey Sedykh"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8545",title:"Animal Reproduction in Veterinary Medicine",subtitle:null,isOpenForSubmission:!1,hash:"13aaddf5fdbbc78387e77a7da2388bf6",slug:"animal-reproduction-in-veterinary-medicine",bookSignature:"Faruk Aral, Rita Payan-Carreira and Miguel Quaresma",coverURL:"https://cdn.intechopen.com/books/images_new/8545.jpg",editedByType:"Edited by",editors:[{id:"25600",title:"Prof.",name:"Faruk",middleName:null,surname:"Aral",slug:"faruk-aral",fullName:"Faruk Aral"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9569",title:"Methods in Molecular Medicine",subtitle:null,isOpenForSubmission:!1,hash:"691d3f3c4ac25a8093414e9b270d2843",slug:"methods-in-molecular-medicine",bookSignature:"Yusuf Tutar",coverURL:"https://cdn.intechopen.com/books/images_new/9569.jpg",editedByType:"Edited by",editors:[{id:"158492",title:"Prof.",name:"Yusuf",middleName:null,surname:"Tutar",slug:"yusuf-tutar",fullName:"Yusuf Tutar"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9839",title:"Outdoor Recreation",subtitle:"Physiological and Psychological Effects on Health",isOpenForSubmission:!1,hash:"5f5a0d64267e32567daffa5b0c6a6972",slug:"outdoor-recreation-physiological-and-psychological-effects-on-health",bookSignature:"Hilde G. Nielsen",coverURL:"https://cdn.intechopen.com/books/images_new/9839.jpg",editedByType:"Edited by",editors:[{id:"158692",title:"Ph.D.",name:"Hilde G.",middleName:null,surname:"Nielsen",slug:"hilde-g.-nielsen",fullName:"Hilde G. Nielsen"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7802",title:"Modern Slavery and Human Trafficking",subtitle:null,isOpenForSubmission:!1,hash:"587a0b7fb765f31cc98de33c6c07c2e0",slug:"modern-slavery-and-human-trafficking",bookSignature:"Jane Reeves",coverURL:"https://cdn.intechopen.com/books/images_new/7802.jpg",editedByType:"Edited by",editors:[{id:"211328",title:"Prof.",name:"Jane",middleName:null,surname:"Reeves",slug:"jane-reeves",fullName:"Jane Reeves"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8063",title:"Food Security in Africa",subtitle:null,isOpenForSubmission:!1,hash:"8cbf3d662b104d19db2efc9d59249efc",slug:"food-security-in-africa",bookSignature:"Barakat Mahmoud",coverURL:"https://cdn.intechopen.com/books/images_new/8063.jpg",editedByType:"Edited by",editors:[{id:"92016",title:"Dr.",name:"Barakat",middleName:null,surname:"Mahmoud",slug:"barakat-mahmoud",fullName:"Barakat Mahmoud"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10118",title:"Plant Stress Physiology",subtitle:null,isOpenForSubmission:!1,hash:"c68b09d2d2634fc719ae3b9a64a27839",slug:"plant-stress-physiology",bookSignature:"Akbar Hossain",coverURL:"https://cdn.intechopen.com/books/images_new/10118.jpg",editedByType:"Edited by",editors:[{id:"280755",title:"Dr.",name:"Akbar",middleName:null,surname:"Hossain",slug:"akbar-hossain",fullName:"Akbar Hossain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9157",title:"Neurodegenerative Diseases",subtitle:"Molecular Mechanisms and Current Therapeutic Approaches",isOpenForSubmission:!1,hash:"bc8be577966ef88735677d7e1e92ed28",slug:"neurodegenerative-diseases-molecular-mechanisms-and-current-therapeutic-approaches",bookSignature:"Nagehan Ersoy Tunalı",coverURL:"https://cdn.intechopen.com/books/images_new/9157.jpg",editedByType:"Edited by",editors:[{id:"82778",title:"Ph.D.",name:"Nagehan",middleName:null,surname:"Ersoy Tunalı",slug:"nagehan-ersoy-tunali",fullName:"Nagehan Ersoy Tunalı"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9961",title:"Data Mining",subtitle:"Methods, Applications and Systems",isOpenForSubmission:!1,hash:"ed79fb6364f2caf464079f94a0387146",slug:"data-mining-methods-applications-and-systems",bookSignature:"Derya Birant",coverURL:"https://cdn.intechopen.com/books/images_new/9961.jpg",editedByType:"Edited by",editors:[{id:"15609",title:"Dr.",name:"Derya",middleName:null,surname:"Birant",slug:"derya-birant",fullName:"Derya