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Rank M-type Filters for Image Denoising 

Francisco J. Gallegos-Funes and Alberto J. Rosales-Silva 
National Polytechnic Institute of Mexico 

Mexico 

1. Introduction 

Many different classes of filters have been proposed for removing noise from images (Astola 
& Kuosmanen, 1997; Bovik, 2000; Kotropoulos & Pitas, 2001). They are classified into several 
categories depending on specific applications. Linear filters are efficient for Gaussian noise 
removal but often distort edges and have poor performance against impulsive noise. 
Nonlinear filters are designed to suppress noise of different nature, they can remove 
impulsive noise and guarantee detail preservation. Rank order based filters have received 
considerable attention due to their inherent outlier rejection and detail preservation 
properties. 
In the last decade, many useful techniques of multichannel signal processing based on 
vector processing have been investigated due to the inherent correlation that exists between 
the image channels compared to traditional component-wise approaches. Many applications 
of this technique are color image processing, remote sensing, robot vision, biomedical image 
processing, and high-definition television (HDTV). Different filtering techniques have been 
proposed for color imaging (Plataniotis & Venetsanopoulos, 2000). Particularly, nonlinear 
filters applied to color images have been designed to preserve edges and details, and 
remove impulsive noise. On the other hand, the filters based in the wavelet domain provide 
a better performance in terms of noise suppression in comparison with different spatial 
domain filters (Mahbubur Rahman & Kamrul Hasan, 2003). 
The possibility to process 3D images presents a new application where it is necessary to 
improve the quality of 3D objects inside the image, suppressing a noise of different nature 
(impulsive, Gaussian noise, or may be by speckle one) that always affects the 
communication or acquisition process (Nikolaidis & Pitas, 2001). Multiplicative (speckle) 
noise is common for any system using a coherent sensor, for example, the ultrasound 
transducer. Other problem that is not trivial is the adaptation and implementation of the 
current filters, that have been investigated in different papers in the case of 2D image 
processing to process objects in 3D by use multiframe methods to increase the signal-to-
noise ratio (SNR). 
This chapter presents the capability features of robust Rank M-Type K-Nearest Neighbor 
(RMKNN) and Median M-Type L- (MML) filters for the removal of impulsive noise in gray-
scale image processing applications (Gallegos & Ponomaryov, 2004; Gallegos-Funes et al., 
2005; Gallegos-Funes et al., 2008). The proposed scheme is based on combined robust R- 
(median, Wilcoxon, Ansari-Bradley-Siegel-Tukey or Mood) and M-estimators, and 
modification of the KNN and L- filters that use the RM (Rank M-type) -estimator to calculate 
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the robust point estimate of the pixels within the filtering window. So, such filters use the 
value of the central pixel within the filtering window to provide the preservation of fine 
details and the redescending M-estimators combined with the calculation of the rank 
estimator to obtain the sufficient impulsive noise rejection. Different types of influence 
functions in the M-estimator can be used to provide better impulsive noise suppression. We 
apply the proposed MML filter in SAR images which naturally have speckle noise to 
demonstrate that the speckle noise can be efficiently suppressed, while the sharpness and 
fine feature are preserved.  
The robust Rank M-Type K-Nearest Neighbor (RMKNN) filters are adapted to work in color 
image denoising (Ponomaryov et al., 2005). We also present the 3D RMKNN and 3D MML 
filters which are compared with different nonlinear 2D filters which were adapted to 3D 
(Varela-Benitez et al., 2007a). The experimental results were realized by degraded an 
ultrasound sequence with different variance of speckle noise added to the natural speckle 
noise of the sequence. Finally, we adapt the RMKNN, MML, and different order statistics 
filters to work in the wavelet domain for the removal of impulsive and speckle noise in 
gray-scale and color image processing applications (Gallegos-Funes et al., 2007; Varela-
Benitez et al., 2007b).  
Another goal of this chapter is to demonstrate the possibility to implement the filters in 
order to process the image or sequence in real time by means of use of the Texas 
Instruments DSP TMS320C6701 and DSP TMS320C6711 to demonstrate that the proposed 
methods potentially could provide a real-time solution to quality video transmission. 
Extensive simulation results with different gray scale and color images and video sequences 
have demonstrated that the proposed filters consistently outperform other filters by 
balancing the tradeoff between noise suppression, fine detail preservation, and color 
retention. 

2. Rank M-type estimators 

2.1 R-estimators 

The R-estimators are a class of nonparametric robust estimators based on rank calculations 
(Hampel et al., 1986; Huber, 1981). We consider a two-samples of rank tests mxx ,,1 …  and 

nyy ,,1 …  as a two-samples with distributions ( )xH  and ( )Δ+xH , where Δ  is the shift of 
unknown location. Let ( )iX  be the rank of iX  in the pooled sample of size nmN += . The 
rank test of 0=Δ  against 0>Δ  is based on the statistics test, 

 
( )( )∑=

=

m

i
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m
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1  (1) 

Usually, the scores ia  are generated by the function  J  as follows: 
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The function ( )tJ  is symmetric in the sense of ( ) ( )tJtJ −=−1 , satisfies ( )∫ = 0dttJ  and the 

coefficients ia  are given as ∑
=
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www.intechopen.com



Rank M-type Filters for Image Denoising  

 

37 

The median estimator can be derived from Laplace distribution function x
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 and is given in such a form (Hampel et al., 1986; Huber, 1981): 
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where ( )jX  is the element with rank j . It is the best estimator when any a priori information 
about data iX  distribution shape and its moments is unavailable. 

