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1. Introduction  

The linkage between caribou and the aboriginal people in the North America has existed for 
thousands of years. Caribou have played a critical role in the economy, culture, and way of 
life of the aboriginal people (Hall, 1989; Madsen, 2001). Currently, there are 60 major 
migratary tundra caribou herds circum-arctic, of which 30 are located in North America, 
including the Porcupine caribou herd in northern Yukon, Canada and northern Alaska, USA 
(Russell et al., 1992; Russell et al., 1993; Russell & McNeil, 2002; Russell et al., 2002; Griffith 
et al., 2002). The Porcupine caribou herd has been at the centre of debate between wildlife 
habitat conservation and industrial development in the Arctic because of the potential oil 
drilling in the Arctic National Wildlife Refuge (ANWR) 1002 area, which happens to largely 
overlap with the calving ground of the Porcupine caribou herd (Griffith et al., 2002; Kaiser, 
2002; National Research Council, 2003; Heuer, 2006).  
One of the objectives of the Canadian International Polar Year (IPY) project entitled 
“Climate Change Impacts on Canadian Arctic Tundra Ecosystems (CiCAT): 
Interdisciplinary and Multi-scale Assessments” was to assess the impact of climate change 
on caribou habitats over Canada’s north, in close collaboration with the CircumArctic 
Ranfiger Monitoring and Assessment network (CARMA) (http://www.rangifer.net 
/carma/). Because of the vastness and remoteness of the arctic landmass, inherent logistic 
difficulty, and high cost of conducting field measurements, an approach that is solely based 
on field inventory is clearly impractical for monitoring and assessing the impact of climate 
on caribou habitats. Satellite remote sensing can monitor land surfaces from space 
repeatedly and consistently over large areas. Therefore, remote sensing provides a powerful 
tool for monitoring and assessing the impact of climate on caribou habitats, when calibrated 
and validated against the field measurements and other independent data.  
In this study, we report the development of baseline maps of aboveground and foliage biomass 
over the Porcupine caribou habitat in northern Yukon and Alaska, using Landsat and JERS-
1/SAR data. Specifically, we will (1) describe aboveground and foliage biomass measurement, 
(2) establish and validate relationships between measurements and remote sensing indices, and 
(3) map aboveground and foliage biomass for the Porcupine caribou habitat. 
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2. Data sources and methods 

2.1 Field measurements of aboveground and foliage biomass 

Field measurements were made in Yukon and North Western Territories (Fig. 1). 
Aboveground biomass was measured at 43 sites in the summer of 2004 along the Dempster 
Highway, which goes through the winter and summer ranges of the Porcupine caribou 
habitat (Fig. 1). Foliage biomass was measured at 10 non-treed sites along the Dempster 
Highway in the summer of 2006, and again in the summer of 2008 at 11 non-treed sites in 
the Ivvavik National Park. The Ivvavik National Park is located at northern tip of the Yukon 
and overlaps with the calving ground and summer range of the Porcupine caribou herd. 
Details of measurement procedure, calculation method, and results are described as follows. 
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Fig. 1. Locations of the Porcupine caribou calving ground, summer range, and winter range, 
as well as that of the aboveground and foliage biomass measurement sites along the 
Dempster Highway transect during the summers of 2004 and 2006, and in the Ivvavik 
National Park during the summer of 2008. 

We selected sites that were representative of local vegetation conditions, relatively 
homogenous, and of size at least 3 × 3 Landsat pixels (i.e., > 90 m × 90 m), to ensure that the 
field measurements can be reliably correlated with Landsat-scale remote sensing indices. In 
the north where the growing season is very short, biophysical parameters (e.g., foliage 
biomass) vary significantly both during the beginning and end of the growing season, but 
are relatively stable and achieve their maximums during the middle of the growing season. 
Therefore, we measured aboveground biomass and foliage biomass during middle of 
growing season (e.g., July 18-27, 2004, July 19-27, 2006, and July 15-26, 2008).  
We used a systematic approach to sample and measure the aboveground biomass: layer by 
layer from top to the ground. If a site was sparsely treed woodland, we first measured tree 
biomass with a variable sampling plot scheme using a prism (Halliwell & Apps, 1997). The 
basic principle of the variable sampling plot scheme is that each tree is selected using a 
circular plot with a radius r that is proportional to its diameter at the breast height (DBH). 
The constant of proportionality is called the plot radius factor (PRF), and thus for tree i we 
can write:  
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 i i i iPRF r / DBH or r PRF DBH    (1) 