Birant"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8686",title:"Direct Torque Control Strategies of Electrical Machines",subtitle:null,isOpenForSubmission:!1,hash:"b6ad22b14db2b8450228545d3d4f6b1a",slug:"direct-torque-control-strategies-of-electrical-machines",bookSignature:"Fatma Ben Salem",coverURL:"https://cdn.intechopen.com/books/images_new/8686.jpg",editedByType:"Edited by",editors:[{id:"295623",title:"Associate Prof.",name:"Fatma",middleName:null,surname:"Ben Salem",slug:"fatma-ben-salem",fullName:"Fatma Ben Salem"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"293",title:"Military Science",slug:"military-science",parent:{title:"Technology",slug:"technology"},numberOfBooks:2,numberOfAuthorsAndEditors:9,numberOfWosCitations:1,numberOfCrossrefCitations:8,numberOfDimensionsCitations:10,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"military-science",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8588",title:"Military Engineering",subtitle:null,isOpenForSubmission:!1,hash:"03399bdb07c21c27150ee424106395e2",slug:"military-engineering",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8588.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"4818",title:"Mine Action",subtitle:"The Research Experience of the Royal Military Academy of Belgium",isOpenForSubmission:!1,hash:"103b330f3e2931050ea640f9c94165ad",slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",bookSignature:"Charles Beumier, Damien Closson, Vinciane Lacroix, Nada Milisavljevic and Yann Yvinec",coverURL:"https://cdn.intechopen.com/books/images_new/4818.jpg",editedByType:"Authored by",editors:[{id:"185125",title:"Dr.",name:"Charles",middleName:null,surname:"Beumier",slug:"charles-beumier",fullName:"Charles Beumier"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"3",chapterContentType:"chapter",authoredCaption:"Authored by"}}],booksByTopicTotal:2,mostCitedChapters:[{id:"52464",doi:"10.5772/65779",title:"InSAR Coherence and Intensity Changes Detection",slug:"insar-coherence-and-intensity-changes-detection",totalDownloads:1155,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Damien Closson and Nada Milisavljevic",authors:[{id:"13897",title:"Dr.",name:"Damien",middleName:null,surname:"Closson",slug:"damien-closson",fullName:"Damien Closson"}]},{id:"55000",doi:"10.5772/66691",title:"Remote Sensing for Non‐Technical Survey",slug:"remote-sensing-for-non-technical-survey",totalDownloads:952,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Yann Yvinec, Nada Milisavljevic, Charles Beumier, Idrissa\nMahamadou, Dirk Borghys, Michal Shimoni and Vinciane Lacroix",authors:[{id:"133433",title:"Dr.",name:"Yann",middleName:null,surname:"Yvinec",slug:"yann-yvinec",fullName:"Yann Yvinec"}]},{id:"55272",doi:"10.5772/67007",title:"Ground‐Penetrating Radar for Close‐in Mine Detection",slug:"ground-penetrating-radar-for-close-in-mine-detection",totalDownloads:2133,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Olga Lucia Lopera Tellez and Bart Scheers",authors:[{id:"176830",title:"Dr.",name:"Olga",middleName:null,surname:"Lopera",slug:"olga-lopera",fullName:"Olga Lopera"}]}],mostDownloadedChaptersLast30Days:[{id:"55272",title:"Ground‐Penetrating Radar for Close‐in Mine Detection",slug:"ground-penetrating-radar-for-close-in-mine-detection",totalDownloads:2133,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Olga Lucia Lopera Tellez and Bart Scheers",authors:[{id:"176830",title:"Dr.",name:"Olga",middleName:null,surname:"Lopera",slug:"olga-lopera",fullName:"Olga Lopera"}]},{id:"55347",title:"Data Fusion for Close‐Range Detection",slug:"data-fusion-for-close-range-detection",totalDownloads:583,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Nada Milisavljevic",authors:[{id:"4262",title:"Dr.",name:"Nada",middleName:null,surname:"Milisavljevic",slug:"nada-milisavljevic",fullName:"Nada Milisavljevic"}]},{id:"55688",title:"The Special Case of Sea