The Hodges-Lehmann estimator ( )
2

1
−= ttJ  is relational with Wilcoxon test and logistic 

distribution function ( )
xe

xf −+
=

1

1
0

. The corresponding rank estimator is the Wilcoxon R-

estimator (Hampel et al., 1986; Huber, 1981): 
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The Wilcoxon estimator is robust and unbiased. When the shape of the original data 
distribution is symmetrical, the such a test is known as the local asymptotically most 
powerful one. 
Other R-estimations can be obtained by different type of functions ( )tJ . For example, the 
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2.2 M-estimators 

The M-estimators are a generalization of maximum likelihood estimators (MLE) (Hampel et 
al., 1986; Huber, 1981). Their definition is given by a function ρ  ( ) ( )( ){ }XFX ln=ρ  
connected with the probability density function ( )XF  of data samples iX , Ni ,,1…= :  
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 ∑
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The estimation of the location parameter θ can be found by calculating the partial derivative 

of ρ  (with respect to θ)  introducing the function ( ) ( )θρ
∂θ
∂θψ ,, XX =  
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where θ  is a location parameter. 
The robust M-estimator solution for θ  is determined by imposing certain restrictions on the 
influence function ( )Xψ  or the samples θ−iX , called censorization or trimming. The 
standard technique for the M-estimator assumes the use of Newton’s iterative method that 
can be simplified by a single-step algorithm to calculate the lowered M-estimate of the 
average θ  value (Astola & Kuosmanen, 1997) 
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where ψ~  is the normalized function ψ : ( ) ( )XXX ψψ ~= . It is evident that (9) represents 

the arithmetic average of { }( )∑
=

−
n

i

iX

1

MED X
G

ψ , which is evaluated on the interval [ ]rr,− . The 

parameter r is connected with restrictions on the range of ( )Xψ , for example, as it has been 

done in case of the simplest Huber’s limiter type M-estimator for the normal distribution 
having heavy ‘tails’ (Huber, 1981) 

 ( ) ( )( ) [ ]rrr XrXrX -,max ,min~ ==ψ  (10) 

Another way to derive the function ( )Xψ~  is to cut the outliers off the primary sample. This 

leads to the so-called lowered M-estimates. Hampel proved that the skipped median is the 
most robust lowered M-estimate (Hampel et al., 1986). Below we also use the simple cut (S) 
function. There exist also other well known influence functions in the literature. We also use 
the Hampel´s three part redescending (H), Andrew’s sine (A), Tukey biweight (T), and the 
Bernoulli (B) influence functions (Astola & Kuosmanen, 1997; Hampel et al., 1986). These 
functions are shown in Table 1. 

2.3 RM-estimators 
The proposal to enhance the robust properties of M-estimators and R-estimators by using 
the R-estimates consists of the procedure similar to the median average instead of arithmetic 
one (Gallegos-Funes et al., 2002; Gallegos & Ponomaryov 2004): 
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Table 1. Influence functions used in the filtering scheme to derive the robust redescending 
M-estimators. 

Such an estimator is the combined RM-estimator. It should be noted that the RM-estimator 
(11) is the usual median when the function ψ~  is represented by eq. (10). If the function ψ~  is 
described by the simple cut function, it yields the skipped median. Other new RM-
estimators applied below are followed from eqs. (5) and (6) (Gallegos-Funes et al., 2005): 
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It is possible to expect that the robust properties of the RM-estimators can exceed the robust 
properties of the base R- and M- estimators. The R-estimator provides good properties of 
impulsive noise suppression and the M-estimator uses different influence functions 
according to the scheme proposed by Huber to provide better robustness, for these reasons 
it can be expected that the properties of combined RM-estimators could be better in 
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comparison with R- and M- estimators (Gallegos-Funes et al., 2002; Gallegos & Ponomaryov 
2004). 

3. Rank M-type filters 

To increase the robustness of standard filters, it is possible to employ different methods 
known in the robust-estimate theory, for example, the censoring or others (Astola & 
Kuosmanen, 1997; Peltonen & Kuosmanen, 2001). The known proposal to increase the 
quality of filtration via the preservation both the edges and small-size details in the image 
consists of the use of KNN image-filtering algorithm. Other proposal filtering schemes 
proposed here are the L-filter and the versions of KNN and L filters in wavelet domain. 

3.1 Rank M-Type KNN filters 

The following representation of the KNN filter is usually used ∑∑
==

=
n

i

i

n

i

ii axa
11

KNNθ  with 

⎩
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⎧ ≤−

=
otherwise,0

  if,1 Txx
a ci

i
 , cx  is the central pixel, and T  is a threshold (Astola & Kuosmanen, 

1997). If the threshold T  is chosen to be twice of the standard noise deviation σ , this filter 
is known as the sigma filter. The KNN filter can be rewritten as 
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To improve the robustness of the KNN filter that can preserve well both the edges and the 
fine details in absence of noise, we proposed to use the RM-estimator (11) given by 

( ) { } ),(ˆMED,ˆ
KNNMMKNN njmiji ++= θθ . So, the iterative Median M-type K-Nearest Neighbor 

filter can be written as (Gallegos-Funes et al., 2002; Gallegos & Ponomaryov 2004), 

 ( ) ( ){ } ),(MED,ˆ )(

MMKNN njmihji ww ++=θ  (15) 

where ),()( njmih w ++ is a set of closeK  values of pixels weighting in accordance with the 
used ψ~ (X) influence function within the filter window closest to the estimate obtained at 
previous step ( ) ( )jiw- ,ˆ 1

MMKNNθ . The initial estimate is ( ) ( ) ( )jixji ,,ˆ 0

MMKNN =θ  and ( ) ( )jiw ,ˆ
MMKNNθ  

denotes the estimate at the iteration w . ),( jix  is the current or origin pixel contaminated 
by noise in the filtering window. The filtering window size is ( )212 += LN  and 

LLnm ,,, …−= . The current number of the nearest neighbor pixels 
closeK  reflects the local 

data activity and impulsive noise presence (Gallegos & Ponomaryov 2004), 
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The parameter a  controls the filter sensitivity for local data variance to detect the details. 

minK  is the minimal number of neighbours for noise removal and 
maxK  is the maximal 

number of neighbours for edge restriction and detail smoothing. 
SD  is the impulsive 

detector, and MAD is the median of the absolute deviations from the median (Astola & 
Kuosmanen, 1997) which are defined as (Gallegos & Ponomaryov 2004): 

 ( ) ( ){ }
( ){ }

( ){ }
( ){ }ljkix

jix

jix

njmixjix
DS ++

+
++−

=
,MED

,MAD
5.0
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 ( ){ } ( ) ( ){ }{ }ljkixnjmixjix ++−++= ,MED,MED,MAD  (18) 

In our experiments, a 3x3 window (i.e., 1,,1, …−=nm  and ( ) 912
2 =+L ) is applied. The 

algorithm finishes when ( ) ( ) ( ) ( )jiji ww ,ˆ,ˆ 1

MMKNNMMKNN

−= θθ . The use of the influence functions 

mentioned above in the proposed filter (15) could provide good suppression of impulsive 
noise. We also propose for enhancement of the removal ability of MMKNN filter in the 
presence of impulsive noise to involve the standard median filter. The numerical 
simulations have shown that for 7>closeK  the MMKNN filter can be substituted by the 3x3 

median filter and for 350>closeK  we can use the 5x5 median filter. 