with DBH is in centimeters and plot radius is in meters, PRF is in m cm-1. A tree is included 
or “in” if DBHi > ri/PRF, and excluded or “out” otherwise. A difficulty may arise as whether 
to include or exclude a tree if it’s at the edge, namely, DBHi ≈ ri/PRF. If this is the case, the 
distance from the plot centre to the tree is measured. Using the tree's DBH and the 
appropriate PRF, this distance can then be compared to the radius of the plot as calculated 
by equation 1, and the tree place "in" or "out" of the plot after-the-fact. The measurements 
included tree height, diameter at breast height (DBH), and stand density. The heights of 
trees are recorded using a laser height measurement instrument (Impulse Forest Pro, 
Lasertech, Clarkston, MI, USA). Trees for height measurement are selected on basis of the 
point plot scheme. The value of DBH was measured using a tape. The stocking and biomass 
of the trees were then calculated on basis of allometric equations.  
If tree regeneration was present, we measured the biomass of the seedlings using a fixed 
circular plot of radius of 3.99 m. The measurements included counting the number of stems 
per tree species, selecting an average-sized seedling to estimate its ground stem diameter, 
height, and sampling one or two average-sized seedling to measure its fresh and oven-dry 
weight.  
For the understory layers, namely, high shrub, low shrub, herbs/graminoids, moss, and 
lichen, we harvested samples at five 1 m × 1 m plots to measure the total aboveground 
biomass: four at four directions and one random (Fig. 2). All the aboveground biomass 
within the plots were cut and collected into plastic bags and their green biomass weighed. 
Out of the five plots, we selected one representative plot to conduct an intensive sampling. 
For this plot, we measured the average height, visually estimate the ground cover 
percentage, and then cut and weighed the fresh biomass, sequentially, for tall shrub, low 
shrubs, herbs/graminoids, moss, and lichen. The ratio of green to oven-dry biomass was 
measured by bringing a sample of the aboveground biomass from the plot back to 
laboratory. 
If a site had no trees, then we applied the aforementioned understory procedure. Note that 
the plot number and design of a specific site were determined on basis of site conditions: the 
more heterogeneous and sparse the vegetation is at a site, the more plots are needed (Chen 
et al., 2009b; Chen et al., 2010b). The procedure was modified for tall shrubs if the tall shrubs 
(higher than 50 cm) were clustered instead of homogeneous distribution. Our field 
experience indicated that it was often the case for tall shrubs. In this case, we measured the 
biomass of tall shrubs using a fixed circular plot of radius = 3.99 m. The measurements 
included identifying shrub species, counting number of clusters of shrub in the plot, and 
selecting two average-sized clusters of shrub for more extensive sampling. All aboveground 
biomass of the two clusters of shrub were cut and weighed for total green biomass. A 
fraction of the biomass was brought back to measure the ratio of oven-dry to fresh weight. If 
there are more than one tall shrub species, we repeated the measurements for each of them. 
The procedure for low shrub, herbs/graminoids, moss, and lichen remain the same. 
For foliage biomass measurement during the summers of 2006 and 2008, we selected only 
non-treed sites. At each sites, five 1 m × 1 m plots were sampled (Fig. 3). Fig. 3 shows a 
photograph of the field sampling at a coastal plain site in the Ivvavik National Park during 
the summer of 2008. At each plot, all plants were harvested, sorted into dead and live, 
different species, and leaves and stem, and recorded for their fresh weights. A fraction of the 
harvested biomass for all components were brought back to the laboratory, oven-dried, and 
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weighed. Oven-dry foliage biomass of vascular plants were than calculated using the ratio 
of oven-dry to fresh foliage biomass and the corresponding fresh weight records. 
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Fig. 2. Plot design for measuring aboveground and foliage biomass at non-forested sites. 

The tree oven-dry aboveground biomass at a woodland site was calculated using Canada-
wide tree biomass equations by Evert (1985) and the Weibull tree-size distribution function 
within a stand by Chen (2004).  
In order to determine the tree-size distribution for a woodland site, the Parameter Prediction 
Method (PPM) based on basal area was implemented (Chen, 2004). With measured average 
DBH, height, and stand density (trees ha-1) as inputs, the tree-size distribution function gives 
15 tree-size classes for each site, and output mean DBH, height, and number of trees for each 
class. Here, we used trembling aspen functions for hardwood species, jack pine functions for 
all pine species and pine-mixture, black spruce functions for all spruce and fir species, and 
mixed-stand function for mixed softwoods/hardwoods. 
The Canada-wide biomass equations calculate the oven-dry biomass of stem, bark, and 
crown of a single tree for 18 Canadian tree species (Evert, 1985), with a given DBH and 
height.  Using the information of tree-size distribution and the biomass equations, we first 
calculated each biomass component (stem, bark, and crown), added these components to get 
total aboveground biomass, and then multiplied with the number of trees in each tree-size 
distribution class to get the total tree biomass per hectare, Bt, in t ha-1.  
The aboveground oven-dry biomass of clustered high shrub and regenerating trees at a site, 
Bs in t ha-1, was calculated by 

 1 2( )

2 5
s s c

s s

b b N
B R


  (2)  

where (bs1 + bs2)/2 is the mean green biomass of the two clusters of shrub sampled or that of 
regenerating trees (kg per cluster or regenerating tree), Nc is the number of clusters of shrub 
or regenerating trees in the 3.99 m-radius plot, and Rs is the ratio of oven-dry to fresh 
biomass for shrub or the regenerating trees.  
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Fig. 3. Photograph showing biomass sampling at a coastal plain site in the Ivvavik National 
Park, July 25, 2008. Front are 3 northern students from Aklavik, NWT (left to right: 
Alexander Gordon, Jayneta Pascal & Kayla Arey), and at the background Weiroing Chen of 
CCRS was sampling root biomass (photo by Wenjun Chen).  

