Polysaccharide based biopolymers used in sorption of different pollutants.
\r\n\t
",isbn:"978-1-83962-547-3",printIsbn:"978-1-83962-546-6",pdfIsbn:"978-1-83962-548-0",doi:null,price:0,priceEur:0,priceUsd:0,slug:null,numberOfPages:0,isOpenForSubmission:!0,hash:"e5ba02fedd7c87f0ab66414f3b07de0c",bookSignature:"Dr. John P. Tiefenbacher",publishedDate:null,coverURL:"https://cdn.intechopen.com/books/images_new/10765.jpg",keywords:"Managing Urbanization, Managing Development, Managing Resource Use, Drought Management, Flood Management, Water Quality Monitoring, Air Quality Monitoring, Ecological Monitoring, Modeling Extreme Natural Events, Ecological Restoration, Restoring Environmental Flows, Environmental Management Perspectives",numberOfDownloads:null,numberOfWosCitations:0,numberOfCrossrefCitations:null,numberOfDimensionsCitations:null,numberOfTotalCitations:null,isAvailableForWebshopOrdering:!0,dateEndFirstStepPublish:"January 12th 2021",dateEndSecondStepPublish:"February 9th 2021",dateEndThirdStepPublish:"April 10th 2021",dateEndFourthStepPublish:"June 29th 2021",dateEndFifthStepPublish:"August 28th 2021",remainingDaysToSecondStep:"a month",secondStepPassed:!0,currentStepOfPublishingProcess:3,editedByType:null,kuFlag:!1,biosketch:"A geospatial scholar working at the interface of natural and human systems, collaborating internationally on innovative studies about hazards and environmental challenges. Dr. Tiefenbacher has published more than 200 papers on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine.",coeditorOneBiosketch:null,coeditorTwoBiosketch:null,coeditorThreeBiosketch:null,coeditorFourBiosketch:null,coeditorFiveBiosketch:null,editors:[{id:"73876",title:"Dr.",name:"John P.",middleName:null,surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher",profilePictureURL:"https://mts.intechopen.com/storage/users/73876/images/system/73876.jfif",biography:"Dr. John P. Tiefenbacher (Ph.D., Rutgers, 1992) is a professor of Geography at Texas State University. His research has focused on various aspects of hazards and environmental management. Dr. Tiefenbacher has published on a diverse array of topics that examine perception and behaviors with regards to the application of pesticides, releases of toxic chemicals, environments of the U.S.-Mexico borderlands, wildlife hazards, and the geography of wine. More recently his work pertains to spatial adaptation to climate change, spatial responses in wine growing regions to climate change, the geographies of viticulture and wine, artificial intelligence and machine learning to predict patterns of natural processes and hazards, historical ethnic enclaves in American cities and regions, and environmental adaptations of 19th century European immigrants to North America's landscapes.",institutionString:"Texas State University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"6",institution:{name:"Texas State University",institutionURL:null,country:{name:"United States of America"}}}],coeditorOne:null,coeditorTwo:null,coeditorThree:null,coeditorFour:null,coeditorFive:null,topics:[{id:"12",title:"Environmental Sciences",slug:"environmental-sciences"}],chapters:null,productType:{id:"1",title:"Edited Volume",chapterContentType:"chapter",authoredCaption:"Edited by"},personalPublishingAssistant:{id:"194667",firstName:"Marijana",lastName:"Francetic",middleName:null,title:"Ms.",imageUrl:"https://mts.intechopen.com/storage/users/194667/images/4752_n.jpg",email:"marijana@intechopen.com",biography:"As an Author Service Manager my responsibilities include monitoring and facilitating all publishing activities for authors and editors. From chapter submission and review, to approval and revision, copyediting and design, until final publication, I work closely with authors and editors to ensure a simple and easy publishing process. I maintain constant and effective communication with authors, editors and reviewers, which allows for a level of personal support that enables contributors to fully commit and concentrate on the chapters they are writing, editing, or reviewing. I assist authors in the preparation of their full chapter submissions and track important deadlines and ensure they are met. I help to coordinate internal processes such as linguistic review, and monitor the technical aspects of the process. As an ASM I am also involved in the acquisition of editors. Whether that be identifying an exceptional author and proposing an editorship collaboration, or contacting researchers who would like the opportunity to work with IntechOpen, I establish and help manage author and editor acquisition and contact."}},relatedBooks:[{type:"book",id:"600",title:"Approaches to Managing Disaster",subtitle:"Assessing Hazards, Emergencies and Disaster Impacts",isOpenForSubmission:!1,hash:"e97caba8487382025a1e70eb85e4e390",slug:"approaches-to-managing-disaster-assessing-hazards-emergencies-and-disaster-impacts",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/600.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"865",title:"Perspectives on Nature Conservation",subtitle:"Patterns, Pressures and Prospects",isOpenForSubmission:!1,hash:"4a4d39cf2a0c2a9416049331b508aa88",slug:"perspectives-on-nature-conservation-patterns-pressures-and-prospects",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/865.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3054",title:"Approaches to Disaster Management",subtitle:"Examining the Implications of Hazards, Emergencies and Disasters",isOpenForSubmission:!1,hash:"0d6576de4f4c7fc7b8db5e91cba6dc28",slug:"approaches-to-disaster-management-examining-the-implications-of-hazards-emergencies-and-disasters",bookSignature:"John Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/3054.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9846",title:"Spatial Variability in Environmental Science",subtitle:"Patterns, Processes, and Analyses",isOpenForSubmission:!1,hash:"cfa4fa7b982bbff46ffbe6fbdbffbdf1",slug:"spatial-variability-in-environmental-science-patterns-processes-and-analyses",bookSignature:"John P. Tiefenbacher and Davod Poreh",coverURL:"https://cdn.intechopen.com/books/images_new/9846.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9389",title:"Global Warming and Climate Change",subtitle:null,isOpenForSubmission:!1,hash:"435d35b33ec04fe921640a514feb19e4",slug:"global-warming-and-climate-change",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/9389.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8011",title:"Natural Hazards",subtitle:"Risk, Exposure, Response, and Resilience",isOpenForSubmission:!1,hash:"43ca8c43ab0963f6c43350764f696b63",slug:"natural-hazards-risk-exposure-response-and-resilience",bookSignature:"John P. Tiefenbacher",coverURL:"https://cdn.intechopen.com/books/images_new/8011.jpg",editedByType:"Edited by",editors:[{id:"73876",title:"Dr.",name:"John P.",surname:"Tiefenbacher",slug:"john-p.-tiefenbacher",fullName:"John P. Tiefenbacher"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"1591",title:"Infrared Spectroscopy",subtitle:"Materials Science, Engineering and Technology",isOpenForSubmission:!1,hash:"99b4b7b71a8caeb693ed762b40b017f4",slug:"infrared-spectroscopy-materials-science-engineering-and-technology",bookSignature:"Theophile Theophanides",coverURL:"https://cdn.intechopen.com/books/images_new/1591.jpg",editedByType:"Edited by",editors:[{id:"37194",title:"Dr.",name:"Theophanides",surname:"Theophile",slug:"theophanides-theophile",fullName:"Theophanides Theophile"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3092",title:"Anopheles mosquitoes",subtitle:"New insights into malaria vectors",isOpenForSubmission:!1,hash:"c9e622485316d5e296288bf24d2b0d64",slug:"anopheles-mosquitoes-new-insights-into-malaria-vectors",bookSignature:"Sylvie Manguin",coverURL:"https://cdn.intechopen.com/books/images_new/3092.jpg",editedByType:"Edited by",editors:[{id:"50017",title:"Prof.",name:"Sylvie",surname:"Manguin",slug:"sylvie-manguin",fullName:"Sylvie Manguin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"3161",title:"Frontiers in Guided Wave Optics and Optoelectronics",subtitle:null,isOpenForSubmission:!1,hash:"deb44e9c99f82bbce1083abea743146c",slug:"frontiers-in-guided-wave-optics-and-optoelectronics",bookSignature:"Bishnu Pal",coverURL:"https://cdn.intechopen.com/books/images_new/3161.jpg",editedByType:"Edited by",editors:[{id:"4782",title:"Prof.",name:"Bishnu",surname:"Pal",slug:"bishnu-pal",fullName:"Bishnu Pal"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"72",title:"Ionic Liquids",subtitle:"Theory, Properties, New Approaches",isOpenForSubmission:!1,hash:"d94ffa3cfa10505e3b1d676d46fcd3f5",slug:"ionic-liquids-theory-properties-new-approaches",bookSignature:"Alexander Kokorin",coverURL:"https://cdn.intechopen.com/books/images_new/72.jpg",editedByType:"Edited by",editors:[{id:"19816",title:"Prof.",name:"Alexander",surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin"}],productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},chapter:{item:{type:"chapter",id:"63722",title:"Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications",doi:"10.5772/intechopen.80898",slug:"biopolymer-based-materials-from-polysaccharides-properties-processing-characterization-and-sorption-",body:'As the name suggests, biopolymers are polymers synthesized by living organisms. Therefore, they are polymeric biomolecules i.e. long chain biomolecules comprised of covalently linked repeating monomeric units [1]. Living organisms (plants, animals, bacteria, fungi and yeast) synthesize a wide range of biopolymers such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA), proteins, cellulose, chitin, starch, etc. Biopolymers carry out countless number of vital functions, such as storage of energy, preservation and transmittance of genetic information, and cellular construction, in vivo. DNA and RNA are the hereditary materials for the storage and passage of the genetic information in all living organisms, and thus making perpetuation of life possible in the planet. Proteins not only catalyze reactions (e.g. enzymes) and take part in cell signaling (e.g. hemoglobin) but also provide structural support (e.g. collagen). Cellulose is the major structural component of the plant cell walls.
There are three main classes of biopolymers owing to their universal occurrence and abundance: (i) polynucleotides, (ii) polypeptides/poly amino acids, and (iii) polysaccharides. Polynucleotides (DNA and RNA) are long polymers composed of 13 or more nucleotide monomers [1]. Polypeptides are the short polymers comprised of amino acids as monomeric units and amide bonds link the monomeric units together [2]. Polysaccharides are composed of monomeric sugars linked together by O-glycosidic linkages. Among hundreds identified polysaccharides, cellulose, starch, chitin, chitosan are some of the important examples [3, 4, 5]. In contrast to the often simpler and more random structure of the synthetic polymers, biopolymers, in their natural states, are complex molecular assemblies that assume defined 3D structure and shapes, often known as hierarchical levels of structure.
Since biopolymers possess material properties suitable for various industrial and medical applications, they have garnered a great deal of interest both in academia and industry. Primarily, the interest and increasing trend of application of biopolymers as commodity products stems from their renewability, biodegradability and, often, their biocompatibility. Even though traditional plastics (petroleum based polymer products) are still indispensable in our daily life, there is a growing concern about their environmental impacts as they are non-biodegradable and as a consequent, accumulate in the environment. Furthermore, petroleum is not a renewable resource and its reserve is dwindling at a fast pace. Thus, biopolymers derived from renewable resources possess competitive advantage over synthetic non-renewable polymers. However, the cost of production of biopolymers and biopolymer based commodity products is of prime importance if they are to compete with oil-based synthetic polymers in the market.
Exploiting biopolymers, which are abundant and can be obtained from source material at lower cost, as a main component of biopolymeric products can be a smart strategy in the first place to mitigate the cost related issues. To that end, polysaccharides, the biopolymers comprised of monosaccharides (sugars) linked together by O-glycosidic linkages are of obvious choice. Both the most abundant natural resource, cellulose, and the second most abundant biopolymer, chitin, are polysaccharides [3, 6]. Additionally, polysaccharides are widely distributed in nature as they can be derived from plants, animals and microorganisms. Furthermore, variation in physicochemical properties, such as mechanical properties, solubility, viscosity, gelling potential, surface and interfacial properties, governed by monosaccharide composition, chain length (degree of polymerization), linkage types and patterns, provide polysaccharides versatility in preparation of materials with diverse applications. In fact, polysaccharides based materials in different forms including fibers, films, food casing, membranes, hydrogels, aerogels and sponges, with applications in several important commercial areas such as food, pharmaceuticals, biomedical, electronics, and adsorption have been developed [7, 8, 9, 10, 11, 12, 13]. Thus, polysaccharide-based biopolymers are promising candidates in the preparation of materials that can meet the much coveted dual requirements of environmental friendliness and economic sustainability. In this book chapter we focus on three important polysaccharide based biopolymers: cellulose, chitin, and chitosan.
Cellulose, the most abundant renewable resource in the planet with an annual yield of 1.5 × 1012 tons, is the major structural component in plant cell walls. Besides plants, some species of bacteria, algae also biosynthesize cellulose. Tunicates are the only known animals capable of biosynthesizing cellulose [3, 14]. Because of its abundance, cellulose can serve as a virtually inexhaustible source of raw material in production of sustainable bioproducts, the so called “green products” [3]. It is a linear homopolymer of β-D glucose monomers covalently linked together by 1→4 glycosidic bonds i.e. the ringed glucose monomers are joined together via polycondensation reaction between hydroxyl groups at C1 of a glucose unit and C4 of the neighboring glucose unit. Since, every glucose unit is rotated 180° with respect to its neighbors along the fiber axis, dimer of glucose, called cellobiose, is considered as a repeating unit of cellulose polymer (Figure 1a) [15]. However, the convention of considering cellobiose as a repeating unit has been challenged and a recent review in this regard makes a cogent argument that glucose is the repeating unit rather than the cellobiose [16]. Cellulose is a long chain molecule and the degree of polymerization (DP) differs with source and the treatments employed during its extraction. The DP of cellulose is reported to be as high as 10,000 and 15,000 in wood and cotton fibers [14, 17].