Other versions of Rank M-type K-Nearest Neighbor filters are given as follows (Gallegos-
Funes et al., 2005; Ponomaryov et al., 2005),  
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3.2 Wavelet domain order statistics filter 
This filter constitutes two filters (Gallegos-Funes et al., 2007): the filter based on redundancy 
of approaches (Gallegos-Funes et al., 2007) and the Wavelet domain Iterative Center 
Weighted Median (ICWMF) Filter (Mahbubur Rahman & Kamrul Hasan, 2003) as shown in 
Figure 1. For each color component of the noisy image it is necessary to apply all the steps 
contained in this structure. This technique applies up to 5 scaling levels for the details and 
only 1 scaling level for the approaches. Other operations are indicated to make clearer the 
wavelet analysis that it is carried out in this paper. We modify this structure in the block of 
the ICWMF. For that reason, the expressions used by the ICWMF to calculate the improved 
estimation of the variance field of the noisy wavelet coefficients will be required to indicate 
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when and where different proposed filtering algorithms will take place to improve the 
performance of the proposed filter.  
 

 
Fig. 1. Block diagram of the proposed filtering scheme of the Wavelet Domain Order 
Statistics Filter. 

The first stage of the ICWMF that detects if a sample contains noise or not is given by: 
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where 2~
gsσ  is the variance field estimated previously, k is central sample in the filter 

window, j is one of the N sample contained into the window,
sλ  is the standard deviation of 

the preliminary estimate of the signal coefficients variances )(~ 2 ksσ  in each scale, 

∑∑ −−=
s

s

s

s

sth 22λλ  is the discriminating threshold, s is the scale used in the wavelet 

analysis, and s−2  is the weighting function (Mahbubur Rahman & Kamrul Hasan, 2003). 
The Signal dependent rank order mean (SDROM) (Abreu et al., 1996), Adaptive Center Weighed 

Median (ACWM) (Chen & Wu, 2001), and Median M-type KNN (Gallegos-Funes et al., 2007) 
filters were applied to the proposed filter as a first detection block. But the FIR Median 

Hybrid (FIRMH) filter (Astola & Kuosmanen, 1997) was applied as a second detection block 
because this algorithm only constitutes the part of estimation of the noisy sample value 
(only if the sample was detected of this way) and the proposed filter can continue operating 
in all its sections in the same way. For this reason it is necessary to present the expression for 
the second detection block contained in the proposed filter structure (Mahbubur Rahman & 
Kamrul Hasan, 2003): 
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The proposed filter uses the median algorithm represented as ))(~( 2 jmed gsσ  to estimate the 

value of the central sample in a filter window if the sample is detected as noisy. It is possible 
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to use other estimation algorithm such as the FIR Median Hybrid Filter that retains more 
information about the image. 

3.3 Median M-type L-filter 
We propose to improve the robustness of L-filter by means of use of RM-estimator (11). The 

representation of L-filter is ∑
=

⋅=
N

i

ii Xaθ
1

)(L
 where X(i) is the ordered data sample, i=1,…,N, 

∫∫−=
1

01
)()( λλλλ dhdha

Ni

Ni
i

 are the weight coefficients, and h(λ) is a probability density 

function (Kotropoulos & Pitas, 2001).  
To introduce the MM-estimator (11) in the scheme of L-filter, we present the ordered data 
sample of L-filter as function of an influence function (Gallegos-Funes et al., 2008), 

 ( ) i

N

i

ii XXψaθ ⋅⋅=∑
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L
ˆ  (24) 

where ( )212 += LN  is the filtering window size, ( ) ii XX ⋅ψ  is the ordered data sample, 
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⎩
⎨
⎧ ≤

=
otherwise,0

, ruc
uψ  is the influence function, c is a constant, and r is connected with the 

range of ( )uψ . 

Then, the non iterative MML filter can be obtained by the combination of L-filter (24) and 
the MM-estimator (11) (Gallegos-Funes et al., 2008), 

 { }( )[ ]{ }
MED
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MEDMED
ˆ

a

XXψXaθ iii

G
−⋅⋅

=  (25) 

 

where { }( )XXψX ii

G
MED−  are the selected pixels in accordance with the influence function 

used in a sliding filter window, the coefficients ai are computed using the Laplacian and 
Uniform distribution functions in h(λ), and aMED is the median of coefficients ai used as a 
scale constant.  
To improve the properties of noise suppression of MML filter we use an impulsive noise 
detector (IND) (Aizenberg et al., 2003), 

 ( ) ( )[ ] ( )( )
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=
otherwise,

MED ifFiltering,
IND

c

c

X

UXXsNDsD
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where Xc is the central pixel in the filtering window, s>0 and U≥0 are thresholds, N is the 
length of the data, and D=rank(Xc) is the rank of element Xc. The expressions D≤s and D≥N-s 
come from the fact that the difference between the ranks of the impulse and the median is 
usually large. In other words, the median is positioned in the center of data, and an impulse 
is usually positioned near one of its ends. The expression ( ) UXX c ≥−

G
MED  has been 

specially developed for images that have very high corruption rate. Finally, if these 
conditions are true then we classify Xc as corrupted. 
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3.4 Wavelet Domain Median M-type L-filter 
Figure 2 shows a block diagram of proposed Wavelet Domain Median M-type L (WDMML) 
filter (Varela-Benitez et al., 2007b). The proposed WDMML filter uses the Daubechie 
wavelets (Walker, 1999). We apply the proposed MML filter in the gray scale images of 
approaches and details obtained in the process of wavelet decomposition. 
 

 
Fig. 2. Block diagram of proposed WDMML filter. 