The aboveground oven-dry biomass of graminoids, herbs and shrubs in the lower layers, Bg 
in t ha-1, was calculated by 

 
1 2 3 4 5( )

10
5

g g g g g
g g

b b b b b
B R

   
  (3)  

where bg1, bg2, bg3, bg4, and bg5 are, respectively, the aboveground green biomass of the 
graminoids/herbs and shrubs mixture for each of the five plots in a site (kg m-2), and Rg is 
the ratio of oven-dry to fresh biomass for the mixture of graminoids/herbs and shrubs.  The 
oven-dry biomass of lichen, Bl in t ha-1, was calculated by 

 1 2 3 4 5 1 2( ) ( )
1000

5 2
l l l l l l l

l l

p p p p p b b
B R

    
  (4)  

where Pl1, Pl2, Pl3, Pl4, and Pl5 are, respectively, the percentage of lich ground cover at the 5 
plots, bl1 and bl2 are, respectively, the fresh lichen biomass of each of the two 10-cm by 10-cm 
samples collected from one of the plots (kg m-2), and Rl is the ratio of oven-dry to fresh 
biomass for lichen. The oven-dry biomass of live moss, Bm in t ha-1, was calculated by 

 1 2 3 4 5 1 2( ) ( )
1000

5 2
m m m m m m m

m m m

p p p p p b b
B R D

    
  (5)  

where Pm1, Pm2, Pm3, Pm4, and Pm5 are, respectively, the percentage of moss ground cover at 
the 5 plots, bm1 and bm2 are, respectively, the aboveground green biomass of each of the two 
1-cm depth, 10 cm by 10 cm square moss samples collected from one of the plots (kg m-2), 
Dm is the depth of alive moss in cm, and Rm is the ratio of oven-dry to green biomass for 
moss. The aboveground biomass for a site, Ba, was thus the summation of all these 
components where proper. 
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The calculation of foliage biomass, Bf in unit g m-2, was similar to that of aboveground 
biomass, except that only the foliage component of vascular plants was included. 

2.2 Remote sensing data sources and processing 

Nearly clear-sky Landsat TM/ETM+ level 1G orthoimagery was downloaded from the 

United Stated Geological Survey (USGS) website (http://earthexplorer.usgs.gov) and from 

the Centre for Topographic Information (CTI) of Natural Resources Canada, available 

through Geogratis (http://geogratis.cgdi.gc.ca/). 23 scenes are needed to cover the entire 

Porcupine caribou habitat. Most of them were acquired within the middle growing season 

(July 10 to August 15) during 1999 – 2003. Only Bands 3 (0.63–0.69 μm), 4 (0.75–0.90 μm), 

and 5 (1.55–1.75 μm) were used in the study, because Bands 1-3 are highly correlated, as are 

Bands 5 and 7. Prior to further analysis, all scenes, if necessary, were re-projected to Lambert 

Conformal Conic (LCC) projection with 95o W, 49o N as the true origin and 49o N and 77o N 

as standard parallels. Surface reflectance was derived by radiometrically normalizing each 

scene to 250 m resolution clear sky MODIS imagery, which was a 10-day composite 

acquired during July 21-31, 2001 with matching bands calibrated to a strip of 

atmospherically corrected Landsat TM/ETM+ images. A Landsat mosaic of surface 

reflectance was then generated with further normalizations for individual scenes if 

substantial discrepancy exists. All radiometric normalization and calibration equations were 

developed using a Scattergram Controlled Regression method (Elvidge et al., 1995; Yuan & 

Elvidge, 1996; Chen et al., 2010a). Furthermore, clouds and forested areas were removed and 

masked, and the mosaic was clipped based on the Porcupine caribou habitat boundary.  

The JERS-1/SAR datasets were extracted from the North America JERS mosaics (acquired in 

the summer of 1998) to cover the Porcupine caribou habitat (Kyle McDonald, JPL, personal 

communication). In addition, data of 1:50000 DEM covering the habitat were also obtained 

for orthorectifying the JERS mosaic. The North America JERS summer mosaics were not 

precisely geo-referenced, because topographic distortions were not removed during the 

mosaic process due to the lack of adequate DEM (Sheng & Alsdorf, 2005). Visual inspection 

showed that the offset between the JERS mosaic and the Landsat images may be 300 m ~ 

5000 m. The positioning error was expected to be much larger in mountainous regions. 

In this study, we employed a SAR image simulation method from DEM data to correct 
topographic distortions (Sheng & Alsdof, 2005). Briefly speaking, this method includes four 
steps: (1) simulating a SAR image in an azimuth-range projection from the DEM according 
to imaging geometry of real SAR image; (2) collecting ground control points that tie the 
uncorrected SAR image to the simulated SAR image; (3) warping the real SAR image to the 
simulated SAR image using a polynomial function fitted from the ground control points; 
and (4) projecting the warped real SAR image back to the DEM map coordinate system. The 
method requires three types of inputs: individual scene of SAR imagery, DEM data, and 
SAR imaging geometry parameters (i.e. sensor altitude H, minimum look angle θ, the orbital 
azimuth angle β). Since the year-day file, which contains the date of specific JERS image’s 
acquisition, was delivered with the JERS mosaics data, we could extract individual path 
image in the JERS mosaic. The path image was used as an input in place of individual scene 
of JERS. In addition, since the imaging geometry information of the individual path in the 
JERS mosaic was unavailable, general JERS imaging geometry parameters were used in the 
SAR simulation method. For the purpose of image matching for ground control point 
selection, a correct geometry was preferred but is not necessary (Sheng and Alsdof, 2005; 
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Linder and Meuser; 1993). In this study, we used H = 568000 meter, θ =35 degree, and β =190 
degree in SAR image simulation. Finally, the Digital Number (DN) values of JERS mosaic 
could be converted to backscatter coefficients σ (in db format) by the equation: 