Cellulose in nature is not found as an isolated molecule, but rather possesses an intriguing multi-level assembly, popularly known as hierarchical structure [18]. It is usually agreed that, during biosynthesis, approximately 36 individual cellulose molecules are assembled together to form elementary fibrils, which have dimensions in nano-scale (a square cross section, 3–5 nm in size). Elementary fibrils further undergo packing into a larger entity called microfibrils with a cross section of ∼20 nm × 8 nm. These microfibrils further assemble into macro sized cellulose fibers (e.g. wood fiber, cotton fiber) [14, 15]. However, specific packing of cellulose may be different based on the source.
Chemical structure and hydrogen bonding in cellulose: (a) chemical structure of cellulose, (b) hydrogen bonding in cellulose, and (c) schematic of cellulose microfibrils showing crystalline and amorphous structure.
Prevalence of hydroxyl groups in cellulose (three hydroxyl groups per glucose monomer) results in extensive intra-and interchain hydrogen bonding in cellulose (Figure 1b). Intra-and interchain hydrogen bonding and the stacking interactions mainly originating from Van der Waals forces facilitate highly ordered arrangement (crystalline regions) of cellulose fibrils although there are also amorphous regions present (where arrangement of cellulose chains is disordered) as depicted in Figure 1c [19]. In general, cellulose, regardless of the source, is highly crystalline and high molecular weight biopolymer and is, usually, a fibrous, tough and hydrophilic but insoluble in water and other common solvents [20]. However, important properties such as DP, crystallinity and fibrillar organization are dependent on the source. For example, cellulose from cotton fiber is more crystalline (∼80% crystallinity) as compared to wood cellulose (∼50% crystallinity). Similarly, quite different from plant derived cellulose, bacterial cellulose has ultrafine nanofibrous network structure, high hydrophilicity, and moldability [21].
Chitin is another important polysaccharide and the most abundant biopolymer on the planet after cellulose. It is a structural biopolymer, contributing in strength and reinforcement, present in the exoskeleton of arthropods (i.e., in the shells of shrimps and crabs), and the cuticle of insects. It is also found in the cell walls of fungi, yeast and other organisms in lower plant and animal kingdoms [4]. Structurally, it is similar to cellulose except the presence of acetamide or amine functional groups at C2 position of the glucose monomer unit. Therefore, chitin is a linear polymer of 2-acetamido-2-deoxy-D-glucopyranose linked together by β(1→4) glycosidic bond [22] (Figure 2). The degree of acetylation (DA) which is the share of nitrogen sites occupied by acetyl group is typically ∼90% in chitin after extraction and purification from source material since alkali treatment applied for the removal of protein also lowers DA [23].
Chemical structure chitin.
Similar to cellulose, native chitin is arranged in highly crystalline microfibrils because of the extensive hydrogen bonding among the polymer chains. It is tough, hydrophobic, and insoluble in water and other common organic solvents. Chitin is even more recalcitrant to solubilization and consequently harder to process than cellulose [6].
Chitosan is the most important partially deacetylated derivative of chitin with degree of acetylation (DA) <50%. Typically chitin has DA <35% [24]. Chitin can be deacetylated by treating it with concentrated alkali at elevated temperature. Enzymatic hydrolysis in the presence of chitin deacetylase can also be employed for deacetylation purpose [21]. Therefore, chitosan can be represented by the same chemical structure as chitin. While chitin is insoluble in common solvents, chitosan can be dissolved in weak acidic solutions (aqueous solutions with pH < 6.5). It is soluble in hydrochloric acid and aqueous organic acids such as formic, acetic, oxalic and lactic acids. Protonation of the free glucosamine in acidic condition facilitates chitosan solubility [25, 26]. Chitin and chitosan are reported to have inherent antimicrobial properties.
Because of the abundance of hydroxyl (OH) groups present in cellulose, it can be derivatized through esterification, etherification, and other reactions to produce cellulose derivatives such as acetylated (e.g. cellulose acetate), carboxy methylated (e.g. carboxymethyl cellulose), and phosphorylated (e.g. cellulose diphenylphosphate) and cationized cellulose [27, 28, 29, 30]. Cellulose acetate (CA) is one of the most important commercially available cellulose derivatives with many applications such as fiber, film, and osmotic membrane. CA is a cellulose ester in which hydroxyl groups in cellulose are esterified with acetate groups to varying degrees [31]. Similarly, chitin and chitosan can be derivatized through O- and N-substitution to obtain carboxyalkyl derivatives such as O-carboxymethyl chitin, O-carboxymethyl chitosan and N,N-dicarboxymethyl chitosan [21, 24]. Derivatization not only eases the processing of these biopolymers since derivatives can be solubilized in common solvents and even in water based on degree and type of substitution [21, 29, 32], but also imparts some novel chemical and physical properties to cellulose. For instance, phosphorylation of cellulose can impart enhanced flame retardancy and bioactivity [21, 32]. Similarly, carboxyalkylation of chitosan enhances its affinity towards metal ions and has application in metal ions collection [24].
Due to their high molecular weight and complex biopolymeric network (extended hydrogen bonding and crystallinity), processing of cellulose and chitin into desirable forms, such as films, membranes, fibers, and gels, via dissolution is generally considered as nontrivial task as they are insoluble in water and other common organic solvents [13, 33]. Therefore, although studied for a long time, cellulose and chitin dissolution in cost effective and environmentally friendly manner remains an active area of research. A number of solvents/solvent systems have been developed over the course of time. Derivatizing solvent (carbon disulfide/aqueous sodium hydroxide used in “Viscose” process), and other non-derivatizing solvents such as aqueous alkali solution (e.g. aqueous solution of 7% sodium hydroxide/12% urea), N,N-dimethylacetamide/lithium chloride (DMAC/LiCl), N-methylmorpholine-N-oxide (NNMO) (used in “Lyocell” process), and ionic liquids (ILs) have been some of the important cellulose solvents [34, 35, 36, 37, 38]. Aqueous sodium hydroxide/urea solution, DMAc/LiCl and ILs such as 1-allyl-3-methylimidzolium bromide, 1-butyl-3-methylimidzolium chloride and 1-butyl-3-methylimidazolium acetate have been reported to be capable of dissolving chitin [33]. Although they are yet to find significant industrial breakthrough, ionic liquids are thought to have advantages over other solvents due to their chemical and thermal stability, tunability, non-flammability, negligible low vapor pressure, high efficiency in dissolution of both cellulose and chitin. Regenerated cellulose products such as fibers, film, aerogels and beads have been prepared from biopolymer solutions in different solvents [39, 40, 41, 42].
Aerogels are broadly defined as sol–gel derived materials, which are highly porous, low density and predominantly mesoporous (pore diameter: 2–50 nm) [43]. They are derived from hydrogels followed by the removal of liquid component using super critical point drying or freeze-drying to avoid damage to the original gel micro-structure prepared from biopolymers solution. Because of their very low density, high porosity and high specific surface area, aerogels have potential applications in separation, adsorption, catalyst, photo-electricity, and biomedicine [13]. High surface area aerogels from cellulose (400–500 m2 g−1) [44], chitin (560 m2 g−1) [45], and chitosan (248 m2 g−1) [46] have been prepared.
The term “nanocellulose”/“nanochitin”/“nanochitosan” encompasses various materials derived from respective biopolymers, which possess at least one dimension in the nanometer range [14, 47]. Nanoparticles from cellulose and chitin are usually prepared by destructing the native hierarchical structure of these biopolymers [48]. Cellulose and chitin nanofibers, in general, are obtained by subjecting purified cellulose and chitin substrates to multiple mechanical shearing actions, which disintegrate the native microfibril structure and release enmeshed individual or bundle of fibrils. Chitosan nanofibers are typically produced by electrospinning [49].
Highly crystalline elongated rod like (or needle-like) nanoparticles called nanocrystals can be obtained when cellulose and chitin substrates are subjected to a strong acid hydrolysis treatment due to preferential dissolution of amorphous domains. For acid hydrolysis to produce nanocrystals, sulfuric acid and hydrochloric acid are usually employed [50, 51]. Biopolymer nanoparticles can be directly processed into films and aerogels by drying from the suspension or they can be utilized as reinforcement agents in other polymer matrices.
The most widely used characterization techniques of biopolymers include Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). In this section, we discuss the characterization of polysaccharides: cellulose, chitin, and chitosan using FTIR, XRD, TGA and SEM.
Microcrystalline (MCC) was provided by FMC Biopolymer (Newark, DE). Chitosan (75–85% deacetylated) and chitin from shrimp shells were used as received from Sigma-Aldrich (Saint Louis, MO).
The wide-angle powder X-ray diffraction patterns of the samples were recorded on a SmartLab XRD system (Rigaku Corporation, ModelHD2711N) with CuKα radiation (λ = 1.541867 Å). The accelerating voltage and tube current used were 40 kV and 44 mA, respectively. A continuous scanning was performed at a scan speed of 2°/min and the 2θ ranged from 10° to 60°.
Thermogravimetric (TG) analyses of cellulose, chitin and chitosan samples were obtained using a PerkinElmer Pyris1TGA instrument (PerkinElmer, Waltham, MA) furnished with a 20-sample auto-sampler. TG profiles were recorded in an inert nitrogen atmosphere (20 ml/min) from 37 to 600°C with a constant a heating rate of 10°C/min using a high-resolution mode. All data were analyzed using Pyris Data Analysis software.
The morphology of cellulose, chitin and chitosan samples was studied on a Hitachi S-4700 field emission scanning electron microscope (TM-100, Hitachi, Japan) with an accelerating voltage of 15 kV.
FTIR spectra of the cellulose, chitin and chitosan samples were recorded using a PerkinElmer Spectrum-400 FTIR spectrometer equipped with a universal attenuated total reflectance (UATR) accessory (PerkinElmer, Waltham, MA). All FTIR spectra were collected at a spectral resolution of 4 cm−1, with 32 co-added scans in the wavenumber range of 4000 to 650 cm−1. The spectra were analyzed using PerkinElmer Spectrum software.
All samples were conditioned in an environmentally-controlled laboratory maintained at a relative humidity of 65 ± 2% and temperature of 21 ± 1°C for at least 48 h prior to their characterization.
Wide-angle X-ray diffraction measurements were collected for raw cellulose, chitin, and chitosan powder samples. Figure 3 shows the X-ray diffraction curves for cellulose, chitin, and chitosan. The XRD pattern of cellulose exhibits five major diffraction peaks at 14.9 (101), 15.8 (10ī), 21.8 (021) 22.5 (002) and 34.6 (004) which are in agreement with the literature values reported for cellulose Iβ [52]. The XRD patterns of chitin showed two strong reflections at 9.2° (020) and 19.1° (110) and minor reflections at 12.6° (021), 22.9° (130) and 26.2° (013) corresponding to α-chitin [53]. Chitosan shows two distinct peaks at 10.67 (020) and 19.92° (110) [54]. Our results suggest that chitin has the highest crystallinity as compared to cellulose and chitosan. The low crystallinity of chitosan is the result of the deacetylation process.
Wide angle X-ray diffraction curves for cellulose, chitin and chitosan powder.
FTIR studies were performed on cellulose, chitin and chitosan powders. Figure 4 shows the UATR-FTIR spectra of cellulose, chitin, and chitosan collected in the wavenumber range of 4000–600 cm−1. The peaks of cellulose at 3335 and 3234 cm−1 are attributed to the O-H stretching vibrations and the extensive inter- and intra-molecular hydrogen bonding network [55]. For chitin, the vibrations attributed to O-H and N-H stretching are visible at 3434 and 3256 cm−1 and for chitosan those peaks appear at 3434 and 3256 cm−1 [56, 57]. The bands in the region of 3000–2800 cm−1 correspond to the -CH2 symmetrical and asymmetrical stretching vibrations of polysaccharides [55, 56, 57]. Chitin exhibits the doublet amide I band at 1658 and 1619 cm−1 representing the presence of H-bonding in a C=O group with the NH group of the adjacent chain and the O-H group of the inter-chain [58]. The amide II band of chitin and chitosan is located at 1553 and 1586 cm−1, respectively [56, 57]. The peak at 1307 cm−1 corresponds to the amide III band (in-plane mode of CONH2 group) of chitin. Respective, amide I and C-N stretching of amide III of chitosan appear at around 1647 and 1318 cm−1. The vibrations at ∼1152 and ∼1110 cm−1 are attributed to the anti-symmetrical bridge of C-O-C stretching and anti-symmetric in-plane stretching. The peaks at ∼1060 and ∼1025 cm−1 correspond to the C-O stretching of the polysaccharide [55, 56, 57]. The band at ∼895 cm−1 is assigned to β-linkage of the polysaccharide [55, 56, 57].