4. Overall filtering performance 

The objective criteria used to compare the performance of noise suppression of various filters 
was the peak signal to noise ratio (PSNR) and for the evaluation of fine detail preservation the 
mean absolute error (MAE) was used (Astola & Kuosmanen, 1997; Bovik 2000), 
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image; ( )ji,θ̂  is the restored image; and NM  ,  is the size of the image. 

In the case of color image processing, we compute the mean chromaticity error (MCRE) for 
evaluation of chromaticity retention, and the normalized color difference (NCD) for 
quantification of color perceptual error (Plataniotis & Venetsanopoulos, 2000): 
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where 
jip ,
 and 

jip ,
ˆ  are the intersection points of ( )jif ,  and ( )ji,θ̂  with the plane 

defined by the Maxwell triangle, respectively,  ( ) ( ) ( ) 21
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norm of color error, ΔL*, Δu*, and Δv* are the difference in the L*, u*, and v* components, 
respectively, between the two color vectors that present the filtered image and uncorrupted 

original one for each a pixel (i,j) of an image, ( ) ( ) ( ) 21
2*2*2**

2

),( ⎥⎦
⎤

⎢⎣
⎡ ++= vuLjiE

L
Luv

 is the norm or 

magnitude of the uncorrupted original image pixel vector in the L*u*v* space, and 
2L

⋅  is 

the L2-vector norm. 

4.1 Noise suppression in gray scale images and video sequences 
The described 3x3 MMKNN, 3x3 WMKNN, 3x3 ABSTMKNN, 3x3 MOODMKNN, and 3x3 
MML filters with different influence functions have been evaluated, and their performance 
has been compared with 3x3 weighted median (WM) (Bovik, 2000), 3x3 tri-state median (TSM) 
(Chen et al., 1999), 3x3 adaptive center weighted median (ACWM) (Chen & Wu, 2001), 3x3 rank 
order mean (ROM) (Abreu et al., 1996), 3x3 minimum-maximum exclusive mean (MMEM) (Wei-
Lu & Ja-Chen, 1997), 3x3 Local Linear Minimum Mean Square Error (LMMSE) (Özkan et al., 
1993), 3x3 K-Nearest Neighbor (KNN) (Astola & Kuosmanen, 1997), 3x3 Ansari-Bradley-Siegel-
Tukey (ABST) (Hampel et al., 1986), 3x3 Normalized Least Mean Squares L (NLMS-L) 
(Kotropoulos & Pitas, 1996), 3x3 Sampled-Function Weighted Order (SFWO) (Öten & De 
Figueiredo, 2002), and Modified Frost (MFrost) (Lukin et al., 1998) filters. The reason for 
choosing these filters to compare them with the proposed ones is that their performances have 
been compared with various known filters and their advantages have been demonstrated. The 
runtime analysis of various filters was conducted for different images using Texas Instruments 
DSP TMS320C6701 (Kehtarnavaz & Keramat, 2001; Texas Instruments, 1998). 
To determine the impulsive noise suppression properties of various filters the 256x256 
standard test grayscale images “Airfield”, “Goldhill”, and “Lena” were corrupted with an 
occurrence rate of 20% of impulsive noise and the results obtained by the mentioned filters 
are presented in Table 2. One can see from the Table 2 that the proposed MMKNN and 
WMKNN filters have better performances in terms of PSNR and MAE criteria in 
comparison with the filters used as comparative in the most of cases. The processing time is 
given in seconds and includes the duration of data acquisition, processing and storing of data. 
The results reveal that the processing time values of the MMKNN filter are larger than WM, 
and MMEM filters but less in comparison with ACWM, LMMSE, and ROM filters and have 
about the same values compared to the TSM filter. The MMKNN filter with Andrew’s and 
Bernoulli influence functions take more time than when other influence functions are used 
depending on the filter parameters values. For the ROM filter the processing time does not 
include the time for deriving weighting coefficients during the training stage and then used 
in this filtering scheme. The time used in its training procedure is 0.035 s approximately. 
The processing time performance of the MMKNN filter depends on the image to process 
and almost does not vary for different noise levels; these values also depend on the complex 
calculation of the influence functions and parameters of the proposed filter. The proposed 
MMKNN algorithm can process from 16 to 19 images of 256x256 pixels per second. In the 
case of WMKNN filter we observe that its processing time is larger than MMKNN filter. The 
WMKNN algorithm can process from 10 to 14 images of 256x256 pixels per second. 
In Figure 3 we present the processed images for the test image “Lena” explaining the 
impulsive noise suppression according to the Table 2. A zoomed-in section (upright) of each 
image is displayed in order to view the details.  
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Airfield Goldhill Lena 
Algorithm 

PSNR MAE TIME PSNR MAE  PSNR MAE  
WM 22.40 10.67 0.0203 24.21 9.96 0.0203 23.58 8.67 0.0203 
TSM 21.13 13.44 0.0547 23.11 12.43 0.0547 23.56 10.80 0.0547 

ACWM 22.97 10.57 0.2299 24.84 10.43 0.2299 25.56 8.75 0.2299 
ROM 23.08 10.42 0.0750 24.82 10.57 0.0750 25.20 9.11 0.0750 

MMEM 22.69 12.23 0.0406 24.16 11.09 0.0406 24.52 9.46 0.0406 
LMMSE 23.03 11.24 0.0750 24.15 11.08 0.0750 24.59 9.95 0.0751 

MMKNN (S) 23.21 10.45 0.0515 25.45 9.58 0.0517 26.38 7.12 0.0515 
MMKNN (H) 23.24 10.42 0.0521 25.50 9.50 0.0524 26.33 7.07 0.0521 
MMKNN (A) 23.23 10.44 0.0566 25.48 9.53 0.0573 26.36 7.12 0.0557 
MMKNN (T) 23.23 10.45 0.0528 25.50 9.56 0.0555 26.32 7.13 0.0528 
MMKNN (B) 23.24 10.46 0.0593 25.50 9.56 0.0599 26.31 7.14 0.0588 
WMKNN (S) 22.82 10.82 0.0686 25.29 9.97 0.0751 25.66 7.60 0.0757 
WMKNN (H) 22.72 10.86 0.0736 25.19 10.00 0.0826 25.45 7.67 0.0814 
WMKNN (A) 22.79 10.84 0.0920 25.36 9.92 0.0979 25.68 7.56 0.0944 
WMKNN (T) 22.30 11.23 0.0753 24.95 10.46 0.0804 24.88 8.11 0.0775 
WMKNN (B) 22.26 11.29 0.0695 24.41 10.40 0.0861 24.79 8.05 0.0838 

Table 2. PSNR in dB, MAE, and Processing time values for different images corrupted by 
20% of impulsive noise obtained by different filters. 
 