 1020 log 48.54DN     (6) 

The co-registered and geo-referenced Landsat TM/ETM+ and JERS-1 mosaics were then 
compared with measurements of aboveground and foliage biomass, with their best-fit 
relationships being applied back to the mosaics to produce maps of aboveground and 
foliage biomass over the Porcupine caribou habitat, as outlined in Fig. 4. 
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Fig. 4. Flow chart describing the procedures of using field measurements and remote 
sensing data to produce aboveground and foliage biomass baseline maps. 

3. Results and discussions 

3.1 Measured aboveground and foliage biomass over the Porcupine caribou habitat 

Table 1 summarizes the mean value, standard deviation, and range of aboveground biomass 

measured at sites within and around the Porcupine caribou winter and summer range along 

the Dempster Highway, Yukon, during the summer of 2004. Average values of measured 

aboveground biomass of sparsely treed woodland, low-high shrub lands, and mixed 

graminoids-dwarf shrub-herb lands were, respectively, 57.3, 11.1, and 2.3 t ha-1. Within each 

vegetation type, the ranges of measured aboveground biomass were very large. The 

standard deviations of measured aboveground biomass among sites were often larger than 

their corresponding mean values, especially for low-high shrubs and mixed graminoids-

dwarf shrub-herb, and when all types of vegetation were considered. The measured 

aboveground biomass ranged from 10 to 100 t ha-1 for sparsely treed woodlands, from 1 to 

100 t ha-1 for the low-high shrub sites, from 0.5 to 10 t ha-1 for mixed graminoids-dwarf 

shrub-herb sites. These measurements indicate that there are significant overlaps in the 

ranges of aboveground biomass between sparsely treed woodlands and low-high shrub 

sites, and between low-high shrub sites and mixed graminoids-dwarf shrub-herb sites.  
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Dominant vegetation 
type 

Mean 
(t ha-1) 

Standard 
deviation (t ha-1) 

Range 
(t ha-1) 

Number of 
sites 

Sparse woodland 57.3 34.0 9.1 – 94.5 8 

Low-high shrub 11.1 11.4 2.0 – 47.2 19 

Graminoids-dwarf shrub 2.3 2.2 0.4 – 8.3 16 

All types 16.4 25.6 0.4 – 94.5 43 

Table 1. Mean value, standard deviation, and range of aboveground biomass measured at 
sites within and around the Porcupine caribou winter and summer range along the 
Dempster Highway, Yukon, during the summer of 2004. 

 

 
Dominant vegetation 

type 
Mean 

Standard 
deviation 

Range 
Number 
of sites 

Foliage 
biomass  
(g m-2)  

Low-high shrub 135.4 36.3 95.3 – 198.4 6 

Graminoids-dwarf 
shrub 

65.3 16.3 37.9 – 92.3 9 

Coastal tussock 87.9 22.2 63.1 – 106.1  3 

Rock lichen 11.3 10.2 0.0 – 20.0 3 

All types 80.8 47.2 0.0 – 198.4 21 

Abovegro
und 
biomass 
(t h-1) 

Low-high shrub 7.02 7.58 0.36 – 18.16 6 

Graminoids-dwarf 
shrub 

3.11 2.64 0.32 – 8.55 9 

Coastal tussock 0.77 0.53 0.21 – 1.27 3 

Rock lichen 0.65 0.57 0.0 – 1.06  3 

All types 3.54 4.83 0.0 – 18.16 21 

Table 2. Mean value, standard deviation, and range of foliage biomass measured at sites 

within and around the Porcupine caribou winter and summer ranges along the Dempster 

Highway, Yukon during the summer of 2006, as well as at sites within and around the 

Porcupine caribou calving ground and summer range inside the Ivvavik National Park, 

Yukon during the summer of 2008. Also shown are statistics for the corresponding 

aboveground biomass measurements.  

Similarly, the foliage biomass values measured at sites within a specific dominant 

vegetation type also varied significantly (Table 2). For example, foliage biomass ranges from 

95.3 to 198.4 g m-2 for low-high shrub sites, 37.9–92.3 g m-2 for mixed graminoids-dwarf 

shrub-herb sites, 63.1–106.1 g m-2 for coastal plain tussock sites, and 0.0–20.0 g m-2 for hill-

top rock lichen sites. Consequently, assigning aboveground or foliage biomass value to a site 

according to its vegetation type can result in substantial error (Gould et al., 2003; Walker et 

al., 2003).  