FTIR spectra of cellulose, chitin, and chitosan in the wavenumber region of 4000–600 cm−1.
High-resolution thermogravimetry (TG) profiles recorded in flowing nitrogen (N2) were used to investigate the thermal stability of cellulose, chitin and chitosan, see Figure 5(a). All samples display two main weight loss regions at 35–150 and 250–450°C. In the first region, approximately, 5.1–9.0% of the weight loss was observed, which is attributed to the removal of physically adsorbed water. The second region represents the largest weight loss of 90.4, 86.6 and 63.4% for cellulose (1), chitin (2) and chitosan (3), respectively, corresponding to the degradation of polysaccharide structure of the biopolymer. The differential thermogravimetric (DTG) profiles generated from TG data are shown in Figure 5(b). The DTG curves for cellulose, chitin, and chitosan exhibit the main decomposition peaks at 371, 391 and 300°C, respectively. These results suggest that among three biopolymers, chitin has the highest thermal stability while chitosan has the least thermal stability.
(a) TG and (b) DTG profiles of cellulose, chitin and chitosan.
The morphological characteristic of cellulose, chitin and chitosan was investigated and Figure 6 shows the comparison of typical surface morphologies for cellulose, chitin and chitosan. As it can be seen, all samples exhibited more irregular, flat, rough nanofiber surface with no porosity.
SEM images of (a) microcrystalline cellulose, (b) chitin and (c) chitosan at 100 um magnification.
With the rapid industrialization, more environmental concerns (such as industrial discharge of organic dyes and heavy metal ions, oil and solvent spillage, and emission of greenhouse gases including carbon dioxide (CO2)) have emerged as a critical worldwide issue, imposing detrimental damages to the environment, economy and human health. Recently, biopolymer-based materials being sustainable, readily available, biodegradable, economical, and environmentally-friendly, they are widely investigated both in industry and research as a green approach in remediating those issues. In this section, we discuss the use of cellulose-, chitin-, and chitosan-based materials as sorbents for four different applications including removal of organic dyes and heavy metals, oil and solvent spillage cleanup and CO2 adsorption.
Industries including textile, leather, paper, printing, and paint utilize large amounts of water for processing have the potential to contaminate waterways through the discharge of organic dyes into natural water resources and water treatment systems. Over 10,000 different textile dyes with an estimated annual production of over 7 × 105 tons are available commercially [59, 60]. Most of these organic dyes are excessively used and 10–20% is directly discharged as aqueous effluents into different water bodies [61]. Most problematic ones are the brightly colored, water-soluble reactive and acid dyes as these dyes cannot be removed through conventional treatment systems. Discharging of organic dyes into water bodies has raised acute and chronic concerns to the ecosystems and human health. For example, the release of those organic dyes can lead to eutrophication, non-esthetic pollution and imbalance in the aquatic biological systems and also causes chronic toxicity, carcinogenicity and neurotoxicity towards humans and animals. Commonly applied technologies for removing organic dyes from wastewater include chemical precipitation and adsorption [62, 63], electrochemical oxidation and reduction [64], aerobic and anaerobic treatment [65, 66], coagulation and flocculation [67, 68], membrane separation [69], ultra-filtration [70], H2O2/ultraviolet (UV) and photocatalysis [71, 72, 73], ion exchange [74], sonochemical degradation [71], Fenton and heterogeneous Fenton-like catalysis [75, 76, 77], electrolysis [78], and advanced oxidation processes (AOPs) [56, 79]. At present, there is a critical need for research that enables new means of inexpensive, reusable, environmentally and energetically sustainable wastewater management systems for wastewater treatment. Recently, biopolymer-based materials have attracted interests as emerging alternative techniques for the removal of organic dyes from industrial effluents due to their relative abundance, eco-friendly, high thermal and mechanical stability, low cost, nontoxicity, easy functionalization, and excellent sorption capacities. Here, we report the roles of biopolymer-based materials mainly derived from cellulose, chitin, and chitosan as sorption materials for the removal of organic dyes from industrial wastewater.
Liu et al. investigated the porous cellulose-based bioadsorbent for the removal of anionic dye acid blue 93 (AB93) and cationic dye methylene blue (MB) from single and binary dye solutions by grafting acrylic acid and acrylamide onto cellulose surface [80]. They reported maximum sorption capacity of 1372 mg/g at an initial absorbent concentration of 2500 mg/L for both of AB93 and MB with a reusability up to three consecutive cycles. The adsorption process followed the pseudo-second-order kinetic model and the Freundlich isotherm model. Jiang and coworkers prepared ultralight aerogels from cellulose nanofibrils (CNFs) derived from rice straw [81]. These ultra-lightweight aerogels have been studied as adsorbents for the removal of cationic dye malachite green (MG) dye from aqueous media. The highest adsorption capacity of MG was found to be 212.7 mg/g. They also reported a 100% MG removal via four consecutive adsorptions at a 1:5 mg/mL aerogel/MG ratio and 10 mg/L dye concentration and 92% MG adsorption in a single batch at 10:5 mg/mL aerogel/MG ratio and 100 mg/L dye concentration. The adsorption process obeyed a pseudo-second-order kinetic model and monolayer Langmuir adsorption isotherm. The dye desorption was also achieved by increasing ionic strength, leading to the recovery of both dye and CNF aerogel. Ruan and coworkers prepared porous 2,3-dialdehyde cellulose-chitosan (DAC-CS) beads and their applications in the removal of Congo red dye [82]. DAC-CS beads showed 100% dye removal at a capacity of 200 mg/g at pH. 2 in 100 g/L dye solution. About 93% of the adsorbed Congo red in DAC-CS beads could be desorbed at pH. 12 NaOH solution. A similar trend was observed in the second cycle with the adsorption and desorption of 100 and 89%, respectively. Cross-linked quaternized cellulose nanofibrils (Q-CNFs) have been investigated as adsorbents for removal of three different anionic dyes by Maatar and Boufi [83]. They reported the adsorption capacity of approximately 160, 230, and 560 mg/g for red 180, blue CR19, and orange 142 dye, respectively. The authors also confirmed the main contribution of electrostatic interactions between positive sites and the CNF surface and dye sulfonate groups by zeta potential measurements. The regeneration of the Q-CNF sorbent could be achieved by extraction with KCl solution in ethanol-water mixture.
Kinetics of the adsorption of reactive yellow 2 (RY2) and reactive black 5 (RB5) by chitin was investigated by Akkaya et al. [84]. They concluded that the adsorption of RY2 by chitin from aqueous solution is favorable at low temperature and pH and the adsorption of RB5 by chitin is favorable at high temperature and pH. Cao and coworkers studied the adsorption isotherms and kinetic analysis of methylene blue (MB) onto porous chitin sorbents (PChs) with different content of chitin, ranging from 0.9 to 3.5% [85]. The maximum adsorption capacity of 384 mg/g with 79.8% MB removal was observed for PChs containing 3.5% chitin. The same adsorption capacity with 65% removal ratio was observed after six repetitive cycles. The adsorption equilibrium followed Freundlich isotherm model. Xu and coworkers reported the synthesis and efficient removal of MB by nanocomposite microspheres fabricated from chitin and clay [86]. These chitin/clay microspheres (CCMs) showed a maximum adsorption capability of 156.7 mg/g. A dye removal of 99.99% was observed within 20 at a low MB concentration of 10 mg/g. They also demonstrated a stability over five adsorption/desorption cycles for CCMs. Their kinetic data fitted well with the pseudo-second-order and monolayer Langmuir isotherm models. Gopi et al. prepared a chitin nanowhisker (ChNW)-functionalized polyvinylidene fluoride (PVDF) membrane using electrospinning technique [87]. They reported a maximum adsorption capacity of 72.6 mg/g and 88.9% removal efficiency of indigo carmine (IC) dye with their PVDF/ChNW (15%:1% wt.) composite membrane as compared to neat PVDF.
Xu and coworkers synthesized poly(2-acrylamido-2-methylpropane sulfonic acid grafted magnetic chitosan microspheres (PMCMs) for MB adsorption [88]. They investigated the effects of initial solution pH (1.0–10.0), temperature (30–50°C), contact time (0–660 min) and initial concentration (50–1600 mg/L) on dye adsorption kinetics. At pH. 9, PMCMs exhibited maximum MB sorption capacity of 1000, 1250 and 1428 mg/g at 30, 40 and 50°C, respectively. They also showed that the adsorption capacity increased with increasing of the initial solution pH and temperature. The adsorption kinetic and adsorption equilibrium data followed the pseudo-second-order kinetic model and monolayer Langmuir isotherm model, respectively. PMCMs could also be separated under external magnetic field and regenerated under acidic conditions. Naseeruteen et al. exhibited the removal of Malachite Green (MG) by mesoporous chitosan ionic liquid beads prepared from chitosan and 1-butyl-3-methylimidazolium based ionic liquids [89]. The effects of initial pH, adsorbent dosage, agitation time and initial MG concentration have also been investigated. The optimum conditions reported were pH 4.0, 0.008 g of adsorbent dosage and 20 min of agitation time. The data obtained at pH 4 fitted well to a pseudo-second order kinetic model and followed the Langmuir model. The maximum adsorption capacity obtained for two chitosan beads prepared from 1-butyl-3-methylimidazolium acetate and 1-butyl-3-methylimidazolium was 8.07 and 0.24 mg/g respectively.
The surge in energy production and the increasing use of heavy metals in various industrial processes have led to the generation of large quantities of industrial waste containing heavy metals. Therefore, heavy metals are released into the environment including air, water, soil, and biosphere in excessive amounts on daily basis. Heavy metal ions are mainly elements from the fourth period of the periodic table including chromium (Cr), arsenic (As), cobalt (Co), copper (Cu), nickel (Ni), zinc (Zn), lead (Pb), and mercury (Hg) and have a high atomic weight and a density at least 5 times higher than that of water [90]. Heavy metals are typically toxic, persistent, non-biodegradable and bioaccumulative. Due to the high solubility, heavy metals are easily absorbed by plants and aquatic species and subsequently enter the food chains and then the human body. The presence of high levels of heavy metals in the human body may cause various health effects including skin irritations, stomach cramps, vomiting, multiple organ damage, birth defects, nerve system damage and development of autoimmunity. Most commonly used techniques for the removal of heavy metals include membrane filtration, adsorption, coagulation, chemical precipitation, ion-exchange, electrochemical, biological treatments and advanced oxidation processes [91]. However, adsorption technologies are widely considered as cheap and energy efficient solutions for removal of heavy metals. Biopolymers including cellulose, chitin, and chitosan have been widely investigated as sorbents for remediation of heavy metals due to their excellent sorption properties and environmental benignity [92, 93, 94]. Here we present, recently reported applications of biopolymer-based materials for the removal of heavy metals.
d’Halluin et al. prepared a chemically modified cellulose filter paper with ethylenediaminetetraacetic acid (EDTA) for heavy metal remediation in water [95]. Cellulose-EDTA composite showed 90–95% removal efficiency for various heavy metal ions including Ag(I), Pb(II), Cd(II), Ni(II), Zn(II), Sn(II), and Cu(II). They also investigated the adsorption kinetics using Langmuir, Freundlich, and Temkin isotherms and the recyclability of their material. Fakhre and coworkers synthesized a supramolecular polysaccharide composite material from cellulose (CEL) and dibenzo-18-crown 6 (DB18C6) using ceric ammonium nitrate as initiator [96]. They studied the removal of five different heavy metal ions including Cd2+, Zn2+, Ni2+, Pb2+ and Cu2+ by [CEL + DB18C6] composites. They reported adsorption capacities and percentage of metals removal of (197 mg/g, 98%), (180 mg/g, 94%), (186 mg/g, 93%), (194 mg/g, 97%), and (192 mg/g, 96%) for Cd2+, Zn2+, Ni2+, Pb2+ and Cu2+, respectively. The regeneration of the material is dependent on the type and concentration of regenerating solution (NH4Cl, HNO3, NaCl and CaCl2). Shao et al. studied the removal of Cu2+ ions by a porous waste paper (WP)-chitosan adsorbent (CSA) [97]. WP-CSA exhibited adsorption capacity of 156.3 mg/g for Cu2+ and 98.3% desorption efficiency in 0.1 M H2SO4 solution. This adsorption equilibrium followed the pseudo-second order model and the Langmuir monolayer model.