 
Fig. 3. Subjective visual qualities of a part of image “Lena”, a) Original image, b) Zoomed-in 
section (upright) of (a), c) Degraded image with 20% of impulsive noise of (b), d) Restored 
image with the ACWM filter of (b), e) Restored image with the ROM filter of (b), f) Restored 
image with the LMMSE filter of (b), g) Restored image with the MMKNN (H) filter of (b), h) 
Restored image with the MM-KNN (B) filter of (b). 

a) b) c) d) 

e) f) g) h) 
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Table 3 shows the performance results in the grayscale image “Peppers” degraded with 20% 
of impulsive noise. We observe that the processing time values of ABSTMKNN and 
MOODMKNN filters are larger than the most comparison filters but the proposed filters 
consistently outperform other filters by balancing the tradeoff between noise suppression 
and detail preservation. Figure 4 depicts that the restored image by ABSTMKNN method 
appears to have a very good subjective quality in comparison with other methods. 
 

Algorithm PSNR dB MAE TIME 
KNN 18.83 24.32 0.021380 
ABST 22.61 11.10 0.038395 
WM 24.68 7.81 0.020341 

ACWM 25.18 9.21 0.229951 
ROM 25.04 9.62 0.075008 

MMEM 24.40 9.67 0.040618 
LMMSE 24.75 9.70 0.075140 

ABSTMKNN (S) 25.85 7.55 0.063876 
ABSTMKNN (H) 25.62 7.75 0.063787 
ABSTMKNN (A) 25.95 7.57 0.074301 
ABSTMKNN (T) 25.51 7.75 0.063151 
ABSTMKNN (B) 25.46 7.75 0.067383 

MOODMKNN (S) 25.98 7.55 0.066725 
MOODMKNN (H) 25.62 7.75 0.067295 
MOODMKNN (A) 25.98 7.57 0.076487 
MOODMKNN (T) 25.67 7.64 0.068421 
MOODMKNN (B) 25.58 7.66 0.067413 

Table 3. Performance results for image “Peppers”. 

 
Fig. 4. Results for a part of “Peppers” image, a) Degraded image with 20% of impulse noise, 
b) Restored image by ACWM filter, c) Restored image by the ROM filter, d) Restored image 
by the ABSTM-KNN (S) filter. 

The MML filter was implemented with Laplacian (L) and Uniform (U) distribution 
functions, and with (D) and without (ND) impulsive noise detector. Table 1 shows the 
performance results for “Lena” image degraded with 5% of impulsive noise and σ2=0.05 of 
speckle noise. From Table 4, the proposed filter provides better noise suppression and detail 
preservation than other filters in the most of cases. The processing time of MML filter is less 
than filters used as comparative, and it takes less time when the impulsive noise detector is 

a) b) c) d) 
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used. Figure 5 exhibits the filtered images in the case of 20% of impulsive noise. The 
restored image by proposed MML filter appears to have good subjective quality. 
To demonstrate the performances of the proposed MML filtering scheme we apply it for 
filtering of the SAR images, which naturally have speckle noise. The results of such a 
filtering are presented in the Figure 6 in the case of the image “Pentagon”. It is possible to 
see analyzing the filtering images that speckle noise can be efficiently suppressed, while the 
sharpness and fine feature are preserved using the proposed filter in comparison with other 
filters proposed in the references. 
 

Impulsive noise = 5% Speckle noise = 0.05 
Filters 

PSNR MAE TIME PSNR MAE TIME 
ACWM 27.73 7.35 0.2299 19.96 20.34 0.2299 
ROM 27.49 7.64 0.1050 22.82 20.96 0.1050 
MFrost 23.87 12.69 0.1004 24.56 10.99 0.1004 
NLMS-L 24.24 11.57 0.1835 21.59 21.54 0.1835 
SFWO (L) 24.94 8.38 0.1310 22.10 14.37 0.1310 
SFWO (U) 15.76 32.04 0.1310 22.53 12.84 0.1310 
MML (A,L,ND) 27.01 7.61 0.0815 22.78 14.21 0.0815 
MML (A,U,ND) 28.03 6.13 0.0815 24.61 10.92 0.0815 
MML (T,L,ND) 26.93 7.62 0.0796 22.63 14.44 0.0796 
MML (T,U,ND) 28.29 5.76 0.0796 24.79 10.63 0.0796 
MML (H,L,ND) 27.37 6.92 0.0804 23.12 13.53 0.0804 
MML (H,U,ND) 28.40 5.56 0.0804 24.86 10.53 0.0804 
MML (A,L,D) 28.62 6.01 0.0684 23.38 13.10 0.0685 
MML (A,U,D) 29.10 5.51 0.0684 24.60 11.00 0.0684 
MML (T,L,D) 28.59 6.04 0.0652 23.40 13.03 0.0652 
MML (T,U,D) 29.23 5.34 0.0651 24.63 10.96 0.0652 
MML (H,L,D) 28.75 5.83 0.0790 23.61 12.67 0.0790 
MML (H,U,D) 29.33 5.16 0.0790 24.86 10.53 0.0790 

Table 4. Performance results in image “Lena” obtained by different filters,  
 

 
                    a)                                     b)                                    c)                                     d) 

Fig. 5. Filtered images with 20% of impulsive noise: a) Degraded image, b) ACWM, c) ROM, 
d) MML (A,L,ND). 

Table 5 shows the performance results in terms of PSNR in dB and MAE for the image 
“Lena” degraded with 0.1 of variance of speckle noise and free of noise by use the WDMML 
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(S,ND,L) filter in approaches (A) and details (D) with the wavelets db1, db2, db3, and db4 
with one (1) and two (2) levels of decomposition. From this Table one can see that the 
proposed WDMML filter provides better speckle noise suppression and detail preservation 
in comparison with the MML filter in the spatial domain in the most of cases. Figure 7 
presents the visual results to apply the proposed filter with one and two decomposition 
levels in the image “Peppers”. One can see from Figure 7 that the proposed WDMML filter 
outperforms the MML filter in the case of speckle noise. 
 