3.2 Relationships between aboveground biomass and remote sensing indices 

In this study, we investigated the applicability of both optical and radar data as well as their 
combinations. To obtain the best regression model for estimating aboveground biomass, 
robust multiple regressions were conducted between field-measured aboveground biomass 
and various remote sensing-derived variables such as TM spectral reflectance, vegetation 
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indices, and JESR-1/SAR backscatter coefficients. We used 3 × 3 pixels (i.e., 90 m by 90 m) 
averaged value in place of single pixel value in order to reduce the effect of erroneous 
spectral features, e.g., features of adjacent pixels may have been assigned to some field plots 
of the data due to errors in image registration and the location of sample plots. The Landsat 
images were re-sampled to 100 m resolution for matching the resolution of the North 
America JERS summer mosaic.  
For the sites along the Dempster Highway, we found that strong correlations exist between 
ln(Ba) and remote sensing signals (Table 3). When all types were mixed, the strongest 
correlation was found against the L-band JERS-1/SAR backscatter, followed by the Landat 
B4/B5 (Fig. 5). The Landsat bands 3 and 5 show strong negative relationships for the sparse 
woodlands and all types mixed, but not for shrub and graminoids lands.  
 

 B3 B4 B5 B4/B5 SR NDVI SWVI JERS 

Sparse 
woodland 

r -0.77 -0.18 -0.78 0.40 0.53 0.21 0.44 0.68 

r2 0.59 0.03 0.61 0.16 0.28 0.04 0.19 0.46 

Low-high- 
Shrub 

r -0.17 0.04 -0.39 0.59 0.47 0.26 0.59 0.42 

r2 0.03 0.00 0.15 0.35 0.22 0.07 0.35 0.18 

Graminoid
s-dwarf 
shrub 

r -0.13 0.22 0.01 0.21 0.26 0.31 0.18 0.64 

r2 0.02 0.05 0.00 0.04 0.07 0.10 0.03 0.41 

All types 
r -0.65 -0.02 -0.68 0.70 0.63 0.53 0.68 0.73 

r2 0.42 0.00 0.46 0.49 0.40 0.28 0.46 0.53 

Table 3. Correlation coefficient (r) and coefficient of determination (r2) between ln(Ba) and 
remote sensing indices for mixed graminoids-dwarf shrub-herb, low-high shrub, sparse 
woodlands, and all types for aboveground biomass measurements along the Dempster 
Highway in 2004. Remote sensing indices include Landsat red band reflectance (B3), near 
infrared band reflectance (B4), shortwave infrared band reflectance (B5), ratio of B4/B5, 
simple ratio (SR = B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + 
B3)), shortwave vegetation index (SWVI = (B4 - B5)/(B4 + B5)), and L-band JERS-1/SAR 
backscatter coefficient (JERS). 
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Many vegetation indices have been developed and applied for estimating aboveground 
biomass (Anderson & Hanson, 1992; Anderson et al., 1993; Mutanga & Skidmore, 2004; Lu 
2005). In Table 3, we examined 4 vegetation indices: ratio of Landsat B4/B5, simple ratio (SR 
= B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + B3)), shortwave 
vegetation index (SWVI = (B4 - B5)/(B4 + B5)). In general, vegetation indices can partially 
reduce the impacts on reflectance caused by environmental conditions and shadows, thus 
improve correlation between AGB and vegetation indices, especially in those sites with 
complex vegetation stand structures (Lu et al., 2004). However as shown in Table 3, not all 
vegetation indices are significantly correlated with aboveground biomass. Consequently, 
various degrees of success had been obtained in estimating aboveground biomass using 
Landsat vegetation indices (Sader et al., 1989; Lee & Nakane, 1996; Nelson et al., 2000; 
Steininger, 2000; Foody et al., 2003; Phua & Saito, 2003; Zheng et al., 2004). For example, 
Nelson et al. (2000) found that aboveground biomass cannot be reliably estimated using 
Landsat data without the inclusion of secondary forest age. Steininger (2000) explored the 
ability of Landsat data for estimating aboveground biomass of tropical secondary forests 
and found that saturation was a problem for advanced successional forests.  
Similarly, different degrees of success had been obtained in previous studies of using 
radar data for estimating aboveground biomass, with longer-wavelength L-band and P-
band SAR data proven to be more valuable (Sader, 1987; Le Toan et al., 1992; Rauste et al., 
1994; Ranson et al., 1997; Luckman et al., 1997; Kurvonen et al., 1999; Kuplich et al., 2000; 
Tsolmon et al., 2002; Sun et al., 2002; Castel et al., 2002; Santos et al., 2002). For example, 
Kuplich et al. (2000) used JERS-1/SAR data for aboveground biomass estimation of 
regenerating forests. Sun et al. (2002) found that multi-polarization L-band SAR data were 
useful for estimating aboveground biomass of forest stands in mountainous areas. Castel 
et al. (2002) identified the significant relationships between the backscatter coefficient of 
JERS-1/SAR data and the stand biomass of a pine plantation. Santos et al. (2002) used 
JERS-1/SAR data to analyse the relationships between backscatter signals and biomass of 
forest and savanna formations. The significant correlation between aboveground biomass 
and JERS-1/SAR backscatter coefficient, as shown in Table 3 and Fig. 4, indicates that 
longer-wavelength L-band SAR data are also valuable in the Arctic. Nevertheless, the 
saturation problem is also common in estimating aboveground biomass using radar data 
(Luckman et al., 1997; Balzter, 2001, Lucas et al., 2004; Kasischke et al., 2004). For example, 
Luckman et al. (1997) found that the longer-wavelength L-band SAR image was more 
suitable to discriminate different levels of forest biomass up to a certain threshold than 
shorter-wavelength C-band SAR data.  
To take advantages of the ability of Landsat vegetation indices and JERS-1/SAR backscatter 
coefficient, we used both data for estimating aboveground biomass. The best fit relationship 
between aboveground biomass and JERS-1/SAR backscatter coefficient σ as well as Landsat 
B4/B5 for all types mixed in the Dempster Highway study area is given by: 

 ln( ) 2.3759(B4/B5)+0.5542 +4.0948aB  , (7) 

with a coefficient of determination r2 = 0.72, and standard estimation error (SEE) = 0.78. 
Because the logarithmic equations could introduce a systematic bias when used for back 
calculating biomass, it has now become fairly widely recognized that a correction factor is 
necessary to counteract this bias (Sprugel, 1983). The correction factor (CF) can be calculated 
by using the formula: 
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2 /2SEECF e  (8) 