Duan and coworkers presented the fabrication of lignin/chitin films from a binary solvent system composed of the ionic liquid 1-butyl-3-methylimidazolium acetate and γ-valerolactone and their application as an adsorbent for Fe(III) and Cu(II) cation uptake from aqueous solutions [98]. Lignin/chitin film showed the adsorption capacity of 84 and 22 wt% for Fe(III) and Cu(II) cations within 48 h. During the regeneration process up to 12 and 46 wt%, respectively, could be desorbed. The adsorption isotherms for both Fe(III) and Cu(II) obeyed the Langmuir model. Ethylenediaminetetraacetic acid (EDTA) modified β-cyclodextrin/chitosan (CDCS-EDTA) composite was prepared and applied for the removal of Pb(II) and anionic dye acid red 73 (AR) by Wu and coworkers [99]. They also investigated the effects of adsorbent dose, contact time and pH value on the CDCS-EDTA adsorption efficiency. The maximum adsorption capacities reported were 114.8 and 754.6 mg g−1 for Pb(II) and AR under optimal conditions with adsorption efficiently of 93.4 and 92.1%, respectively. Both adsorption processes followed the pseudo-second-order adsorption kinetic model and the Langmuir isotherm model. Kwok et al. studied the sorption of anionic species arsenite, As(III) ions and arsenate, AS (V) ions onto chitosan and nanochitosan [100]. The equilibrium adsorption capacity of chitosan and nanochitosan for As(III) and As(V) ions were (0.5 and 8 mg/g) and (6.1 and 13 mg/g), respectively.
An oil or a solvent spill is the accidental or intentional discharge of petroleum hydrocarbons into the environment, especially the aquatic ecosystem. Oil and solvent spills have become a serious environmental problem due to the increasing use, exploration, production and transportation of oils and solvents worldwide by various petrochemical and chemical industries. Those spillages lead to the pollution of aquatic ecosystems and natural water resources including underground water streams and coastal waters and affect both human and animal health through inhalation, skin, digestion, and eye irritation. Therefore, efficient and rapid removal of oil and solvent spills on the surface of water is imperative for protecting the aquatic environment, water resources, and subsequently human and animal health. Currently available oil and solvent spill techniques include physical diffusion, in-situ burning, bioremediation, and mechanical recovery [101, 102]. Among those technologies, cleaning the spilled oil and solvents by physical adsorbents is an attractive approach because of their ease of use and simplicity. Biopolymer-based adsorbents have been widely investigated for cleanup of oil and solvents due to their relative abundance, sustainability, low-cost, selectivity, fast adsorption kinetics, reusability and environmental benignity. Some recent developments in the use of biopolymer-based materials in oil and solvent spillage cleanup processes are discussed below.
Ao et al. reported the synthesis and separation of different oil/water mixtures using a cellulose hydrogel-coated mesh (CHM) [103]. They reported selective separation of a series of mixtures including hexane, cyclohexane, petroleum ether, liquid paraffin, pump oil and xylene with a high separation efficiency of over 98.9% and a high flux of 12,885 L/ m2 h. Their material also showed high reusability, anti-salt properties, and stability after 60 successive cycles of separation with a separation efficiency of >98.2%. Magnetic hydrophobic polyvinyl alcohol (PVA)-cellulose nanofiber (CNF) aerogels (MHPCA) were prepared and used as effective oil absorbents by Xu and coworkers [104]. A series of oils including soybean oil, corn germ oil, pump oil, used pump oil, gasoline, motor oil, ethanol, and dimethylformamide (DMF), were tested and MHPCA showed oil absorption capacity in the range of 59–136 g/g. MHPCA exhibited magnetically driven oil absorption and elasticity after 30 compression-release cycles, showing its reusability and durability. Cheng and coworkers investigated the use of pure cotton and cotton/cellulose aerogels derived from pure cotton and cellulose fiber from paper waste for the removal of oil and organic solvents [105]. The cotton/cellulose aerogels exhibited better performance over pure cotton aerogels because of the synergetic effects of two different cellulose fiber sources. The sorption capacity of the cotton/cellulose composite aerogel was 72.3 and 94.3 g/g for machine oil and dichloromethane, respectively [105].
Duan and coworkers prepared hydrophobic and oleophilic methyltrichlorosilane (MTCS) coated-chitin sponges and showed their ability to absorb a wide range of oils and nonpolar organic solvents including chloroform, gasoline oil, hexane, pump oil, silicon oil and toluene from the surface and bottom of the polluted water [106]. They reported that low viscosity organics such as chloroform, gasoline oil, hexane, and toluene could be absorbed to equilibrium within 8 min, whereas higher viscosity oils, such as pump oil and silicon oil could reach the absorption equilibrium within 13 min. MTCS-coated chitin sponges displayed recyclability with at least 10 times with approximately 93% adsorption capacity. Li et al. prepared porous chitosan-oxidized cellulose aerogel as an oil and organic solvent absorbent [107]. They reported the adsorption capacity in the range of 13.77–28.20 g/g for various oils and organic solvents including carbon tetrachloride, ethylene glycol, silicon oil, ethylene acetate, pump oil, crude oil, acetone, ethanol, diesel, and gasoline. Their material was stable over 50 absorption-desorption cycles following a pseudo-second-order kinetic model. The utilization of N,O-carboxymethyl chitosan for the adsorption of Marine Diesel, Diesel and Marine-2T oil for oil spill treatment has been reported by Doshi and coworkers [108].
Carbon dioxide (CO2) is the primary greenhouse gas (GHG) emitted through human activities and also considered as one of the major contributors to the greenhouse effect and global warming. CO2 emissions, primarily from fossil fuel based power plants account for over 87% of the global annual emission of CO2 [109]. According to the Intergovernmental Panel (IPCC) Fifth Assessment Report, the industrial revolution has significantly contributed to the raised atmospheric CO2 levels from 280 to 400 parts per million (ppm) in the last 150 years [110]. It is estimated that by the end of year 2030, the global GHG emission could rise by 25–90% as compared to the GHG level in 2000, reaching CO2 atmospheric levels in the range of 600–1550 ppm [111]. Some long-term effects of global warming include higher temperatures, changing rainfall patterns, rising sea levels, severe weather events ranging from flash floods, high intense hurricanes, freezing winters, severe droughts and heat waves. Therefore, many approaches including improved energy efficiency and energy conservation, increased utilization of low carbon fuels such as natural gas, hydrogen or nuclear power, usage of renewable energy such as solar, wind and hydropower and bioenergy, application of geoengineering processes such as afforestation and reforestation and use of carbon dioxide capture, storage and utilization (CCSU) techniques are extensively considered and adopted by various countries to mitigate CO2 emissions [112, 113]. Among those, CCSU technologies have received a significant interest due to their ability to control in-situ CO2 emissions from both industrial sources and natural sources. CCSU technologies mainly accompany separation of CO2, transportation of captured and compressed CO2, and underground storage of CO2 for reuse. However, the success of these CCSU technologies relies on the CO2 adsorption efficiency, manufacturing cost, and ease of handling and regeneration. Solid adsorbents include carbonaceous materials, covalent organic frameworks (COFs), porous organic frameworks (POPs) and metal–organic frameworks (MOFs), metal oxides (alkaline, alkaline earth and transition metals) and mesoporous silica-based materials and amines have been proposed for CCSU technologies [114, 115, 116]. Solid adsorbents derived from biopolymers are attracting interest for CCSU technologies because of their unique properties. Recently reported applications of biopolymer-based materials in capturing CO2 gas are discussed in this section.
Dassanayake et al. investigated the preparation of activated carbon monoliths derived from cellulose-based aerogel (aerocellulose) and its CO2 adsorption properties at low and ambient temperatures [117]. The activated carbon prepared from aerocellulose exhibited a specific surface area of 753 m2/g, a total pore volume of 0.72 cm3/g, and a micropore volume of 0.27 cm3/g. The physical CO2 uptakes for these materials were 5.8 mmol/g of CO2 at 0°C and 1 atm and 3.7 mmol/g of CO2 at 25°C and 1.2 atm. They also reported the synthesis and CO2 adsorption of a series of amidoxime (AO)-functionalized microcrystalline (MCC) and nanocrystalline cellulose (NCC)-mesoporous silica composites at ambient and elevated temperatures [115, 118]. They reported the CO2 sorption capacities of MCC-AO composites in the range of 0.40–1.27 and 2.84–3.85 mmol/g at ambient (25°C, 1.2 atm) and elevated temperatures (120°C, 1.0 atm), respectively. Whereas, NCC-AO composites which showed highest CO2 uptakes of 3.30 mmol/g at 25°C (1.2 atm) and 5.54 mmol/g at 120°C (1 atm), respectively. Both MCC-AO and NCC-AO composites displayed a good recyclability and stability after 10 successive adsorption/desorption cycles with negligible losses of the sorption capacity. Shehaqui et al. reported the direct CO2 capture from air onto nanofibrillated cellulose (NFC)-polyethylenimine (PEI) foams [119]. They demonstrated the impact of both PEI and relative humidity (RH) on the CO2 capture under atmospheric conditions with CO2 concentration of ∼400 ppm. At 80% RH and PEI content of 44 wt%, a CO2 uptake of 2.22 mmol/g was achieved with a stability over five repetitive cycles.
Dassanayake and coworkers also studied the CO2 adsorption on activated carbon prepared by carbonization and KOH activation of chitin aerogels [39]. Their material showed CO2 adsorption capacities of 5.02 mmol/g at 0°C and 3.44 mmol/g at 25°C under ambient pressure of 1 atm. Eftaiha et al. investigated the CO2 adsorption by a chitin-acetate (CA)/dimethyl sulfoxide (DMO) binary system and reported the CO2 uptake of 3.63 mmol/g at 3.95 atm and 0°C [120]. Fujiki and Yogo investigated CO2 adsorption capacities of nitrogen-doped activated carbons prepared from chitosan at two different pressure conditions; namely 0.15 and 0.99 atm at 25°C [121]. They reported CO2 adsorption capacities of 1.6 mmol/g at 0.15 atm and 4.9 mmol/g at 0.99 atm for their material. Alhwaige et al. reported the preparation of montmorillonite (MMT) reinforced bio-based chitosan-polybenzoxazine (CTS-PBZ) composite carbon aerogels and their ability to capture CO2 [122]. MMT-CTS-PBZ composite carbon aerogels showed a maximum CO2 adsorption of 5.72 mmol/g with multi-cyclic adsorption-desorption stability.
Table 1 summarizes the main applications of biopolymer-based materials for pollutants removal from water and sorption of CO2.
Biopolymers/biopolymers based composites | Pollutants | References |
---|---|---|
Cellulose | Acid blue 93 and methylene blue | [80] |
Malachite green | [81] | |
Congo red | [82] | |
Red 180, Blue CR 19, and Orange 142 | [83] | |
Ag(I) and Sn(II) | [95] | |
Pb(II), Cd(II), Ni(II), and Zn(II) | [95, 96] | |
Cu(II) | [95, 96, 97] | |
Hexane, cyclohexane, petroleum ether | [104] | |
Liquid paraffin, pump oil, and xylene | ||
Machine oil and dichloromethane | [105] | |
CO2 | [115, 117, 118, 119] | |
Chitin | Reactive yellow 2 and Reactive black 5 | [84] |
Methylene blue | [85, 86] | |
Indigo carmine | [87] | |
Fe(III) and Cu(II) | [98] | |
Chloroform, gasoline oil, hexane, toluene, | [106] | |
silicon oil, pump oil | ||
CO2 | [39] | |
Chitosan | Methylene blue | [88] |
Malachite green | [89] | |
Acid red 73 and Pb(II) | [99] | |
As(III) and As(IV) | [100] | |
Carbon tetrachloride, ethylene glycol, silicon oil, | [107] | |
Ethylene acetate, pump oil, crude oil, acetone, ethanol, and gasoline | [107] | |
Diesel | [107, 108] | |
Marine diesel | [108] | |
CO2 | [120, 121] |
Polysaccharide based biopolymers used in sorption of different pollutants.
Biopolymers and biopolymer-based materials have been widely investigated for various sorption applications due to their excellent adsorption capacities, easy functionalization, relative abundance, green, sustainable, biodegradable, low cost, and environmental benign properties. In this chapter, we presented the properties, processing, characterization and sorption applications of three most commonly studied natural polysaccharides, namely cellulose, chitin and chitosan. Recent developments of cellulose, chitin and chitosan-based materials in organic dye removal, heavy metals removal, oil and solvent spillage cleanup, and CO2 adsorption have been extensively discussed.
During an event of earthquake stability of dams is of paramount importance as their failure can cause immense property and environmental damages. When dam-reservoir-foundation system is subjected to the dynamic loading it causes a coupled phenomenon; ground motion and deformations in the dam generate hydrodynamic pressure in the reservoir, which, in turn, can intensify the dynamic response of the dam. Moreover, spatial-temporal variation of stresses in the dam-body depends on the dynamic interactions between the dam, reservoir, and foundation. Therefore, it becomes necessary to use numerical techniques for the safety assessment of a given dam-design against a particular ground motion.
