Engineering » Electrical and Electronic Engineering » "Frontiers in Guided Wave Optics and Optoelectronics", book edited by Bishnu Pal, ISBN 978-953-7619-82-4, Published: February 1, 2010 under CC BY-NC-SA 3.0 license

Chapter 5

Physical Nature of “Slow Light” in Stimulated Brillouin Scattering

By Valeri I. Kovalev, Robert G. Harrison and Nadezhda E. Kotova
DOI: 10.5772/39557

  1. G. P. Agrawal, 2006 Nonlinear Fiber Optics, Academic Press, Boston.

  2. S. A. Akhmanov, K. N. Drabovich, A. P. Sukhorukov, A. S. Chirkin, 1971 Stimulated Raman scattering in a field of ultrashort light pulses, Sov. Phys. JETP, 32 266-273.

  3. S. A. Akhmanov, Yu. E. Dyakov, A. S. Chirkin, 1988 Introduction to Statistical Radiophysics and Optics, Springer, Berlin.

  4. Y. Azuma, N. Shibata, T. Horiguchi, M. Tateda, 1988 Wavelength dependence of Brillouin-gain spectra for single-mode fibres, Electronics Letters, 24 250-252.

  5. N. G. Basov, R. V. Ambartsumian, V. S. Zuev, P. G. Kryukov, V. S. Letokhov, 1966 Nonlinear amplification of a light pulse. Sov. Phys. JETP, 23 16-24.

  6. R. W. Boyd, D. J. Gauthier, 2002 “Slow” and “fast” light, Progress in Optics, 43 497-530.

  7. L. Brillouin, 1960 Wave Propagation and Group Velocity, Academic Press, New York.

  8. I. N. Bronshtein, K. A. Semendyayev, 1973 A guide book to mathematics. Verlag Harri Deutsch, Zurich.

  9. R. L. Carman, F. Shimizu, C. S. Wang, N. Bloembergen, 1970 Theory of Stokes pulse shapes in transient Raman scattering, Phys. Rev. A, 2 60-72.

  10. A. Cheng, M. P. Fok, C. Shu, 2008 Wavelength-transparent, stimulated-Brillouin-scattering slow light using cross-gain-modulation-based wavelength converter and Brillouin fiber laser, Optics Letters, 33 2596-2598.

  11. S. Chin, M. G. Herraez, L. Thevenaz, 2006 Zero-gain slow and fast light propagation in an optical fiber, Optics Express, 14 10684-10692.

  12. D. J. Gauthier, 2005 Slow light brings faster communications, Physics World, 18 30-32.

  13. L. V. Hau, S. E. Harris, Z. Dutton, C. H. Behroozi, 1999 Light speed reduction to 17 meters per second in an ultracold atomic gas, Nature, 397 594-596.

  14. D. Heiman, D. S. Hamilton, R. W. Hellwarth, 1979 Brillouin scattering measurements in optical glasses, Phys. Rev. 19 6583-6592.

  15. M. G. Herraez, K. Y. Song, L. Thevenaz, 2006 Arbitrary-bandwidth Brillouin slow light in optical fibers, Opt. Express, 14 1395-1400.

  16. V. P. Kalosha, L. Cheng, X. Bao, 2006 Slow and fast light via SBS in optical fibers for short pulses and broadband pump, Optics Express, 14 12693-12703.

  17. J. C. Knight, J. Arriaga, T. A. Birks, A. Ortigosa-Blanch, W. J. Wadsworth, P. Russel, St, 2000 Anomalous dispersion in photonic crystal fibre, IEEE Photonics Technology Letters, 12 807-809.

  18. G. A. Korn, T. M. Korn, 1967 Manual of mathematics, McGraw-Hill, New York.

  19. V. I. Kovalev, R. G. Harrison, 2000 Observation of inhomogeneous spectral broadening of stimulated Brillouin scattering in an optical fiber, Phys. Rev. Lett. 85 1879-1882.

  20. V. I. Kovalev, R. G. Harrison, 2002 Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber, Optics Letters, 27 2022-2024.

  21. V. I. Kovalev, R. G. Harrison, 2005 Temporally stable continuous-wave phase conjugation by stimulated Brillouin scattering in optical fiber with cavity feedback, Optics Letters, 30 1375-1377.

  22. V. I. Kovalev, R. G. Harrison, 2007 Threshold for stimulated Brillouin scattering in optical fiber, Optics Express, 15 17625-17630.

  23. V. I. Kovalev, R. G. Harrison, J. C. Knight, N. E. Kotova, 2008 Waveguide induced spectral bandwidth enhancement of slow light group index caused by stimulated Brillouin scattering in optical fiber,” Laser and Particle Beams, 26 319-322.

  24. V. I. Kovalev, N. E. Kotova, R. G. Harrison, 2009 Effect of acoustic wave inertia and its implication to slow light via stimulated Brillouin scattering in an extended medium, Optics Express, 17 2826-2833.

  25. N. Kroll, 1965 Excitation of hypersonic vibrations by means of photoelastic coupling of high-intensity light waves to elastic waves, J. Appl. Phys. 36 34-43.

  26. S. Le Floch, P. Cambon, 2003 Study of Brillouin gain spectrum in standard single-mode fiber at low temperatures (1.4-370 K) and high hydrostatic pressures (1-250 bars), Optics Communications, 219 395-410.

  27. Z. Lu, Y. Dong, Q. Li, 2007 Slow light in multi-line Brillouin gain spectrum, Optics Express, 15 1871-1877.

  28. A. Minardo, R. Bernini, L. Zeni, 2006 Low distortion Brillouin slow light in optical fibers using AM modulation, Optics Express, 14 5866-5876.

  29. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, A. L. Gaeta, 2005 Tunable all-optical delays via Brillouin slow light in an optical fiber, Phys. Rev. Lett. 94 153902.