For equation (7), the CF = 1.35. The 1:1 comparison of estimated aboveground biomass using 
CF-corrected equation (7) and the measured values for the sites along the Dempster 
Highway is shown in Fig. 6, with the slope = 0.95, r2 = 0.72, and SEE = 13.5 t h-1 over 
measured aboveground biomass range from 0.4 to 94.5 t h-1. These results agreed well with 
the finding of Moghaddam et al. (2002) that the estimation accuracy of forest biomass was 
significantly improved when radar and optical data were used in combination, compared to 
estimates using a single data type alone.  
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Fig. 6. A 1:1 comparison between estimated and measured aboveground biomass values for 
the calibration sites along the Dempster Highway transect measured during the summer of 
2004. For clarity over the low biomass range, the results are shown on the log-log scale. 

3.3 Validation of aboveground biomass relationship with remote sensing indices  

In a previous study (Chen et al., 2009a), we validated equation (7) using aboveground 
biomass measurements at 33 sites around Yellowknife, Northwest Territories, and Lupin 
Gold Mine, Nunavut Territories. The 1:1 comparison of estimated aboveground biomass 
and the measurements for the Yellowknife and Lupin Gold Mine study area indicates that 
the equation holds up very well, with r2 = 0.81, slope =1.17, and SEE = 9.67 t h-1 over 
measured aboveground biomass range from 0.9 to 103.3 t h-1. 
In this study, we further validated the relationship using measurements collected over the 
same study area at later dates. We used aboveground biomass measured at 21 sites along 
the Dempster Highway during the summer of 2006 in the Ivvavik National Park during the 
summer of 2008, where foliage biomass was the main measurement target, to validate the 
above relationship. Fig. 7 shows the validation result, with the slope = 0.91, r2 = 0.90, and 
SEE = 1.5 t h-1 over measured aboveground biomass range from 0 to 18.16 t h-1.  
These validation results suggest that the aboveground biomass can be reliably estimated 
using Landsat B4/B5 and JERS-1/SAR backscatter coefficient.   
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Fig. 7. A 1:1 comparison between estimated and measured aboveground biomass values for 
the validation sites along the Dempster Highway transect measured during the summer of 
2006 and in the Ivvavik National Park during the summer of 2008. For clarity over the low 
biomass range, the results are shown on the log-log scale. 

3.4. Relationships between foliage biomass and remote sensing indices 

As shown in Table 4, the Landsat-based SR can explain 81% variations in measured foliage 
biomass within the Porcupine caribou habitat. The explanation power of other Landsat-
based indices in the descending order is 76% for the ratio of B4/B5, 71% for SWVI, and 67% 
for NDVI. Single band reflectance of Landsat has lower power of explanation.  
 

 B3 B4 B5 SR NDVI B4/B5 SWVI 

r -0.73 0.52 -0.54 0.90 0.82 0.87 -0.84 

r2 0.53 0.27 0.29 0.81 0.67 0.76 0.71 

SEE 31.4 39.1 38.6 20.6 26.4 21.9 25.2 

Table 4. Correlation coefficients (r), coefficient of determination (r2), and standard estimation 
error (SEE, in g m-2) between foliage biomass (Bf) and remote sensing signals for foliage 
biomass measured at the 21 sites along the Dempster Highway in 2006 and in the Ivvavik 
National Park in 2008. Remote sensing indices include Landsat red band reflectance (B3), 
near-infrared band reflectance (B4), shortwave infrared band reflectance (B5), ratio of B4/B5, 
simple ratio (SR = B4/B3), normalized differential vegetation index (NDVI = (B4 - B3)/(B4 + 
B3)), and shortwave vegetation index (SWVI = (B4 - B5)/(B4 + B5)).    

In comparison with results for aboveground biomass shown in Table 3, Landsat-based 
vegetation indices have a much improved power of explanation for foliage biomass (Table 
4). This is in good agreement with the fact that optical sensors mainly capture canopy 
information, thus the optical sensor data are more suitable for estimation of canopy 
parameters such as foliage biomass than aboveground biomass, as demon stared by 
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previous studies (Franklin & Hiernaux, 1991; Hall et al., 1995; Chen & Cihlar 1996; Turner 
et al., 1999; Brown et al., 2000; Chen et al., 2002; Wylie et al., 2002; Phua & Saito, 2003; 
Laidler & Treitz, 2003; Lu, 2004). The best fit relationship between foliage biomass (Bf, g 
m-2) and Landsat-based simple ratio (SR) over the Porcupine caribou habitat is given as 
follows 

  16.62  - 1.1906fB SR , (9) 

with r2 = 0.81, SEE = 20.6 g m-2, F= 81, P = 2.7×10-8, and n = 21 (Fig. 8).   
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Fig. 8. Relationship between Landsat simple ratio and foliage biomass measured at sites 
along the Dempster Highway during the summer of 2006 and in the Ivvavik National Park 
during the summer of 2008. 