 
Fig. 6. Comparative results of despeckled SAR image. a) Original image “Pentagon”, 
resolution 1m, source Sandia National Lab., b) Despeckled image with MFrost filter, c) 
Despeckled image with the ROM filter, d) Despeckled image with the SFWO filter, e) 
Despeckled image with the MML filter (S, ND, L), f) Despeckled image with the MML filter 
(S, D, L) 

We also propose to apply the proposed filters to video signals. We process a real video 
sequence to demonstrate that the proposed method potentially could provide a real-time 
solution to quality video transmission. We investigate a QCIF (Quarter Common 
Intermediate Format) video sequence. This picture format uses 176x144 luminance pixels 
per frame and velocity from 15 to 30 frames per second. In the case of this test we used one 
frame of the video sequence “carphone”, that was corrupted by 20% of impulsive noise. The 

a) b) c) 

d) e) f)
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PSNR, MAE and processing time performances are depicted in Table 6. The restored frames 
are displayed in Figure 8 by using the ACWM, LMMSE, and MMKNN (H) filters. From the 
simulation results we observe that the proposed MMKNN and ABSTMKNN filters can 
process up to 33 frames of QCIF video format suppressing the impulsive noise and 
providing the detail preservation in real-time applications. 

Free noise σ2=0.1 
Filters 

PSNR MAE PSNR MAE 
MML (S,ND,L) 29.62 3.78 22.95 13.24 
WDMML (S,ND,db1,A,1) 27.84 5.09 23.35 12.24 
WDMML (S,ND,db1,D,1) 31.46 3.24 20.53 18.78 
WDMML (S,ND,db2,A,1) 27.90 5.11 23.60 12.15 
WDMML (S,ND,db2,D,1) 32.26 3.05 20.69 18.00 
WDMML (S,ND,db3,A,1) 27.92 5.24 24.02 11.77 
WDMML (S,ND,db3,D,1) 32.70 2.97 20.79 17.99 
WDMML (S,ND,db4,A,1) 27.87 5.27 24.33 11.28 
WDMML (S,ND,db4,D,1) 33.00 2.92 20.90 18.11 
WDMML (S,ND,db1,A,2) 24.83 8.32 22.46 13.57 
WDMML (S,ND,db1,D,2) 27.48 5.73 22.66 13.93 
WDMML (S,ND,db2,A,2) 25.40 7.61 22.94 12.85 
WDMML (S,ND,db2,D,2) 28.37 5.34 23.21 13.15 
WDMML (S,ND,db3,A,2) 25.24 7.89 23.14 12.59 
WDMML (S,ND,db3,D,2) 28.39 5.42 23.49 12.90 
WDMML (S,ND,db4,A,2) 25.06 8.21 23.38 12.47 
WDMML (S,ND,db4,D,2) 28.29 5.46 23.69 12.73 

Table 5. Performance results in the image “Lena” obtained by the use of WDMML filter. 

 
Fig. 7. Visual results in the image Peppers, a) Original image, b) Degraded image with 0.1 of 
variance of speckle noise, c) Restored image with MML (S,L,ND) filter, d) Restored image 
with WDMML filter (S,L,ND,db2,A,1).  

4.2 Noise suppression in color images and video sequences 
The proposed MMKNN, WMKNN, and ABSTMKNN filters were adapted to work in color 
image and video processing. Now, the proposed Vector RMKNN filters are called as 
VMMKNN, VWMKNN, and VABSTMKNN filters. These filters have been evaluated, and 
their performances have been compared with vector median (VMF) (Plataniotis & 
 

a) b) c) d) 
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“Carphone” Frame 
Algorithm 

PSNR MAE Time 
WM 23.83 9.80 0.009977 
TSM 21.53 13.24 0.023730 

ACWM 24.34 9.79 0.093865 
MMEM 23.60 11.11 0.018021 
LMMSE 24.15 10.04 0.034716 

MMKNN (S) 24.77 9.08 0.023773 
MMKNN (H) 24.76 9.10 0.024018 
MMKNN (A) 24.75 9.06 0.025717 
MMKNN (T) 24.74 9.16 0.024166 
MMKNN (B) 24.78 9.15 0.026760 

ABSTMKNN (S) 25.07 9.44 0.027068 
ABSTMKNN (H) 24.79 9.66 0.027932 
ABSTMKNN (A) 25.08 9.48 0.029762 
ABSTMKNN (T) 24.78 9.62 0.026815 
ABSTMKNN (B) 24.88 9.62 0.028440 

Table 6. PSNR values in dB, MAE, and processing time for different filters in a frame of 
video sequence “Carphone”. 

 
Fig. 8. Subjective visual qualities of a restored frame “Carphone” produced by different 
filters, a) Original frame, b) Zoomed-in section (upright) of (a), c) Degraded frame with 20% 
of impulsive noise of (b), d) Restored frame with the ACWM filter of (b), e) Restored frame 
with the LMMSE filter of (b), f) Restored frame with the MMKNN (H) filter of (b). 

Venetsanopoulos, 2000), α-trimmed mean (α-TMF), basic vector directional (BVDF), generalized 
vector directional (GVDF), adaptive GVDF (AGVDF), double window GVDF (GVDF_DW), and 
multiple non-parametric (MAMNFE) (Trahanias et al., 1996; Plataniotis et al., 1997) filters.  
The implementation of filters were realized on the DSP TMS320C6711 (Kehtarnavaz & 
Keramat, 2001; Texas Instruments, 1998) to demonstrate that the proposed filters potentially 
could provide a real-time solution to quality video transmission. 
The 320X320 “Lena” color image was corrupted by 20% of impulsive noise. Table 7 shows 
that the performance criteria are often better for the proposed filters in comparison when 
other filters are used. Figure 9 exhibits the processed images for test image “Lena” 
explaining the impulsive noise suppression, and presenting the original image “Lena”, 
image corrupted with noise probability occurrence of 20% for each color channel, and 

d) f) e)c)b)a) 
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exhibiting the filtering results produced by the MAMNFE and VMMKNN filters, 
respectively. The proposed VMMKNN filtering appears to have a better subjective quality 
in comparison with MAMNFE filtering.  
 