  30. R. Pant, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, 2008 Optimal pump profile designs for broadband SBS-based slow light systems, Optics Express, 16 2764-2777.

  31. D. A. Pinnow, 1970 Guide lines for the selection of acoustooptic materials, IEEE J. Quantum Electron. QE-6 , 223-238.

  32. D. Pohl, W. Kaiser, 1970 Time-resolved investigations of stimulated Brillouin scattering in transparent and absorbing media: Determination of phonon lifetimes, Phys. Rev. B, 1 31-43.

  33. L. Ren, Y. Tomita, 2008 Reducing group-velocity-dispersion-dependent broadening of stimulated Brillouin scattering slow light in an optical fiber by use of a single pump laser, J. Opt. Soc. Am. B, 25 741-746.

  34. T. Sakamoto, T. Yamamoto, K. Shiraki, T. Kurashima, 2008 Low distortion slow light in flat Brillouin gain spectrum by using optical frequency comb, Optics Express, 16 8026-8032.

  35. T. Schneider, M. Junker, K.U. Lauterbach, 2006 Potential ultra wide slow-light bandwidth enhancement, Optics Express, 14 11082-11087.

  36. T. Schneider, R. Henker, K.U. Lauterbach, M. Junker, 2008 Distortion reduction in Slow Light systems based on stimulated Brillouin scattering, Optics Express, 16 8280-8285.

  37. Z. Shi, R. Pant, Z. Zhu, M. D. Stenner, M. A. Neifeld, D. J. Gauthier, R. W. Boyd, 2007 Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity, Optics Letters, 32 1986-1988.

  38. N. Shibata, R. G. Waarts, R. P. Braun, 1987 Brillouin gain spectra for single-mode fibers having pure-silica GeO2-doped, and 2O5 cores, Optics Letters, 12 269-271.

  39. N. Shibata, K. Okamoto, Y. Azuma, 1989 Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single-mode fibers, JOSA B, 6 1167-1174.

  40. K. Shiraki, M. Ohashi, M. Tateda, 1995 Suppression of stimulated Brillouin scattering in a fiber by changing the core radius, Electronics Letters, 31 668-669.

  41. E. Shumakher, N. Orbach, A. Nevet, D. Dahan, G. Eisenstein, 2006 On the balance between delay, bandwidth and signal distortion in slow light systems based on stimulated Brillouin scattering in optical fibers, Optics Express, 14 5877-5884.

  42. K. Y. Song, M. G. Herraez, L. Thevenaz, 2005 Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers, Optics Express, 13 9758-9765.

  43. K. Y. Song, K. Hotate, 2007 25 GHz bandwidth Brillouin slow light in optical fibers, Optics Letters, 32 217-219.

  44. M. D. Stenner, M. A. Neifeld, Z. Zu, A. M. C. Dawes, D. J. Gauthier, 2005 Distortion management in slow-light pulse delay, Opt. Express, 13 9995-10002.

  45. L. Thevenaz, 2008 Slow and fast light in optical fibres, Nature Photonics, 2 474-481.

  46. R. W. Tkach, A. R. Chraplyvy, R. M. Derosier, 1986 Spontaneous Brillouin scattering for single-mode optical-fibre characterisation, Electronics Letters, 22 1011-1013.

  47. T.O. Tsun, A. Wada, T. Sakai, R. Yamauchi, 1992 Novel method using wight spectral probe signals to measure Brillouin gain spectra of pure silica core fibres, Electronics Letters, 28 247-249.

  48. S. Wang, L. Ren, Y. Liu, Y. Tomita, 2008 Zero-broadening SBS slow light propagation in an optical fiber using two broadband pump beams, Optics Express, 16 8067-8076.

  49. L. Yi, L. Zhan, W. Hu, Y. Xia, 2007 Delay of broadband signals using slow light in stimulated Brillouin scattering with phase-modulated pump, IEEE Photon. Technol. Letters, 19 619-621.

  50. N. Yoshizawa, T. Horiguchi, T. Kurashima, 1991 Proposal for stimulated Brillouin scattering suppression by fibre cabling, Electronics Letters,27 1100-1101.

  51. N. Yoshizawa, T. Imai, 1993 Stimulated Brillouin scattering suppression by means of applying strain distribution to fiber with cabling, Journal of Lightwave Technology, 11 1518-1522.

  52. A. Zadok, A. Eyal, M. Tur, 2006 Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp, Optics Express, 14 8498-8505.

  53. B. Ya Zeldovich, 1972 Time of establishment of stationary regime of stimulated light scattering, JETP Lett. 15 158-159.

  54. B. Ya Zeldovich, N. F. Pilipetskii, V. V. Shkunov, 1985 Principles of phase conjugation, Springer Verlag, Berlin.

  55. B. Zhang, L. Yan, I. Fazal, L. Zhang, A. E. Willner, Z. Zhu, D. J. Gauthier, 2007-1 Slow light on Gbit/s differential-shift-keying signals, Optics Express, 15 1878-1883.

  56. B. Zhang, L. Zhang, L.S. Yan, I. Fazal, J.Y. Yang, A. E. Willner, 2007-2 Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line, Optics Express, 15 8317-8322.

  57. Z. Zhu, D. J. Gauthier, Y. Okawachi, J. E. Sharping, A. L. Gaeta, R. W. Boyd, A. E. Willner, 2005 Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber, J. Opt. Soc. Am. B, 22 2378-2384.

  58. Z. Zhu, D. J. Gauthier, 2006 Nearly transparent SBS slow light in an optical fiber, Optics Express, 14 7238-7245.

  59. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, A. E. Willner, 2007 Broadband SBS slow light in an optical fiber, J. Lightwave Technol. 25 201-206.