Because we had only a relative small sample size of foliage biomass over the Porcupine 
caribou habitat, we didn’t leave a fraction of the foliage biomass measurement points as 
validation. Nevertheless, we did find a similar relationship between Landsat-based simple 
ration and foliage biomass for the Bathurst caribou habitat located in Northwest Territory, 
Nunavut Territory, and northern Saskatchewan (Chen et al., 2011), with r2 = 0.86, SEE = 26.3 
g m-2, F= 158, P = 2.6×10-12, and n = 27.  

3.5 Baseline maps of aboveground and foliage biomass 

Applying equations (7) and (8) to the co-registered and geo-referenced Landsat and JERS-
1/SAR mosaics data over the Porcupine caribou habitat, we produced aboveground 
biomass for the Porcupine caribou habitat. Fig. 9 shows aboveground biomass distribution 
in circa 2000 over the Porcupine caribou habitat.  
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Fig. 9. Aboveground biomass distribution over the Porcupine caribou habitat circa 2000. The 

3-d effect was generated using the DEM data. 

The amount of aboveground biomass was less than 5 t ha-1 for most area of the Porcupine 
caribou calving ground located in northern coastal area in both Alaska and Yukon. Along 
the coastal line and at high mountain ridges, the aboveground biomass further decreased to 
less than 2 t ha-1. For the summer and winter ranges of the Porcupine caribou habitat to the 
south, the values of aboveground biomass generally increased, with a large percentage of 
the areas having aboveground biomass in the range of 5-20 t ha-1, as well as a significant 
fraction of the area of 2-5 t ha-1 aboveground biomass. The areas of aboveground biomass 2-
5 t ha-1 appeared to be dominated by graminoids and herbs, while those of 5-20 t ha-1 
aboveground biomass were mainly shrub land. The Porcupine summer and winter ranges 
also had a small fraction of area that had more than 20 t ha-1 aboveground biomass, likely 
associated with treed woodland. Areas of 0-2 t ha-1 aboveground biomass also occur in the 
summer and winter ranges of the Porcupine caribou habitat, mostly happened at high 
mountain ridges. 
The information on foliage biomass can be more useful to local caribou management boards 
and researchers because it is directly related forage availability (Russell et al., 1993; Russell 
& McNeil, 2002; Russell et al., 2002). Using equation (9), we developed circa 2000 foliage 
biomass distribution over the Porcupine caribou habitat (Fig. 10). 
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Alaska

Yukon

 

Fig. 10. Foliage biomass distribution over the Porcupine caribou habitat cirac 2000. The 3-d 
effect was generated using the DEM data. Areas covered by water, forest, and cloud were 
blocked out.   

Fig. 10 shows the circa 2000 foliage biomass distribution of non-forest land areas in the 
Porcupine caribou habitat. Because of lacking foliage biomass measurements over forested 
land, foliage biomass was not estimated over forest areas in the Porcupine caribou habitat 
and areas covered forests were blocked out in Fig. 10. We also blocked out water and cloud-
cover areas in Fig. 10. As shown in Fig. 10, most of the northern coastal areas in Alaska and 
Yukon, over which the calving ground of the Porcupine caribou habitat is located, had a 
quite high foliage biomass from 50 to > 100 g m-2. This is a contrast to the distribution of the 
aboveground biomass. Over these same coastal areas the aboveground biomass was quite 
low. Both aboveground biomass and foliage biomass were found to be lower at high 
mountain ridges, and coastal beaches. 
The foliage biomass map reveals that on average the amount of seasonal peak foliage 
biomass in the calving ground of the Porcupine caribou herd was similar to that in the 
summer range, and was even higher if only the concentrated calving ground over the 
Northern Alaska and Yukon coastal plain is concerned (Table 5). To the contrast, the 
average seasonal peak foliage biomass in the calving ground of the Bathurst caribou herd 
was much lower than that in the summer range during the same time period (Chen et al., 
2011). This result agree well with the ground survey by Griffith et al. (2001), which 
suggested that on June 14, during 1998-1999, the total available forage was 63 g m-2 for the 
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Bathurst caribou calving ground, in comparison with 460 g m-2 for the Porcupine caribou 
calving ground. Of the 63 g m-2 forage over the Bathurst caribou calving ground, 33 g m-2 
was lichen and moss, 14 g m-2 was stand dead, and only 16 g m-2 was vascular biomass. On 
the contrast for the Porcupine caribou calving ground, 50 g m-2 was lichen and moss, 250 g 
m-2 was stand dead, and 160 g m-2 was vascular biomass. The live biomass over the 
Porcupine calving ground was 10 time that over the Bathurst calving ground. In addition, 
the high value of stand dead over the Porcupine calving ground also suggest the high 
foliage biomass value over previous years. The difference in calving ground foliage biomass 
collaborates well with the fact that cows of the Bathurst herd leave calving ground soon 
after giving birth while those of Porcupine herd stay for a much longer period (Griffith et 
al., 2001).  
 