Algorithm PSNR MAE MCRE NCD TIME 
VMF 21.15 10.73 0.035 0.038 0.039 
α-TMF 20.86 14.97 0.046 0.049 0.087 
BVDF 20.41 12.72 0.043 0.045 0.065 
GVDF 20.67 11.18 0.038 0.040 0.264 

AGVDF 22.01 11.18 0.028 0.036 0.620 
GVDF_DW 22.59 10.09 0.028 0.039 0.721 
MAMNFE 22.67 9.64 0.027 0.035 0.832 

VMMKNN (S) 23.15 10.00 0.033 0.034 0.296 
VMMKNN (A) 23.07 10.01 0.033 0.035 0.199 
VMMKNN (H) 23.05 10.04 0.033 0.035 0.199 
VWMKNN (S) 22.99 10.13 0.033 0.035 0.435 
VWMKNN (A) 23.00 10.08 0.033 0.035 0.756 
VWMKNN (H) 22.99 10.09 0.033 0.035 0.398 

VABSTMKNN (S) 22.99 10.13 0.033 0.035 0.286 
VABSTMKNN (A) 22.99 10.13 0.033 0.035 0.320 
VABSTMKNN (H) 23.01 10.07 0.033 0.035 0.264 

Table 7. Comparative restoration results for 20% of impulsive noise for color image “Lena”. 

 
                       a)                                      b)                                   c)                                     d) 

Fig. 9. Subjective visual qualities of restored color image “Lena”, a) Original test image 
“Lena”, b) Input noisy image with 20% of impulsive noise, c) MAMNFE filtering image, and 
d) Proposed VMMKNN (S) filtered image. 

We use one frame of the video color sequence “Miss America”, which was corrupted by 15% 
of impulsive noise. One can see in Table 8 that the performance criteria are often better for 
the proposed VMMKNN, VWMKNN, and VABSTMKNN filters in comparison when other 
filters are used in the most of cases. Figure 10 exhibits the processed frames for test image 
“Miss America” explaining the impulsive noise suppression. The restored frame with 
VMMKNN filter appears to have a better subjective quality in comparison with MAMNFE 
filter that has the better performance among the known color filters. 
The processing time performance of the VRMKNN filters depends on the image to process 
and almost does not vary for different noise levels. These values also depend on the 
complex calculation of the influence functions and parameters of the proposed filters. From 
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Tables 7 and 8, one can see that the proposed algorithms can process, in the case of color 
images of size 320x320 pixels, up to 5 images per second, and in case of QCIF video up to 11 
color frames per second in comparison with MAMNFE filter (the best comparative filter) 
that can process one image per second or 3 frames per second. 
 

Algorithm PSNR MAE MCRE NCD TIME 
VMF 25.54 5.38 0.0371 0.0332 0.0153 
α-TMF 24.47 6.54 0.0589 0.0251 0.0206 
BVDF 22.45 7.68 0.0379 0.0329 0.1768 
GVDF 23.56 9.12 0.0362 0.0308 0.1869 

AGVDF 26.97 5.24 0.0308 0.0302 0.2106 
GVDF_DW 26.88 5.95 0.0311 0.0249 0.7205 
MAMNFE 27.01 5.82 0.0390 0.0270 0.3219 

VMMKNN (S) 28.20 3.86 0.0312 0.0140 0.1109 
VMMKNN (A) 28.04 3.91 0.0317 0.0143 0.0898 
VMMKNN (H) 28.14 3.90 0.0315 0.0144 0.0917 
VWMKNN (S) 27.27 4.48 0.0336 0.0234 0.2662 
VWMKNN (A) 26.10 5.10 0.0372 0.0272 0.4599 
VWMKNN (H) 26.05 5.05 0.0369 0.0271 0.2912 

VABSTMKNN (S) 27.75 4.46 0.0336 0.0243 0.0929 
VABSTMKNN (A) 27.56 4.68 0.0349 0.0253 0.2066 
VABSTMKNN (H) 27.49 4.71 0.0350 0.0255 0.1194 

Table 8. Comparative restoration results for 15% impulsive noise for a color frame of “Miss 
America” 

 
Fig. 10. Subjective visual qualities of restored color frame “Miss America”, a) Original test 
frame “Miss America”, b) Input noisy frame with 15% of impulsive noise, c) MAMNFE 
filtered frame, and d) Proposed VMMKNN filtered frame (A). 

The proposed Wavelet Redundancy of Approaches (WRAF), Wavelet Iterative Center 
Weighted Median using Redundancy of Approaches (WICWMRAF), Wavelet Signal 
Dependent Rank-Ordered Mean (WSDROMF), Wavelet Adaptive Center Weighed Median 
(WACWMF), Wavelet Median M-type K-Nearest Neighbor (WMMKNNF), and Wavelet FIR 
Median Hybrid (WFIRMHF) Filters were compared with the Wavelet Iterative Median 
(WIMF) and Wavelet Iterative Center Weighted Median (WICWMF) (Mahbubur Rahman & 
Kamrul Hasan, 2003) filters in terms of PSNR, MAE, MCRE and NCD to demonstrate the 
good quality of color imaging of the proposed filters in both an objective and subjective sense. 

a) c) d) b)
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Table 9 presents the performance results by means of use different filters in the 512x512 image 
“Lena” degraded with 20% of impulsive noise and with 0.2 of variance of speckle noise. From 
these results we observe that the proposed filters provide better impulsive and speckle noise 
suppression, detail preservation, and color retention in comparison with the traditional filters 
in the Wavelet domain. Figure 11 shows the subjective visual quantities of a restored zoom 
part of the color image “Lena” degraded with 0.2 of variance of speckle noise. Figure 12 
presents the visual results in a part of “Mandrill” image produced by the WMMKNNF.  
 