\nDynamic finite element method is the most extended approach for computing the seismic response of the dam-reservoir system to the earthquake loading [1]. In this approach finite elements are used for discretization of space domain, and basis functions are locally supported on the spatial domain of these elements and remain independent of time. Furthermore, nodal values of primary unknowns depend only on time. Accordingly, this arrangement yields a system of ordinary differential equations (ODEs) in time which is then solved by employing time-marching schemes based on the finite difference method (FDM), such as Newmark-
In dynamic finite element method (FEM), it is desirable to adopt large time-steps to decrease the computation time while solving a transient problem. Therefore, it is imperative that the time-marching scheme remains unconditionally stable and higher order accurate [1]. In addition, it should filter out the high frequency components from the response of structure. To achieve these goals, Hughes and Hulbert presented space-time finite element method (ST/FEM) for solving the elastodynamics problem [2]. In this method, displacements
However, for elastodynamics problem, ST/FEM, yields a larger system of linear equations due to due to the time-discontinuous interpolation of displacement and velocity fields. Several efforts have been made in the past to overcome this issue; both explicit [8] and implicit [9] predictor-multi-corrector iteration schemes have been proposed to solve linear and nonlinear dynamics problems. Recently, to reduce the number of unknowns in ST/FEM, a different approach is taken in which only velocity is included in primary unknowns while displacement and stresses are computed from the velocity in a post-processing step [4, 10]. To this end, the objective of the present chapter is to introduce this method (henceforth, ST/FEM) in a pedagogical manner. The rest of the chapter is organized as follows. Sections 2 and 3 deal with the fundamentals of time-discontinuous Galerkin method. Section 4 describes the dam-reservoir-soil interaction problem, and Section 5 discusses the application of ST/FEM for this problem. Lastly, Section 6 demonstrates the numerical performance of proposed method and in the last section concluding remarks are included.
\nConsider a mass-spring-dashpot system as depicted in Figure 1. The governing equation of motion is described by the following second order initial value problem in time.
\nSchematic diagram of the mass-spring-dashpot system.
where
In what follows, this second order ODE will be utilized to discuss the fundamental concepts behind time-discontinuous Galerkin methods (henceforth, tDGM).
\nIn two-field tDGM (henceforth, uv-tDGM), both displacement (
Schematic diagram of time discontinuous approximation: (a) piecewise linear interpolation, and (b) piecewise quadratic interpolation.
where
\nare the discontinuous values of
The weak-form of the uv-tDGM can be stated as: find
where
Eq. (10) denotes that, in uv-tDGM, displacement-velocity compatibility relationship is satisfied in weak form.
\nTo decrease the number of unknowns in comparison to those involved in uv-tDGM, displacement-velocity compatibility condition (cf. Eq. 6) can be explicitly satisfied and velocity can be selected as primary unknown. Henceforth, this strategy will be termed as v-tDGM. In v-tDGM,
The weak form of the v-tDGM reads: Find
Note that Eqs. (9) and (11) are identical, however, in former,
Let us now focus on the discretization of weak-form (cf. Eq. (11)) by using the locally defined piecewise linear test and trial functions,
\nwhere
\nAccordingly, Eq. 11 transforms into following matrix-vector form.
\nwhere
In this section, numerical analysis of the tDGM schemes, (viz. uv-tDGM and v-tDGM) for the second order ODE will be performed. To assess the stability characteristics and temporal accuracy of these schemes, classical finite difference techniques will be used ([11], Chapter 9). In this context, it is sufficient to consider the following homogeneous and undamped form of Eq. (1):
\nIn this section it will be shown that v-tDGM is a true energy-decaying scheme. Consider Eq. (17) which represents the governing equation of a spring-mass system. The total energy (sum of kinetic and potential energy) of the system remains constant because damping and external forces are absent in the system.
\nConsider the time domain
Accordingly, it can be shown that
\nor
\nThis shows that v-tDGM is an energy decaying time integration algorithm, in which the total energy during any time step,
To assess the energy dissipation characteristics of v-tDGM, Eq. (17) is solved with
Energy decay characteristics of v-tDGM; (a) temporal variation of normalized total energy and (b) phase diagram obtained with different time-step sizes.
In this section, to study the stability characteristics of v-tDGM, Eq. (17) is considered. The matrix-vector form corresponding to this problem is given by
\nwhere
where
To investigate the stability of v-tDGM one should look into the eigenvalues of
Figure 4 plots the frequency responses of
Frequency response of spectral radius ρ for v-tDGM.
In [4], it is shown that
where
Subsequently, by expanding
A direct consequence of the convergence is that the solution of Eq. (17) can be given by following expression [1]:
\nwith
\nwhere
Further, to investigate the accuracy of v-tDGM, algorithmic damping ratio, which is a measure of amplitude decay, and relative frequency error
Accuracy of v-tDGM: (a) algorithmic damping ratio, and (b) relative frequency error in low frequency regime (after [4]).
A dam-reservoir-soil (DRS) system which is subjected to the spatially uniform horizontal (
Schematic diagram of dam-reservoir-soil (DRS) system subjected to seismic ground motion.
Further, hydrodynamic pressure distribution in the reservoir is modeled by the pressure wave equation,
\nwith following initial and boundary conditions.
\nIn Eq. (26),
Let us now consider the initial-boundary value problem of the solid domain which is described by,
\nFurthermore, following time dependent boundary conditions will be considered in Eq. (33):
\nIn addition, solid domain is considered to be an isotropic, homogeneous, linear elastic material with
\nIn Eqs. (31)–(34),
in which,
Recently, ST/FEM is employed to solve dam-reservoir-soil interaction problem [10] in which the resultant matrix-vector form is given by
\nwhere
Further, In Eqs. (41) and (42),
\nwhere
\ndenote mass matrix, diffusion matrix, and viscous boundary at the upstream truncated boundary, respectively. The fluid-solid coupling matrix
and right hand side spatial nodal vectors in Eqs. (41) and (42) becomes,
\nwhere
in which
the solid-fluid coupling matrix,
\nand right hand side spatial nodal vectors is given by,
\nwhere
Further, the force vector
Lastly, nodal values of displacement and pressure field at time
In this section, ST/FEM with block iterative algorithm has been employed to study the response of the concrete gravity dam to the horizontal earthquake motion (see [10]). In the numerical modeling two cases are considered; (i) dam-reservoir (DR) system, in which foundation is considered to be rigid, and (ii) dam-reservoir-soil (DRS) system, in which the foundation is an elastic deformable body.
\nFigure 7 depicts the physical dimensions of the dam-reservoir system. Length of the reservoir in upstream direction is
Physical dimensions of dam-reservoir system (after [10]).
Figure 8 represents the accelerogram (horizontal component) recorded at a control point on the free surface; the maximum and minimum values of acceleration are
Time history of horizontal component of ground motion recorded at free-surface.
Acceleration response at the crest of dam in DR and DRS system; time history of (a) horizontal component and (b) vertical component of acceleration, and Fourier spectrum of (c) horizontal component and (d) vertical component of acceleration (after [10]).
Interestingly, in both cases, it is observed that the critical location for pressure is at the base of the dam. Figure 10 presents the evolution of
Temporal response of (a) normalized hydrodynamic pressure, (b) principal tensile stress and (c) principal compressive stress at the base of dam in DR and DRS system (after [10]).
(a) and (c): Hydrodynamic pressure field in the reservoir, and (b) and (d): magnified deformed configuration of dam at times t = 18:02 s and t = 18:08 s (after [10]).
In this chapter, novel concepts of time-discontinuous Galerkin (tDGM) method is presented. A method called v-tDGM is derived to solve second order ODEs in time. In this method velocity is the primary unknown and it remain discontinuous at discrete times. Thereby, the time-continuity of velocity is satisfied in a weak sense. However, displacement is obtained by time-integration of the velocity in a post-processing step by virtue of which it is continuous in time. It is demonstrated that the present method is unconditionally stable and third-order accurate in time for linear interpolation of velocity in time. Therefore, it can be stated that the numerical characteristics of the v-ST/FEM scheme, therefore, make it highly suitable for computing the response of bodies subjected to dynamic loading conditions, such as fast-moving loads, impulsive loading, and long-duration seismic loading, among others.
\nSubsequently, ST/FEM is used to compute the response of a dam-reservoir-soil (DRS) system to the earthquake loading while considering all types of dynamic interactions. An auxiliary variable
Content alerts
",metaTitle:"Content alerts",metaDescription:"Content alerts",metaKeywords:null,canonicalURL:"/page/content-alerts",contentRaw:'[{"type":"htmlEditorComponent","content":"Content alerts
\\n"}]'},components:[{type:"htmlEditorComponent",content:"Content alerts
\n"}]},successStories:{items:[]},authorsAndEditors:{filterParams:{sort:"featured,name"},profiles:[{id:"6700",title:"Dr.",name:"Abbass A.",middleName:null,surname:"Hashim",slug:"abbass-a.-hashim",fullName:"Abbass A. Hashim",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/6700/images/1864_n.jpg",biography:"Currently I am carrying out research in several areas of interest, mainly covering work on chemical and bio-sensors, semiconductor thin film device fabrication and characterisation.\nAt the moment I have very strong interest in radiation environmental pollution and bacteriology treatment. The teams of researchers are working very hard to bring novel results in this field. I am also a member of the team in charge for the supervision of Ph.D. students in the fields of development of silicon based planar waveguide sensor devices, study of inelastic electron tunnelling in planar tunnelling nanostructures for sensing applications and development of organotellurium(IV) compounds for semiconductor applications. I am a specialist in data analysis techniques and nanosurface structure. I have served as the editor for many books, been a member of the editorial board in science journals, have published many papers and hold many patents.",institutionString:null,institution:{name:"Sheffield Hallam University",country:{name:"United Kingdom"}}},{id:"54525",title:"Prof.",name:"Abdul Latif",middleName:null,surname:"Ahmad",slug:"abdul-latif-ahmad",fullName:"Abdul Latif Ahmad",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"20567",title:"Prof.",name:"Ado",middleName:null,surname:"Jorio",slug:"ado-jorio",fullName:"Ado Jorio",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Universidade Federal de Minas Gerais",country:{name:"Brazil"}}},{id:"47940",title:"Dr.",name:"Alberto",middleName:null,surname:"Mantovani",slug:"alberto-mantovani",fullName:"Alberto Mantovani",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"12392",title:"Mr.",name:"Alex",middleName:null,surname:"Lazinica",slug:"alex-lazinica",fullName:"Alex Lazinica",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/12392/images/7282_n.png",biography:"Alex Lazinica is the founder and CEO of IntechOpen. After obtaining a Master's degree in Mechanical Engineering, he continued his PhD studies in Robotics at the Vienna University of Technology. Here he worked as a robotic researcher with the university's Intelligent Manufacturing Systems Group as well as a guest researcher at various European universities, including the Swiss Federal Institute of Technology Lausanne (EPFL). During this time he published more than 20 scientific papers, gave presentations, served as a reviewer for major robotic journals and conferences and most importantly he co-founded and built the International Journal of Advanced Robotic Systems- world's first Open Access journal in the field of robotics. Starting this journal was a pivotal point in his career, since it was a pathway to founding IntechOpen - Open Access publisher focused on addressing academic researchers needs. Alex is a personification of IntechOpen key values being trusted, open and entrepreneurial. Today his focus is on defining the growth and development strategy for the company.",institutionString:null,institution:{name:"TU Wien",country:{name:"Austria"}}},{id:"19816",title:"Prof.",name:"Alexander",middleName:null,surname:"Kokorin",slug:"alexander-kokorin",fullName:"Alexander Kokorin",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/19816/images/1607_n.jpg",biography:"Alexander I. Kokorin: born: 1947, Moscow; DSc., PhD; Principal Research Fellow (Research Professor) of Department of Kinetics and Catalysis, N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow.\r\nArea of research interests: physical chemistry of complex-organized molecular and nanosized systems, including polymer-metal complexes; the surface of doped oxide semiconductors. He is an expert in structural, absorptive, catalytic and photocatalytic properties, in structural organization and dynamic features of ionic liquids, in magnetic interactions between paramagnetic centers. The author or co-author of 3 books, over 200 articles and reviews in scientific journals and books. He is an actual member of the International EPR/ESR Society, European Society on Quantum Solar Energy Conversion, Moscow House of Scientists, of the Board of Moscow Physical Society.",institutionString:null,institution:{name:"Semenov Institute of Chemical Physics",country:{name:"Russia"}}},{id:"62389",title:"PhD.",name:"Ali Demir",middleName:null,surname:"Sezer",slug:"ali-demir-sezer",fullName:"Ali Demir Sezer",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/62389/images/3413_n.jpg",biography:"Dr. Ali Demir Sezer has a Ph.D. from Pharmaceutical Biotechnology at the Faculty of Pharmacy, University of Marmara (Turkey). He is the member of many Pharmaceutical Associations and acts as a reviewer of scientific journals and European projects under different research areas such as: drug delivery systems, nanotechnology and pharmaceutical biotechnology. Dr. Sezer is the author of many scientific publications in peer-reviewed journals and poster communications. Focus of his research activity is drug delivery, physico-chemical characterization and biological evaluation of biopolymers micro and nanoparticles as modified drug delivery system, and colloidal drug carriers (liposomes, nanoparticles etc.).",institutionString:null,institution:{name:"Marmara University",country:{name:"Turkey"}}},{id:"61051",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:null},{id:"100762",title:"Prof.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"St David's Medical Center",country:{name:"United States of America"}}},{id:"107416",title:"Dr.",name:"Andrea",middleName:null,surname:"Natale",slug:"andrea-natale",fullName:"Andrea Natale",position:null,profilePictureURL:"//cdnintech.com/web/frontend/www/assets/author.svg",biography:null,institutionString:null,institution:{name:"Texas Cardiac Arrhythmia",country:{name:"United States of America"}}},{id:"64434",title:"Dr.",name:"Angkoon",middleName:null,surname:"Phinyomark",slug:"angkoon-phinyomark",fullName:"Angkoon Phinyomark",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/64434/images/2619_n.jpg",biography:"My name is Angkoon Phinyomark. I received a B.Eng. degree in Computer Engineering with First Class Honors in 2008 from Prince of Songkla University, Songkhla, Thailand, where I received a Ph.D. degree in Electrical Engineering. My research interests are primarily in the area of biomedical signal processing and classification notably EMG (electromyography signal), EOG (electrooculography signal), and EEG (electroencephalography signal), image analysis notably breast cancer analysis and optical coherence tomography, and rehabilitation engineering. I became a student member of IEEE in 2008. During October 2011-March 2012, I had worked at School of Computer Science and Electronic Engineering, University of Essex, Colchester, Essex, United Kingdom. In addition, during a B.Eng. I had been a visiting research student at Faculty of Computer Science, University of Murcia, Murcia, Spain for three months.\n\nI have published over 40 papers during 5 years in refereed journals, books, and conference proceedings in the areas of electro-physiological signals processing and classification, notably EMG and EOG signals, fractal analysis, wavelet analysis, texture analysis, feature extraction and machine learning algorithms, and assistive and rehabilitative devices. I have several computer programming language certificates, i.e. Sun Certified Programmer for the Java 2 Platform 1.4 (SCJP), Microsoft Certified Professional Developer, Web Developer (MCPD), Microsoft Certified Technology Specialist, .NET Framework 2.0 Web (MCTS). I am a Reviewer for several refereed journals and international conferences, such as IEEE Transactions on Biomedical Engineering, IEEE Transactions on Industrial Electronics, Optic Letters, Measurement Science Review, and also a member of the International Advisory Committee for 2012 IEEE Business Engineering and Industrial Applications and 2012 IEEE Symposium on Business, Engineering and Industrial Applications.",institutionString:null,institution:{name:"Joseph Fourier University",country:{name:"France"}}},{id:"55578",title:"Dr.",name:"Antonio",middleName:null,surname:"Jurado-Navas",slug:"antonio-jurado-navas",fullName:"Antonio Jurado-Navas",position:null,profilePictureURL:"https://mts.intechopen.com/storage/users/55578/images/4574_n.png",biography:"Antonio Jurado-Navas received the M.S. degree (2002) and the Ph.D. degree (2009) in Telecommunication Engineering, both from the University of Málaga (Spain). He first worked as a consultant at Vodafone-Spain. From 2004 to 2011, he was a Research Assistant with the Communications Engineering Department at the University of Málaga. In 2011, he became an Assistant Professor in the same department. From 2012 to 2015, he was with Ericsson Spain, where he was working on geo-location\ntools for third generation mobile networks. Since 2015, he is a Marie-Curie fellow at the Denmark Technical University. His current research interests include the areas of mobile communication systems and channel modeling in addition to atmospheric optical communications, adaptive optics and statistics",institutionString:null,institution:{name:"University of Malaga",country:{name:"Spain"}}}],filtersByRegion:[{group:"region",caption:"North America",value:1,count:5774},{group:"region",caption:"Middle and South America",value:2,count:5239},{group:"region",caption:"Africa",value:3,count:1721},{group:"region",caption:"Asia",value:4,count:10411},{group:"region",caption:"Australia and Oceania",value:5,count:897},{group:"region",caption:"Europe",value:6,count:15810}],offset:12,limit:12,total:118377},chapterEmbeded:{data:{}},editorApplication:{success:null,errors:{}},ofsBooks:{filterParams:{topicId:"133"},books:[],filtersByTopic:[{group:"topic",caption:"Agricultural and Biological Sciences",value:5,count:18},{group:"topic",caption:"Biochemistry, Genetics and Molecular Biology",value:6,count:5},{group:"topic",caption:"Business, Management and Economics",value:7,count:2},{group:"topic",caption:"Chemistry",value:8,count:8},{group:"topic",caption:"Computer and Information Science",value:9,count:6},{group:"topic",caption:"Earth and Planetary Sciences",value:10,count:7},{group:"topic",caption:"Engineering",value:11,count:20},{group:"topic",caption:"Environmental Sciences",value:12,count:2},{group:"topic",caption:"Immunology and Microbiology",value:13,count:4},{group:"topic",caption:"Materials Science",value:14,count:5},{group:"topic",caption:"Mathematics",value:15,count:1},{group:"topic",caption:"Medicine",value:16,count:25},{group:"topic",caption:"Neuroscience",value:18,count:2},{group:"topic",caption:"Pharmacology, Toxicology and Pharmaceutical Science",value:19,count:3},{group:"topic",caption:"Physics",value:20,count:3},{group:"topic",caption:"Psychology",value:21,count:4},{group:"topic",caption:"Robotics",value:22,count:1},{group:"topic",caption:"Social Sciences",value:23,count:3},{group:"topic",caption:"Technology",value:24,count:1},{group:"topic",caption:"Veterinary Medicine and Science",value:25,count:1}],offset:12,limit:12,total:0},popularBooks:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9027",title:"Human Blood Group Systems and Haemoglobinopathies",subtitle:null,isOpenForSubmission:!1,hash:"d00d8e40b11cfb2547d1122866531c7e",slug:"human-blood-group-systems-and-haemoglobinopathies",bookSignature:"Osaro Erhabor and Anjana Munshi",coverURL:"https://cdn.intechopen.com/books/images_new/9027.jpg",editors:[{id:"35140",title:null,name:"Osaro",middleName:null,surname:"Erhabor",slug:"osaro-erhabor",fullName:"Osaro Erhabor"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:12,limit:12,total:5249},hotBookTopics:{hotBooks:[],offset:0,limit:12,total:null},publish:{},publishingProposal:{success:null,errors:{}},books:{featuredBooks:[{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9385",title:"Renewable Energy",subtitle:"Technologies and Applications",isOpenForSubmission:!1,hash:"a6b446d19166f17f313008e6c056f3d8",slug:"renewable-energy-technologies-and-applications",bookSignature:"Tolga Taner, Archana Tiwari and Taha Selim Ustun",coverURL:"https://cdn.intechopen.com/books/images_new/9385.jpg",editors:[{id:"197240",title:"Associate Prof.",name:"Tolga",middleName:null,surname:"Taner",slug:"tolga-taner",fullName:"Tolga Taner"}],equalEditorOne:{id:"186791",title:"Dr.",name:"Archana",middleName:null,surname:"Tiwari",slug:"archana-tiwari",fullName:"Archana Tiwari",profilePictureURL:"https://mts.intechopen.com/storage/users/186791/images/system/186791.jpg",biography:"Dr. Archana Tiwari is Associate Professor at Amity University, India. Her research interests include renewable sources of energy from microalgae and further utilizing the residual biomass for the generation of value-added products, bioremediation through microalgae and microbial consortium, antioxidative enzymes and stress, and nutraceuticals from microalgae. She has been working on algal biotechnology for the last two decades. She has published her research in many international journals and has authored many books and chapters with renowned publishing houses. She has also delivered talks as an invited speaker at many national and international conferences. Dr. Tiwari is the recipient of several awards including Researcher of the Year and Distinguished Scientist.",institutionString:"Amity University",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"1",institution:{name:"Amity University",institutionURL:null,country:{name:"India"}}},equalEditorTwo:{id:"197609",title:"Prof.",name:"Taha Selim",middleName:null,surname:"Ustun",slug:"taha-selim-ustun",fullName:"Taha Selim Ustun",profilePictureURL:"https://mts.intechopen.com/storage/users/197609/images/system/197609.jpeg",biography:"Dr. Taha Selim Ustun received a Ph.D. in Electrical Engineering from Victoria University, Melbourne, Australia. He is a researcher with the Fukushima Renewable Energy Institute, AIST (FREA), where he leads the Smart Grid Cybersecurity Laboratory. Prior to that, he was a faculty member with the School of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA. His current research interests include power systems protection, communication in power networks, distributed generation, microgrids, electric vehicle integration, and cybersecurity in smart grids. He serves on the editorial boards of IEEE Access, IEEE Transactions on Industrial Informatics, Energies, Electronics, Electricity, World Electric Vehicle and Information journals. Dr. Ustun is a member of the IEEE 2004 and 2800, IEC Renewable Energy Management WG 8, and IEC TC 57 WG17. He has been invited to run specialist courses in Africa, India, and China. He has delivered talks for the Qatar Foundation, the World Energy Council, the Waterloo Global Science Initiative, and the European Union Energy Initiative (EUEI). His research has attracted funding from prestigious programs in Japan, Australia, the European Union, and North America.",institutionString:"Fukushima Renewable Energy Institute, AIST (FREA)",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"1",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"National Institute of Advanced Industrial Science and Technology",institutionURL:null,country:{name:"Japan"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"8985",title:"Natural Resources Management and Biological Sciences",subtitle:null,isOpenForSubmission:!1,hash:"5c2e219a6c021a40b5a20c041dea88c4",slug:"natural-resources-management-and-biological-sciences",bookSignature:"Edward R. Rhodes and Humood Naser",coverURL:"https://cdn.intechopen.com/books/images_new/8985.jpg",editors:[{id:"280886",title:"Prof.",name:"Edward R",middleName:null,surname:"Rhodes",slug:"edward-r-rhodes",fullName:"Edward R Rhodes"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"9644",title:"Glaciers and the Polar Environment",subtitle:null,isOpenForSubmission:!1,hash:"e8cfdc161794e3753ced54e6ff30873b",slug:"glaciers-and-the-polar-environment",bookSignature:"Masaki Kanao, Danilo Godone and Niccolò