 Porcupine Bathurst Data sources 

Measured foliage biomass, 
calving ground (g m-2) 

63 - 106 17 - 94
This study, Chen et al. 

(2011) 

Area-averaged foliage biomass, 
calving ground (g m-2) 

78 24
This study, Chen et al. 

(2011) 

Measured foliage biomass, 
summer range (g m-2) 

14 – 198 17 - 267
This study, Chen et al. 

(2011) 

Area-averaged foliage biomass, 
summer range (g m-2) 

69 43
This study, Chen et al. 

(2011) 

Milk production (l d-1) 2.02 1.09 – 1.79 Griffith et al. (2001) 

Calve growth rate (g d-2) 493 150 - 407 Griffith et al. (2001) 

Cow body weight range (kg) 83 - 96 66 - 78 Griffith et al. (2001) 

Table 5. Comparison of measured and area-averaged foliage biomass values between 

Porcupine caribou habitat and Bathurst caribou habitat. The area-averaged values were 

calculated from the circa 2000 baseline foliage biomass maps. Field measurement of foliage 

biomass over the Bathurst caribou habitat was conducted during the summer of 2005 (Chen 

et al., 2011). Also included in the comparison are cow milk production, calve growth rate, 

and cow body weight. 

The difference in calving ground forage availability, in turn, results in difference in 

caribou biological measures (Table 5). For example, the body weights of Porcupine cows 

are about 20% higher than that of Bathurst herd (Griffith et al., 2001). The Bathurst cow 

milk production was 1.09 – 1.79 liter per day, against 2.02 liter per day by an average 

Porcupine caribou cow, with the corresponding calve growth rate being 150 -407 gram 

per day for the Bathurst herd against 493 gram per day for that of the Porcupine herd 

(Table 5).   

4. Conclusions 

Aboveground biomass was measured at 43 sites in the summer of 2004 along the Dempster 
Highway, which goes through the winter and summer ranges of the Porcupine caribou 
habitat. The measured aboveground biomass ranged 10-100 t ha-1 for sparsely forested 
woodlands, 1-100 t ha-1 for the low-high shrub sites, and 0.5-10 t ha-1 for mixed graminoids-
dwarf shrub-herb sites. 
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Foliage biomass was measured at 10 non-forested sites along the Dempster Highway in the 
summer of 2006, and again in the summer of 2008 at 11 non-forested sites in the Ivvavik 
National Park located at northern tip of Yukon, which overlaps with the calving ground and 
summer range of the Porcupine caribou herd. The measured foliage biomass ranged 0.95-2 t 
ha-1 for low-high shrub sites, 0.38-0.92 t ha-1 for mixed graminoids-dwarf shrub-herb sites, 
0.63-1.06 t ha-1 for coastal tussock sites, and < 0.2 t ha-1 for hill-top rock lichen sites.  
When all data points were pooled together, the best relationship between aboveground 
biomass and remote sensing data was found to be with the combination of JERS-1 
backscatter and Landsat B4/B5, with r2 = 0.72. Validation using aboveground biomass 
measurements at foliage biomass measurement sites gives similar result, with the slope = 
0.91, r2 = 0.90, and SEE = 1.5 t h-1 over measured aboveground biomass range from 0 to 18.16 
t h-1. Similar validation results were obtained using aboveground biomass measurements at 
33 sites around Yellowknife, Northwest Territories, and Lupin Gold Mine, Nunavut 
Territories in a previous study (Chen et al., 2009a), with r2 = 0.81, slope =1.17, and SEE = 9.67 
t h-1 over measured aboveground biomass range from 0.9 to 103.3 t h-1.  
For the foliage biomass, the Landsat-based simple ration gives the best fit, with r2 = 0.81, 
SEE = 20.6 g m-2, F= 81, P = 2.7×10-8, and n = 21.  
Appling these relationships to the mosaic of Landsat and JERS-1 images covering the entire 
Porcupine caribou habitat, we produced baseline maps of aboveground biomass and foliage 
biomass for the Porcupine caribou habitat. The foliage biomass map reveals that on average 
the amount of seasonal peak foliage biomass in the calving ground of the Porcupine caribou 
herd was similar to that in the summer range, and was even higher if only the concentrated 
calving ground over the Northern Alaska and Yukon coastal plain is concerned. To the 
contrast, the average seasonal peak foliage biomass in the calving ground of the Bathurst 
caribou herd was much lower than that in the summer range during the same time period. 
The difference in calving ground foliage biomass collaborates well with the fact that cows of 
the Bathurst herd leave calving ground soon after giving birth while those of Porcupine 
herd stay for a much longer period, which in turn partially explain why the Porcupine 
caribou calves can have several times higher growth rate and the body weights of Porcupine 
cows are about 20% higher than that of Bathurst herd.  
It should be emphasized, however, that assessment of the impacts of climate change on the 
Porcupine caribou habitat requires integration of various information sources from remote 
sensing products, climate records, and other relevant tempo-spatial data. Furthermore, there 
are many other factors besides the habitat, such as harvest, predators, diseases/parasites, 
industrial development, extreme weather events, climate change, and pollution, may 
influence the abundance of a caribou herd. Therefore, this work is just one of the first steps 
towards informed and proper decision-making that balances the needs of caribou habitat 
protection and industrial development under a global change environment.     
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