Mines",slug:"the-special-case-of-sea-mines",totalDownloads:1469,totalCrossrefCites:0,totalDimensionsCites:1,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Olga Lucia Lopera Tellez, Alexander Borghgraef and Eric Mersch",authors:[{id:"176830",title:"Dr.",name:"Olga",middleName:null,surname:"Lopera",slug:"olga-lopera",fullName:"Olga Lopera"}]},{id:"54115",title:"Positioning System for a Hand-Held Mine Detector",slug:"positioning-system-for-a-hand-held-mine-detector",totalDownloads:707,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Charles Beumier and Yann Yvinec",authors:[{id:"133433",title:"Dr.",name:"Yann",middleName:null,surname:"Yvinec",slug:"yann-yvinec",fullName:"Yann Yvinec"}]},{id:"67881",title:"Military Aviation Principles",slug:"military-aviation-principles",totalDownloads:457,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"military-engineering",title:"Military Engineering",fullTitle:"Military Engineering"},signatures:"Kanchan Biswas",authors:null},{id:"53260",title:"Unmanned Ground and Aerial Robots Supporting Mine Action Activities",slug:"unmanned-ground-and-aerial-robots-supporting-mine-action-activities",totalDownloads:683,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Yvan Baudoin, Daniela Doroftei, Geert de Cubber, Jean‐Claude\nHabumuremyi, Haris Balta and Ioan Doroftei",authors:[{id:"176831",title:"Dr.",name:"Yvan",middleName:null,surname:"Baudoin",slug:"yvan-baudoin",fullName:"Yvan Baudoin"}]},{id:"52765",title:"PARADIS: Information Management for Mine Action",slug:"paradis-information-management-for-mine-action",totalDownloads:601,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Vinciane Lacroix",authors:[{id:"176829",title:"Dr.",name:"Vinciane",middleName:null,surname:"Lacroix",slug:"vinciane-lacroix",fullName:"Vinciane Lacroix"}]},{id:"55000",title:"Remote Sensing for Non‐Technical Survey",slug:"remote-sensing-for-non-technical-survey",totalDownloads:952,totalCrossrefCites:3,totalDimensionsCites:3,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Yann Yvinec, Nada Milisavljevic, Charles Beumier, Idrissa\nMahamadou, Dirk Borghys, Michal Shimoni and Vinciane Lacroix",authors:[{id:"133433",title:"Dr.",name:"Yann",middleName:null,surname:"Yvinec",slug:"yann-yvinec",fullName:"Yann Yvinec"}]},{id:"52464",title:"InSAR Coherence and Intensity Changes Detection",slug:"insar-coherence-and-intensity-changes-detection",totalDownloads:1155,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Damien Closson and Nada Milisavljevic",authors:[{id:"13897",title:"Dr.",name:"Damien",middleName:null,surname:"Closson",slug:"damien-closson",fullName:"Damien Closson"}]},{id:"54088",title:"Assessing the Performance of Personal Protective Equipment1",slug:"assessing-the-performance-of-personal-protective-equipment1",totalDownloads:1008,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"mine-action-the-research-experience-of-the-royal-military-academy-of-belgium",title:"Mine Action",fullTitle:"Mine Action - The Research Experience of the Royal Military Academy of Belgium"},signatures:"Georgios Kechagiadakis and Marc Pirlot",authors:[{id:"176833",title:"Dr.",name:"Georgios",middleName:null,surname:"Kechagiadakis",slug:"georgios-kechagiadakis",fullName:"Georgios Kechagiadakis"}]}],onlineFirstChaptersFilter:{topicSlug:"military-science",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/advances-in-applied-biotechnology/effect-of-environmental-stresses-on-s-layer-production-in-lactobacillus-acidophilus-atcc-4356",hash:"",query:{},params:{book:"advances-in-applied-biotechnology",chapter:"effect-of-environmental-stresses-on-s-layer-production-in-lactobacillus-acidophilus-atcc-4356"},fullPath:"/books/advances-in-applied-biotechnology/effect-of-environmental-stresses-on-s-layer-production-in-lactobacillus-acidophilus-atcc-4356",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var t;(t=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(t)}()