Dematteis",coverURL:"https://cdn.intechopen.com/books/images_new/9644.jpg",editors:[{id:"51959",title:"Dr.",name:"Masaki",middleName:null,surname:"Kanao",slug:"masaki-kanao",fullName:"Masaki Kanao"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}},{type:"book",id:"7847",title:"Medical Toxicology",subtitle:null,isOpenForSubmission:!1,hash:"db9b65bea093de17a0855a1b27046247",slug:"medical-toxicology",bookSignature:"Pınar Erkekoglu and Tomohisa Ogawa",coverURL:"https://cdn.intechopen.com/books/images_new/7847.jpg",editors:[{id:"109978",title:"Prof.",name:"Pınar",middleName:null,surname:"Erkekoglu",slug:"pinar-erkekoglu",fullName:"Pınar Erkekoglu"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],latestBooks:[{type:"book",id:"9243",title:"Coastal Environments",subtitle:null,isOpenForSubmission:!1,hash:"8e05e5f631e935eef366980f2e28295d",slug:"coastal-environments",bookSignature:"Yuanzhi Zhang and X. San Liang",coverURL:"https://cdn.intechopen.com/books/images_new/9243.jpg",editedByType:"Edited by",editors:[{id:"77597",title:"Prof.",name:"Yuanzhi",middleName:null,surname:"Zhang",slug:"yuanzhi-zhang",fullName:"Yuanzhi Zhang"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10020",title:"Operations Management",subtitle:"Emerging Trend in the Digital Era",isOpenForSubmission:!1,hash:"526f0dbdc7e4d85b82ce8383ab894b4c",slug:"operations-management-emerging-trend-in-the-digital-era",bookSignature:"Antonella Petrillo, Fabio De Felice, Germano Lambert-Torres and Erik Bonaldi",coverURL:"https://cdn.intechopen.com/books/images_new/10020.jpg",editedByType:"Edited by",editors:[{id:"181603",title:"Dr.",name:"Antonella",middleName:null,surname:"Petrillo",slug:"antonella-petrillo",fullName:"Antonella Petrillo"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9521",title:"Antimicrobial Resistance",subtitle:"A One Health Perspective",isOpenForSubmission:!1,hash:"30949e78832e1afba5606634b52056ab",slug:"antimicrobial-resistance-a-one-health-perspective",bookSignature:"Mihai Mareș, Swee Hua Erin Lim, Kok-Song Lai and Romeo-Teodor Cristina",coverURL:"https://cdn.intechopen.com/books/images_new/9521.jpg",editedByType:"Edited by",editors:[{id:"88785",title:"Prof.",name:"Mihai",middleName:null,surname:"Mares",slug:"mihai-mares",fullName:"Mihai Mares"}],equalEditorOne:{id:"190224",title:"Dr.",name:"Swee Hua Erin",middleName:null,surname:"Lim",slug:"swee-hua-erin-lim",fullName:"Swee Hua Erin Lim",profilePictureURL:"https://mts.intechopen.com/storage/users/190224/images/system/190224.png",biography:"Dr. Erin Lim is presently working as an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates and is affiliated as an Associate Professor to Perdana University-Royal College of Surgeons in Ireland, Selangor, Malaysia. She obtained her Ph.D. from Universiti Putra Malaysia in 2010 with a National Science Fellowship awarded from the Ministry of Science, Technology and Innovation Malaysia and has been actively involved in research ever since. Her main research interests include analysis of carriage and transmission of multidrug resistant bacteria in non-conventional settings, besides an interest in natural products for antimicrobial testing. She is heavily involved in the elucidation of mechanisms of reversal of resistance in bacteria in addition to investigating the immunological analyses of diseases, development of vaccination and treatment models in animals. She hopes her work will support the discovery of therapeutics in the clinical setting and assist in the combat against the burden of antibiotic resistance.",institutionString:"Abu Dhabi Women’s College",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"3",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Perdana University",institutionURL:null,country:{name:"Malaysia"}}},equalEditorTwo:{id:"221544",title:"Dr.",name:"Kok-Song",middleName:null,surname:"Lai",slug:"kok-song-lai",fullName:"Kok-Song Lai",profilePictureURL:"https://mts.intechopen.com/storage/users/221544/images/system/221544.jpeg",biography:"Dr. Lai Kok Song is an Assistant Professor in the Division of Health Sciences, Abu Dhabi Women\\'s College, Higher Colleges of Technology in Abu Dhabi, United Arab Emirates. He obtained his Ph.D. in Biological Sciences from Nara Institute of Science and Technology, Japan in 2012. Prior to his academic appointment, Dr. Lai worked as a Senior Scientist at the Ministry of Science, Technology and Innovation, Malaysia. His current research areas include antimicrobial resistance and plant-pathogen interaction. His particular interest lies in the study of the antimicrobial mechanism via membrane disruption of essential oils against multi-drug resistance bacteria through various biochemical, molecular and proteomic approaches. Ultimately, he hopes to uncover and determine novel biomarkers related to antibiotic resistance that can be developed into new therapeutic strategies.",institutionString:"Higher Colleges of Technology",position:null,outsideEditionCount:0,totalCites:0,totalAuthoredChapters:"8",totalChapterViews:"0",totalEditedBooks:"0",institution:{name:"Higher Colleges of Technology",institutionURL:null,country:{name:"United Arab Emirates"}}},equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9560",title:"Creativity",subtitle:"A Force to Innovation",isOpenForSubmission:!1,hash:"58f740bc17807d5d88d647c525857b11",slug:"creativity-a-force-to-innovation",bookSignature:"Pooja Jain",coverURL:"https://cdn.intechopen.com/books/images_new/9560.jpg",editedByType:"Edited by",editors:[{id:"316765",title:"Dr.",name:"Pooja",middleName:null,surname:"Jain",slug:"pooja-jain",fullName:"Pooja Jain"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9669",title:"Recent Advances in Rice Research",subtitle:null,isOpenForSubmission:!1,hash:"12b06cc73e89af1e104399321cc16a75",slug:"recent-advances-in-rice-research",bookSignature:"Mahmood-ur- Rahman Ansari",coverURL:"https://cdn.intechopen.com/books/images_new/9669.jpg",editedByType:"Edited by",editors:[{id:"185476",title:"Dr.",name:"Mahmood-Ur-",middleName:null,surname:"Rahman Ansari",slug:"mahmood-ur-rahman-ansari",fullName:"Mahmood-Ur- Rahman Ansari"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10192",title:"Background and Management of Muscular Atrophy",subtitle:null,isOpenForSubmission:!1,hash:"eca24028d89912b5efea56e179dff089",slug:"background-and-management-of-muscular-atrophy",bookSignature:"Julianna Cseri",coverURL:"https://cdn.intechopen.com/books/images_new/10192.jpg",editedByType:"Edited by",editors:[{id:"135579",title:"Dr.",name:"Julianna",middleName:null,surname:"Cseri",slug:"julianna-cseri",fullName:"Julianna Cseri"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9550",title:"Entrepreneurship",subtitle:"Contemporary Issues",isOpenForSubmission:!1,hash:"9b4ac1ee5b743abf6f88495452b1e5e7",slug:"entrepreneurship-contemporary-issues",bookSignature:"Mladen Turuk",coverURL:"https://cdn.intechopen.com/books/images_new/9550.jpg",editedByType:"Edited by",editors:[{id:"319755",title:"Prof.",name:"Mladen",middleName:null,surname:"Turuk",slug:"mladen-turuk",fullName:"Mladen Turuk"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10065",title:"Wavelet Theory",subtitle:null,isOpenForSubmission:!1,hash:"d8868e332169597ba2182d9b004d60de",slug:"wavelet-theory",bookSignature:"Somayeh Mohammady",coverURL:"https://cdn.intechopen.com/books/images_new/10065.jpg",editedByType:"Edited by",editors:[{id:"109280",title:"Dr.",name:"Somayeh",middleName:null,surname:"Mohammady",slug:"somayeh-mohammady",fullName:"Somayeh Mohammady"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9313",title:"Clay Science and Technology",subtitle:null,isOpenForSubmission:!1,hash:"6fa7e70396ff10620e032bb6cfa6fb72",slug:"clay-science-and-technology",bookSignature:"Gustavo Morari Do Nascimento",coverURL:"https://cdn.intechopen.com/books/images_new/9313.jpg",editedByType:"Edited by",editors:[{id:"7153",title:"Prof.",name:"Gustavo",middleName:null,surname:"Morari Do Nascimento",slug:"gustavo-morari-do-nascimento",fullName:"Gustavo Morari Do Nascimento"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9888",title:"Nuclear Power Plants",subtitle:"The Processes from the Cradle to the Grave",isOpenForSubmission:!1,hash:"c2c8773e586f62155ab8221ebb72a849",slug:"nuclear-power-plants-the-processes-from-the-cradle-to-the-grave",bookSignature:"Nasser Awwad",coverURL:"https://cdn.intechopen.com/books/images_new/9888.jpg",editedByType:"Edited by",editors:[{id:"145209",title:"Prof.",name:"Nasser",middleName:"S",surname:"Awwad",slug:"nasser-awwad",fullName:"Nasser Awwad"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}]},subject:{topic:{id:"111",title:"Aerospace Engineering",slug:"aerospace-engineering",parent:{title:"Engineering",slug:"engineering"},numberOfBooks:30,numberOfAuthorsAndEditors:692,numberOfWosCitations:724,numberOfCrossrefCitations:539,numberOfDimensionsCitations:1002,videoUrl:null,fallbackUrl:null,description:null},booksByTopicFilter:{topicSlug:"aerospace-engineering",sort:"-publishedDate",limit:12,offset:0},booksByTopicCollection:[{type:"book",id:"8558",title:"Aerodynamics",subtitle:null,isOpenForSubmission:!1,hash:"db7263fc198dfb539073ba0260a7f1aa",slug:"aerodynamics",bookSignature:"Mofid Gorji-Bandpy and Aly-Mousaad Aly",coverURL:"https://cdn.intechopen.com/books/images_new/8558.jpg",editedByType:"Edited by",editors:[{id:"35542",title:"Prof.",name:"Mofid",middleName:null,surname:"Gorji-Bandpy",slug:"mofid-gorji-bandpy",fullName:"Mofid Gorji-Bandpy"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10224",title:"Safety and Risk Assessment of Civil Aircraft during Operation",subtitle:null,isOpenForSubmission:!1,hash:"d966066f4fa44f6b320cd9b40ed66bbd",slug:"safety-and-risk-assessment-of-civil-aircraft-during-operation",bookSignature:"Longbiao Li",coverURL:"https://cdn.intechopen.com/books/images_new/10224.jpg",editedByType:"Edited by",editors:[{id:"260011",title:"Dr.",name:"Longbiao",middleName:null,surname:"Li",slug:"longbiao-li",fullName:"Longbiao Li"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"10445",title:"Preparation of Space Experiments",subtitle:null,isOpenForSubmission:!1,hash:"5bfa68c29ae5337ce970b83f7d8b9f03",slug:"preparation-of-space-experiments",bookSignature:"Vladimir Pletser",coverURL:"https://cdn.intechopen.com/books/images_new/10445.jpg",editedByType:"Edited by",editors:[{id:"320503",title:"Dr.",name:"Vladimir",middleName:null,surname:"Pletser",slug:"vladimir-pletser",fullName:"Vladimir Pletser"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7403",title:"Environmental Impact of Aviation and Sustainable Solutions",subtitle:null,isOpenForSubmission:!1,hash:"1702df68cc7756c9e6c3d414adfc370c",slug:"environmental-impact-of-aviation-and-sustainable-solutions",bookSignature:"Ramesh K. Agarwal",coverURL:"https://cdn.intechopen.com/books/images_new/7403.jpg",editedByType:"Edited by",editors:[{id:"38519",title:"Prof.",name:"Ramesh K.",middleName:null,surname:"Agarwal",slug:"ramesh-k.-agarwal",fullName:"Ramesh K. Agarwal"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"9420",title:"Risk Assessment in Air Traffic Management",subtitle:null,isOpenForSubmission:!1,hash:"91e95c7c9fc0be27b80a269a9fa81d90",slug:"risk-assessment-in-air-traffic-management",bookSignature:"Javier Alberto Pérez Castán and Álvaro Rodríguez Sanz",coverURL:"https://cdn.intechopen.com/books/images_new/9420.jpg",editedByType:"Edited by",editors:[{id:"222047",title:"Dr.",name:"Javier Alberto",middleName:null,surname:"Pérez Castán",slug:"javier-alberto-perez-castan",fullName:"Javier Alberto Pérez Castán"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7761",title:"Advances in Spacecraft Attitude Control",subtitle:null,isOpenForSubmission:!1,hash:"933b56622351819a21f036a4295e45c2",slug:"advances-in-spacecraft-attitude-control",bookSignature:"Timothy Sands",coverURL:"https://cdn.intechopen.com/books/images_new/7761.jpg",editedByType:"Edited by",editors:[{id:"258189",title:"Prof.",name:"Timothy",middleName:null,surname:"Sands",slug:"timothy-sands",fullName:"Timothy Sands"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8613",title:"Aerospace Engineering",subtitle:null,isOpenForSubmission:!1,hash:"075278075d72ebe02490ff58675119ef",slug:"aerospace-engineering",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/8613.