Filters 20% of impulsive noise 0.2 of variance of speckle noise 
 PSNR MAE MCRE NCD PSNR MAE MCRE NCD 

WIMF 40.6734 24.7969 0.0172 0.3294 43.7164 22.2675 0.0138 0.2617 
WICWMF 40.6734 24.7969 0.0172 0.3294 43.7164 22.2675 0.0138 0.2617 

WRAF 44.4936 20.8426 0.0117 0.2718 48.0338 18.2333 0.0093 0.2062 
WICWMRAF 50.6952 15.8213 0.0063 0.1911 53.8602 14.1506 0.0056 0.1489 
WSDROMF 50.6952 15.8213 0.0063 0.1911 53.8602 14.1506 0.0056 0.1489 
WACWMF 50.6952 15.8213 0.0063 0.1911 53.8602 14.1507 0.0056 0.1489 

WMMKNNF 50.6953 15.8211 0.0063 0.1911 53.8603 14.1506 0.0056 0.1489 
WFIRMHF 50.6992 15.8189 0.0063 0.1911 53.8608 14.1509 0.0056 0.1489 

Table 9. Performance results in the image “Lena”. 

 
Fig. 11. Subjective visual quantities of restored zoom part of color image “Lena”, a) Original 
image, b) Input noisy image corrupted by 0.2 of variance of speckle noise in each a channel, 
c) WRAF filtered image; d) WMMKNNF filtered image. 

 
Fig. 12. Subjective visual quantities of restored zoom part of the color image “Mandrill”, a) 
Original image, b) Input noisy image corrupted by 20% impulsive noise in each a channel, c) 
WMMKNNF filtered image. 

a) b)

c) d)

a) b) c) 
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4.3 Noise suppression in 3D gray scale video sequences 
In this section, we propose 3D filtering algorithms to process ultrasound sequences 
contaminated by speckle and impulsive noise. The 3D MMKNN and 3D MML filters have 
been evaluated, and their performance has been compared with different nonlinear 2D 
filters which were adapted to 3D. The filters used as comparative ones were the modified ǂ-
Trimmed Mean (MATM), Ranked-Order (RO), Multistage Median (MSM1 to MSM6), 
Comparison and Selection (CS), MaxMed, Selection Average (SelAve), Selection Median (SelMed), 
and Lower-Upper-Middle (LUM, LUM Sharp, and LUM Smooth) (Astola & Kuosmanen, 1997) 
filters. These filters were computed according with their references and were adapted to 3D 
imaging.  
An ultrasound sequence of 640x480 pixels with 90 frames (3D image of 640x480x90 voxels) 
was degraded with 0.05 and 0.1 of variance of speckle noise added to the natural speckle 
noise of the sequence. The performance results are depicted in Table 10 by use a frame of the 
sequence. From this Table one can see that the 3D MML filters provide the best results in 
comparison to other filters proposed as comparative. Figure 13 exhibits the visual results of 
restored images obtained by the use of different filters according to Table 10. In the Figure 
we observe that the proposed filters provide the better results in speckle noise suppression 
and detail preservation in comparison with other filters.  
 

Speckle noise variance 
0.05 0.1 3D Filters 

PSNR MAE PSNR MAE 
CS 15.435 32.875 13.843 39.778 

LUM Smooth 17.915 25.142 15.440 33.823 
LUM Sharp 15.625 30.927 14.444 36.425 

LUM 15.518 31.427 14.379 36.748 
MaxMed 18.562 24.206 15.919 32.913 
MATM 20.418 15.124 19.095 18.663 
MSM1 20.568 17.624 18.061 23.684 
MSM2 20.484 17.789 18.038 23.725 
MSM3 22.421 14.206 20.261 18.456 
MSM4 21.697 15.401 19.348 20.351 
MSM5 19.554 20.207 16.964 27.444 
MSM6 22.083 14.688 19.744 19.374 
SelAve 21.182 17.647 19.192 22.814 
SelMed 20.836 15.750 19.013 20.094 

RO 21.587 14.520 19.802 18.179 
MMKNN (S) 21.554 15.199 18.949 20.995 
MMKNN (H) 21.572 15.169 19.040 20.798 
MMKNN (A) 21.399 14.614 18.640 20.226 
MMKNN (B) 22.658 13.309 20.075 17.819 
MMKNN (T) 22.499 13.446 19.855 18.125 

MML (T, U,D) 29.876 5.016 28.6175 5.7429 
MML (T, L,D) 28.797 5.646 28.188 6.0194 

Table 10. Performance results of different filters in a frame of ultrasound sequence degraded 
with speckle noise. 
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Fig. 13. Visual results in a frame of ultrasound sequence. a) original frame, b) frame 
degraded by 0.05 of variance of speckle noise, c) restored frame by MSM6 filter, d) restored 
frame by MMKNN (B) filter, e) restored frame by MML filter (T,U,D), f) restored frame by 
MML filter (T,L,D). 

4.4 Optimal values of parameters of proposed filters 
The values of parameters for the RMKNN and MML filters and influence functions were 
found after numerous simulations with different images and video sequences degraded 
with different percentages of impulsive noise and variances of speckle noise: 
a. Gray scale images and video sequences: The optimal parameters of RMKNN and MML 

filters are: a=4, Kmin=5, and Kmax=8; and s=3 and U=15, respectively. The values for 
influence functions are: r=25, ǂ=40, and ǃ=200 for Hampel, r=35 for Andrew, r=15 Tukey, 
and r =20 for Bernoulli. Therefore, the WDMML and WMMKNNF filters use the values 
proposed above. 

b. Color images and video sequences: The values of parameters of proposed VRMKNN 
filters were 0.5<a<12, Kmin=5, and Kmax=8, and the parameters of the influence functions 
were: r≤81 for Andrew, and α=10, β≤90, and r=300 for Hampel. 

The processing time performance of the proposed filters depends on the image to process 
and almost does not vary for different noise levels; these values also depend on the complex 
calculation of the influence functions and parameters of the proposed filter. The processing 
time can change with other values for these parameters, increasing or decreasing the times 
but the PSNR and MAE values change within the range of ±10%, it is due that we fix the 
parameters to realize the real-time implementation of proposed filters.  

a) b) c)

d) e) f)
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5. Conclusions 

We present the RMKNN and MML filters in spatial and wavelet domain for impulsive and 
speckle noise suppression in gray scale and color imaging. Extensive simulation results with 
different gray scale and color images and video sequences have demonstrated that the 
proposed filters consistently outperform other filters by balancing the tradeoff between 
noise suppression, fine detail preservation, color retention, and processing time. 
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