Environmental Sciences » "Air Quality - New Perspective", book edited by Gustavo Lopez Badilla, Benjamin Valdez and Michael Schorr, ISBN 978-953-51-0674-6, Published: July 26, 2012 under CC BY 3.0 license

Chapter 2

Air Quality in Portal Areas: An Index for VOCs Pollution Assessment

By Davide Astiaso Garcia, Fabrizio Cumo and Franco Gugliermetti
DOI: 10.5772/45768

Article top

Overview

Geographic location of the harbours of Anzio, Formia, Terracina and Ventotene
Figure 1. Geographic location of the harbours of Anzio, Formia, Terracina and Ventotene
Two examples of VOCs monitoring in portal areas using radial diffusive samplers
Figure 2. Two examples of VOCs monitoring in portal areas using radial diffusive samplers
VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Anzio in 2010
Figure 3. VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Anzio in 2010
VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Formia in 2010
Figure 4. VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Formia in 2010
VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Terracina in 2010
Figure 5. VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Terracina in 2010
VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Ventotene in 2010
Figure 6. VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Ventotene in 2010
Air quality matrix for the evaluation of the AQIVOC values in Anzio harbour
Figure 7. Air quality matrix for the evaluation of the AQIVOC values in Anzio harbour
Air quality matrix for the evaluation of the AQIVOC values in Formia harbour
Figure 8. Air quality matrix for the evaluation of the AQIVOC values in Formia harbour
Air quality matrix for the evaluation of the AQIVOC values in Terracina harbour
Figure 9. Air quality matrix for the evaluation of the AQIVOC values in Terracina harbour
Air quality matrix for the evaluation of the AQIVOC values in Ventotene harbour
Figure 10. Air quality matrix for the evaluation of the AQIVOC values in Ventotene harbour
Boxplot statistical methods: 1 outliers (star) and 3 extreme values detection trough SPSS software
Figure 11. Boxplot statistical methods: 1 outliers (star) and 3 extreme values detection trough SPSS software
IQAvoc values of the harbour of Anzio in each season and intended use area
Figure 12. IQAvoc values of the harbour of Anzio in each season and intended use area
IQAvoc values of the harbour of Formia in each season and intended use area
Figure 13. IQAvoc values of the harbour of Formia in each season and intended use area
IQAvoc values of the harbour of Terracina in each season and intended use area
Figure 14. IQAvoc values of the harbour of Terracina in each season and intended use area
IQAvoc values of the harbour of Ventotene in each season and intended use area
Figure 15. IQAvoc values of the harbour of Ventotene in each season and intended use area

Air Quality in Portal Areas: An Index for VOCs Pollution Assessment

Davide Astiaso Garcia1, Franco Gugliermetti1 and Fabrizio Cumo2

1. Introduction

Air quality in portal areas is usually compromised by local emissions related to many different typologies of commercial, industrial and touristic activities.

Therefore, in order to reduce the consequences on the environment and human health due to exhausted gas released near the water surface and the ground, the air quality of portal areas should be monitored in all the different subareas of a harbour, by dividing it according with the different intended use areas.

Thus, it will be possible to pinpoint the most critical zones of each considered port and consequentially to plan specific actions for improving air quality in those areas.

In particular, this chapter deals with the emissions of VOCs (Volatile Organic Compounds) which play a key role in the short term chemical composition of the troposphere, as well as in climate changes (Murrells & Derwent, 2007).

Are classified as VOCs, in fact, both hydrocarbons containing carbon and hydrogen as the only elements (alkenes and aromatic compounds) and compounds containing also oxygen, chlorine or other elements, such as aldehydes, ethers, alcohols, esters, chlorofluorocarbons (CFCs) and hydrochlorofluorocarbons (HCFCs). According with the Italian regulation (article 268 of the 152/2006 Legislative Decree) VOCs are those organic substances which have at 293.15 K (20°C) a vapour pressure greater then or equal to 0.01 kPa.

The contents of this chapter have been developed considering the Italian and European regulations, which applications will improve the environmental quality in portal areas.

Among these, the Marine Environmental Protection Committee (MEPC) of the International Maritime Organization (IMO) has developed a protocol of an International Convention for the Prevention of Pollution from Shipping (IMO/MARPOL 73/78) establishing a monitoring program for reducing emissions (IMO, 2008).