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"8643",title:"Hypersonic Vehicles",subtitle:"Past, Present and Future Developments",isOpenForSubmission:!1,hash:"c8b071f76d5ebaa5d249d728be4f42dd",slug:"hypersonic-vehicles-past-present-and-future-developments",bookSignature:"Giuseppe Pezzella and Antonio Viviani",coverURL:"https://cdn.intechopen.com/books/images_new/8643.jpg",editedByType:"Edited by",editors:[{id:"14939",title:"Prof.",name:"Giuseppe",middleName:null,surname:"Pezzella",slug:"giuseppe-pezzella",fullName:"Giuseppe Pezzella"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"7571",title:"Aviation and Its Management",subtitle:"Global Challenges and Opportunities",isOpenForSubmission:!1,hash:"6c1503ac6f4d2bba190dbe2af0716b0b",slug:"aviation-and-its-management-global-challenges-and-opportunities",bookSignature:"Arif Sikander",coverURL:"https://cdn.intechopen.com/books/images_new/7571.jpg",editedByType:"Edited by",editors:[{id:"253791",title:"Dr.",name:"Arif",middleName:null,surname:"Sikander",slug:"arif-sikander",fullName:"Arif Sikander"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6399",title:"Aircraft Technology",subtitle:null,isOpenForSubmission:!1,hash:"37811f78d88a70cfe7a89ffb0889102a",slug:"aircraft-technology",bookSignature:"Melih Cemal Kuşhan",coverURL:"https://cdn.intechopen.com/books/images_new/6399.jpg",editedByType:"Edited by",editors:[{id:"185873",title:"Dr.",name:"Melih",middleName:"Cemal",surname:"Kushan",slug:"melih-kushan",fullName:"Melih Kushan"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6350",title:"Space Flight",subtitle:null,isOpenForSubmission:!1,hash:"023c9b0d77a58c0a263c075a7deed7e5",slug:"space-flight",bookSignature:"George Dekoulis",coverURL:"https://cdn.intechopen.com/books/images_new/6350.jpg",editedByType:"Edited by",editors:[{id:"9833",title:"Prof.",name:"George",middleName:null,surname:"Dekoulis",slug:"george-dekoulis",fullName:"George Dekoulis"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}},{type:"book",id:"6442",title:"Into Space",subtitle:"A Journey of How Humans Adapt and Live in Microgravity",isOpenForSubmission:!1,hash:"e7414f85fdf56e54bfd694d91fa492ac",slug:"into-space-a-journey-of-how-humans-adapt-and-live-in-microgravity",bookSignature:"Thais Russomano and Lucas Rehnberg",coverURL:"https://cdn.intechopen.com/books/images_new/6442.jpg",editedByType:"Edited by",editors:[{id:"220541",title:"Dr.",name:"Thais",middleName:null,surname:"Russomano",slug:"thais-russomano",fullName:"Thais Russomano"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter",authoredCaption:"Edited by"}}],booksByTopicTotal:30,mostCitedChapters:[{id:"26018",doi:"10.5772/38918",title:"Fault Tolerant Flight Control Techniques with Application to a Quadrotor UAV Testbed",slug:"fault-tolerant-flight-control-techniques-with-application-to-a-quadrotor-uav-testbed",totalDownloads:4451,totalCrossrefCites:29,totalDimensionsCites:43,book:{slug:"automatic-flight-control-systems-latest-developments",title:"Automatic Flight Control Systems",fullTitle:"Automatic Flight Control Systems - Latest Developments"},signatures:"Youmin Zhang and Abbas Chamseddine",authors:[{id:"20035",title:"Dr.",name:"Youmin",middleName:null,surname:"Zhang",slug:"youmin-zhang",fullName:"Youmin Zhang"},{id:"148350",title:"Dr.",name:"Abbas",middleName:null,surname:"Chamseddine",slug:"abbas-chamseddine",fullName:"Abbas Chamseddine"}]},{id:"19526",doi:"10.5772/22396",title:"Nonequilibrium Plasma Aerodynamics",slug:"nonequilibrium-plasma-aerodynamics",totalDownloads:3722,totalCrossrefCites:25,totalDimensionsCites:39,book:{slug:"aeronautics-and-astronautics",title:"Aeronautics and Astronautics",fullTitle:"Aeronautics and Astronautics"},signatures:"Andrey Starikovskiy and Nickolay Aleksandrov",authors:[{id:"29275",title:"Dr.",name:"Andrey",middleName:null,surname:"Starikovskiy",slug:"andrey-starikovskiy",fullName:"Andrey Starikovskiy"},{id:"47602",title:"Prof.",name:"Nikolay",middleName:null,surname:"Aleksandrov",slug:"nikolay-aleksandrov",fullName:"Nikolay Aleksandrov"}]},{id:"13473",doi:"10.5772/13640",title:"Green Propellants Based on Ammonium Dinitramide (ADN)",slug:"green-propellants-based-on-ammonium-dinitramide-adn-",totalDownloads:13437,totalCrossrefCites:20,totalDimensionsCites:38,book:{slug:"advances-in-spacecraft-technologies",title:"Advances in Spacecraft Technologies",fullTitle:"Advances in Spacecraft Technologies"},signatures:"Anders Larsson and Niklas Wingborg",authors:[{id:"15475",title:"Prof.",name:"Anders",middleName:null,surname:"Larsson",slug:"anders-larsson",fullName:"Anders Larsson"},{id:"17904",title:"Prof.",name:"Niklas",middleName:null,surname:"Wingborg",slug:"niklas-wingborg",fullName:"Niklas Wingborg"}]}],mostDownloadedChaptersLast30Days:[{id:"57483",title:"Helicopter Flight Physics",slug:"helicopter-flight-physics",totalDownloads:6140,totalCrossrefCites:2,totalDimensionsCites:2,book:{slug:"flight-physics-models-techniques-and-technologies",title:"Flight Physics",fullTitle:"Flight Physics - Models, Techniques and Technologies"},signatures:"Constantin Rotaru and Michael Todorov",authors:[{id:"206857",title:"Prof.",name:"Constantin",middleName:null,surname:"Rotaru",slug:"constantin-rotaru",fullName:"Constantin Rotaru"},{id:"209010",title:"Prof.",name:"Michael",middleName:null,surname:"Todorov",slug:"michael-todorov",fullName:"Michael Todorov"}]},{id:"64957",title:"The Evolution of the Composite Fuselage: A Manufacturing Perspective",slug:"the-evolution-of-the-composite-fuselage-a-manufacturing-perspective",totalDownloads:2934,totalCrossrefCites:2,totalDimensionsCites:1,book:{slug:"aerospace-engineering",title:"Aerospace Engineering",fullTitle:"Aerospace Engineering"},signatures:"Alan Hiken",authors:null},{id:"16873",title:"New Antenna Array Architectures for Satellite Communications",slug:"new-antenna-array-architectures-for-satellite-communications",totalDownloads:12051,totalCrossrefCites:4,totalDimensionsCites:8,book:{slug:"advances-in-satellite-communications",title:"Advances in Satellite Communications",fullTitle:"Advances in Satellite Communications"},signatures:"Miguel Alejandro Salas Natera, Andrés García Aguilar, Jonathan Mora Cueva, José Manuel Fernández, Pablo Padilla De La Torre, Javier García-Gasco Trujillo, Ramón Martínez Rodríguez-Osorio, Manuel Sierra-Perez, Leandro De Haro Ariet and Manuel Sierra Castañer",authors:[{id:"47892",title:"Dr.",name:"Miguel Alejandro",middleName:null,surname:"Salas Natera",slug:"miguel-alejandro-salas-natera",fullName:"Miguel Alejandro Salas Natera"},{id:"55109",title:"Mr.",name:"Andrés",middleName:null,surname:"García Aguilar",slug:"andres-garcia-aguilar",fullName:"Andrés García Aguilar"},{id:"55110",title:"Mr.",name:"Jonathan",middleName:null,surname:"Mora Cueva",slug:"jonathan-mora-cueva",fullName:"Jonathan Mora Cueva"},{id:"55111",title:"Dr.",name:"Ramón",middleName:null,surname:"Martínez Rodríguez-Osorio",slug:"ramon-martinez-rodriguez-osorio",fullName:"Ramón Martínez Rodríguez-Osorio"},{id:"55112",title:"Prof.",name:"Manuel",middleName:null,surname:"Sierra-Perez",slug:"manuel-sierra-perez",fullName:"Manuel Sierra-Perez"},{id:"55113",title:"Dr.",name:"Leandro",middleName:null,surname:"De Haro Ariet",slug:"leandro-de-haro-ariet",fullName:"Leandro De Haro Ariet"},{id:"56081",title:"Dr.",name:"José Manuel",middleName:null,surname:"Fernández",slug:"jose-manuel-fernandez",fullName:"José Manuel Fernández"},{id:"63116",title:"Mr",name:"Javier",middleName:null,surname:"García-Gasco Trujillo",slug:"javier-garcia-gasco-trujillo",fullName:"Javier García-Gasco Trujillo"},{id:"63250",title:"Dr.",name:"Pablo",middleName:null,surname:"Padilla De La Torre",slug:"pablo-padilla-de-la-torre",fullName:"Pablo Padilla De La Torre"},{id:"91100",title:"Dr.",name:"Manuel",middleName:null,surname:"Sierra Castañer",slug:"manuel-sierra-castaner",fullName:"Manuel Sierra Castañer"}]},{id:"66116",title:"High Entropy Alloys for Aerospace Applications",slug:"high-entropy-alloys-for-aerospace-applications",totalDownloads:811,totalCrossrefCites:3,totalDimensionsCites:4,book:{slug:"aerodynamics",title:"Aerodynamics",fullTitle:"Aerodynamics"},signatures:"Modupeola Dada, Patricia Popoola, Samson Adeosun and Ntombi Mathe",authors:[{id:"169258",title:"Dr.",name:"Patricia",middleName:null,surname:"Popoola",slug:"patricia-popoola",fullName:"Patricia Popoola"},{id:"285697",title:"M.Sc.",name:"Modupeola",middleName:null,surname:"Dada",slug:"modupeola-dada",fullName:"Modupeola Dada"},{id:"292368",title:"Dr.",name:"Samson",middleName:null,surname:"Adeosun",slug:"samson-adeosun",fullName:"Samson Adeosun"},{id:"292369",title:"Dr.",name:"Ntombi",middleName:null,surname:"Mathe",slug:"ntombi-mathe",fullName:"Ntombi Mathe"}]},{id:"56629",title:"Aeroelastic Stability of Turboprop Aircraft: Whirl Flutter",slug:"aeroelastic-stability-of-turboprop-aircraft-whirl-flutter",totalDownloads:1137,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"flight-physics-models-techniques-and-technologies",title:"Flight Physics",fullTitle:"Flight Physics - Models, Techniques and Technologies"},signatures:"Jiří Čečrdle",authors:[{id:"207285",title:"Dr.",name:"Jiri",middleName:null,surname:"Cecrdle",slug:"jiri-cecrdle",fullName:"Jiri Cecrdle"}]},{id:"65403",title:"Green Comparable Alternatives of Hydrazines-Based Monopropellant and Bipropellant Rocket Systems",slug:"green-comparable-alternatives-of-hydrazines-based-monopropellant-and-bipropellant-rocket-systems",totalDownloads:1026,totalCrossrefCites:1,totalDimensionsCites:2,book:{slug:"aerospace-engineering",title:"Aerospace Engineering",fullTitle:"Aerospace Engineering"},signatures:"Dov Hasan, Dan Grinstein, Alexander Kuznetsov, Benveniste Natan, Zohar Schlagman, Avihay Habibi and Moti Elyashiv",authors:null},{id:"47449",title:"Network Real Time Kinematic (NRTK) Positioning – Description, Architectures and Performances",slug:"network-real-time-kinematic-nrtk-positioning-description-architectures-and-performances",totalDownloads:2611,totalCrossrefCites:6,totalDimensionsCites:9,book:{slug:"satellite-positioning-methods-models-and-applications",title:"Satellite Positioning",fullTitle:"Satellite Positioning - Methods, Models and Applications"},signatures:"Alberto Cina, Paolo Dabove, Ambrogio M. Manzino and Marco\nPiras",authors:[{id:"86027",title:"Prof.",name:"Ambrogio",middleName:null,surname:"Manzino",slug:"ambrogio-manzino",fullName:"Ambrogio Manzino"},{id:"86028",title:"Dr.",name:"Paolo",middleName:null,surname:"Dabove",slug:"paolo-dabove",fullName:"Paolo Dabove"},{id:"159903",title:"Dr.",name:"Marco",middleName:null,surname:"Piras",slug:"marco-piras",fullName:"Marco Piras"},{id:"160993",title:"Prof.",name:"Alberto",middleName:null,surname:"Cina",slug:"alberto-cina",fullName:"Alberto Cina"}]},{id:"65435",title:"Aviation of the Future: What Needs to Change to Get Aviation Fit for the Twenty-First Century",slug:"aviation-of-the-future-what-needs-to-change-to-get-aviation-fit-for-the-twenty-first-century",totalDownloads:1123,totalCrossrefCites:0,totalDimensionsCites:0,book:{slug:"aviation-and-its-management-global-challenges-and-opportunities",title:"Aviation and Its Management",fullTitle:"Aviation and Its Management - Global Challenges and Opportunities"},signatures:"Ursula Silling",authors:[{id:"256247",title:"B.A.",name:"Ursula",middleName:null,surname:"Silling",slug:"ursula-silling",fullName:"Ursula Silling"}]},{id:"58067",title:"Cassini Spacecraft-DSN Communications, Handling Anomalous Link Conditions, and Complete Loss-of-Spacecraft Signal",slug:"cassini-spacecraft-dsn-communications-handling-anomalous-link-conditions-and-complete-loss-of-spacec",totalDownloads:655,totalCrossrefCites:1,totalDimensionsCites:1,book:{slug:"space-flight",title:"Space Flight",fullTitle:"Space Flight"},signatures:"Paula S. Morgan",authors:[{id:"110221",title:"Dr.",name:"Paula",middleName:"Suzanne",surname:"Morgan",slug:"paula-morgan",fullName:"Paula Morgan"}]},{id:"6832",title:"Artificial Intelligence in Aerospace",slug:"artificial-intelligence-in-aerospace",totalDownloads:7675,totalCrossrefCites:0,totalDimensionsCites:3,book:{slug:"aerospace-technologies-advancements",title:"Aerospace Technologies Advancements",fullTitle:"Aerospace Technologies Advancements"},signatures:"David John Lary",authors:null}],onlineFirstChaptersFilter:{topicSlug:"aerospace-engineering",limit:3,offset:0},onlineFirstChaptersCollection:[],onlineFirstChaptersTotal:0},preDownload:{success:null,errors:{}},aboutIntechopen:{},privacyPolicy:{},peerReviewing:{},howOpenAccessPublishingWithIntechopenWorks:{},sponsorshipBooks:{sponsorshipBooks:[{type:"book",id:"10176",title:"Microgrids and Local Energy Systems",subtitle:null,isOpenForSubmission:!0,hash:"c32b4a5351a88f263074b0d0ca813a9c",slug:null,bookSignature:"Prof. Nick Jenkins",coverURL:"https://cdn.intechopen.com/books/images_new/10176.jpg",editedByType:null,editors:[{id:"55219",title:"Prof.",name:"Nick",middleName:null,surname:"Jenkins",slug:"nick-jenkins",fullName:"Nick Jenkins"}],equalEditorOne:null,equalEditorTwo:null,equalEditorThree:null,productType:{id:"1",chapterContentType:"chapter"}}],offset:8,limit:8,total:1},route:{name:"chapter.detail",path:"/books/advanced-sorption-process-applications/biopolymer-based-materials-from-polysaccharides-properties-processing-characterization-and-sorption-",hash:"",query:{},params:{book:"advanced-sorption-process-applications",chapter:"biopolymer-based-materials-from-polysaccharides-properties-processing-characterization-and-sorption-"},fullPath:"/books/advanced-sorption-process-applications/biopolymer-based-materials-from-polysaccharides-properties-processing-characterization-and-sorption-",meta:{},from:{name:null,path:"/",hash:"",query:{},params:{},fullPath:"/",meta:{}}}},function(){var m;(m=document.currentScript||document.scripts[document.scripts.length-1]).parentNode.removeChild(m)}()