In the light of these considerations, the main goals of our chapter are:

  • To elaborate an air quality index weighed on the atmospheric concentrations of all VOCs, in order to obtain a single number that expresses the overall VOCs pollution of an area.

  • To validate this index through its application in some case studies areas

  • To pinpoint the most critical areas of the analysed harbours in order to select BAT (Best Available Technologies) and best practices for mitigating VOCs concentrations and improving local air quality.

2. AQIvoc index elaboration

In order to elaborate an Air Quality Index for VOCs, called AQIvoc, weighed on the atmospheric concentrations of all VOCs as well as on dangerousness and impact of each substance in atmosphere, we assigned to each VOC an environmental impact coefficient (α) interrelated with its emission limit value according with the Italian regulations

αi=VmaxVi
(1)

Where:

αi= environmental impact coefficient for the i-th VOC

Vmax = highest emission limit value among all VOCs

Vi = emission limit value for the i-th VOC

The values of the environmental impact coefficient were assigned in proportion to the emission limit value specified for each ith class, giving a coefficient of greater environmental impact where the regulatory limit value of emission in atmosphere is lower.

In particular, considering the Italian regulation, the Annex III of the fifth part of the 152/2006 Legislative Decree shows a classification of volatile organic compounds divided into five classes according to their impact on the environment; consequentially the same Decree assigns to each of the five classes a maximum value of emission in atmosphere (Table 1).

Pollutants classification (152/2006 Legislative Decree)Emission limit in atmosphere (152/2006 Legislative Decree)environmental impact coefficient α
Class I5 mg/Nm3120
Class II20 mg/Nm330
Class III150 mg/Nm34
Class IV300 mg/Nm32
Class V600 mg/Nm31

Table 1.

Environmental impact coefficient for VOCs related to their normative classification and limit values for emissions

Briefly, the equation for the AQIvoc indices evaluation is the following:

AQivoc=1001/i=1i=18αivi(1/i=1i=18αivi)max
(2)

Where:

AQIvoc = Air quality index related to VOCs concentrations

αi= environmental impact coefficient for the i-th VOC

vi =atmospheric concentration of the i-th VOC detected in the analysed intended use area

(1/i=1i=18αivi)max= highest value of 1/i=1i=18αivi (related to the intended use portal area with lower concentrations of VOCs pollution in the atmosphere)

Consequentially, these values, standardized in a range from zero to hundred, have a comparative nature, with the value 100 assigned to the lowest VOCs concentration detected (in a certain port, in a certain detected area and in a certain season).

3. Case studies: The harbours of Anzio, Formia, Terracina and Ventotene

In order to validate the above mentioned methodology four ports of the Lazio region have been selected as case studies (Fig. 1)

media/image7.jpeg

Figure 1.

Geographic location of the harbours of Anzio, Formia, Terracina and Ventotene

In each port, divided into subareas according with its different intended use zones, was carried out an annual field data gathering, detecting VOC concentration in each season.

Lastly, an air quality matrix with VOC concentrations and AQIVOC values (for each intended use area in each season) has been elaborated for each analysed port.

4. Data gathering methods

In each of these four ports were monitored the concentrations in atmosphere of the following 18 VOCs: Dichloromethane; 2-Methylpentane; Hexane; Methylcyclopentane; Chloroform; 2-Methylhexane; Cyclohexane; Benzene; Heptane; Trichloroethylene; Methylcyclohexane; Toluene; Tetrachloroethylene; Ethylbenzene; m- p- xylene; o- xylene; 1,2,4-Trimethylbenzene; 1,2-Dichlorobenzene.

The concentrations of these substances were sampled seasonally in each intended use area of the four ports, leaving many radial diffusive samplers called “Radiello ®” (Bruno et al., 2008) for a period ranging between 7 and 10 days per season (Fig. 2)

media/image8.jpeg

Figure 2.

Two examples of VOCs monitoring in portal areas using radial diffusive samplers

4. Results

All the obtained VOCs concentrations have been compared spatially and seasonally in order to pinpoint portal areas and seasons where VOC pollution was higher.

4.1. VOCs concentrations results in the four case study harbours

The following graphics summarize the results obtained in each port, considering the seasons and the intended uses zones.

media/image9.jpeg

Figure 3.

VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Anzio in 2010

media/image10.jpeg

Figure 4.

VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Formia in 2010

media/image11.jpeg

Figure 5.

VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Terracina in 2010

media/image12.jpeg

Figure 6.

VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbour of Ventotene in 2010

The sums of all the 18 VOCs concentrations recorded during each data gathering were compared, in order to rank in each port the intended use areas and the seasons according with their VOCs pollution (Tables 2 and 3). In order to have a reference value to define the "minimum" VOCs pollution of each port, a Radiello was placed in the most area distant from every sources of pollutant emissions (end of the breakwater) during the season with lower portal activity (winter). Unfortunately, it was no possible to obtain this value in the harbour of Formia because the Radiello in the breakwater has not been found at the end of the ten sampling days.

Anzio HarbourFormia Harbour
Season and intended use areaTotal VOCs concentrations μ g/m3Season and intended use areaTotal VOCs concentrations μ g/m3
Summer - Pleasure Boats21,18Summer - Fishing boats32,21
Summer - Fishing Boats20Autumn - Ferry boats27,45
Summer - Ferry boats15,6Summer - Pleasure boats26,12
Autumn - Small Fishing Boats15,41Summer - Ferry boats17,67
Spring - Fishing Boats13,85Autumn - Pleasure boats15,62
Autumn - Fishing Boats12,12Spring - Ferry boats13,18
Autumn - Ferry boats11,88Spring - Fishing boats12,32
Summer - Small Fishing Boats11,34Spring - Pleasure boats12,23
Spring - Small Fishing Boats10,32Spring - Hydrofoils11,52
Spring - Pleasure Boats8,37 Autumn - Merchant ships11,25
Winter - Small Fishing Boats7,74Autumn - Fishing boats11,13
Winter - Ferry boats6,44Winter - Fishing boats5,3
Winter - Fishing Boats6,04Winter - Pleasure boats5,23
Winter - Breakwater5,41Winter - Ferry boats5,04

Table 2.

Total VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbours of Anzio and Formia

Terracina HarbourVentotene Harbour
Season and intended use areaTotal VOCs concentrations μ g/m3Season and intended use areaTotal VOCs Concentration μ g/m3
Autumn – Pleasure boats – Inner Dock15,6Autumn – Fishing boats – Roman port86,93
Autumn – Fishing boats – Canal14,29Spring – Fishing boats – Roman port83,06
Autumn – Small fishing boats – East Dock12,76Autumn – Filling station19,02
Summer – Pleasure boats – East Dock12,64Spring – Ferry boats16,65
Summer – Pleasure boats – Inner Dock11,72Summer – Ferry boats16,24
Autumn – Ferry boats10,89Summer – Pleasure boats – Roman port15,49
Summer – Fishing boats – Canal10,65Autumn – Hydrofoils12,65
Summer – Ferry boats9,02Autumn – Ferry boats12,63
Spring – Small fishing boats – East Dock6,28Spring – Filling station8,52
Spring – Ferry boats6,28Winter – Fishing boats – Roman port3,89
Winter – Fishing boats – Canal6,23Winter – Pleasure boats – Roman port3,1
Winter – Pleasure boats – Inner Dock4,78Winter – Ferry boats2,66
Winter – Small fishing boats – East Dock3,63Winter – Breakwater – Roman port1,84
Winter – Breakwater2,88

Table 3.

Total VOCs concentrations in atmosphere in the different seasons and intended use areas of the harbours of Terracina and Ventotene

4.2. AQIvoc indices in the four case study harbours

The AQIvoc index equation has been used for the elaboration of four air quality matrices that provide an overview of the air quality level within each one of the four portal areas. This approach allows to highlight those portal activities that have a major impact on air quality, and will be preparatory for the choose of which BAT or best practices is better to use for the mitigation of air pollution in each particular harbour.

In order to facilitate the reading of the comparison of the results, the AQIvoc values have been subdivided into three categories: low VOCs pollution, values under the twenty-fifth percentile (green boxes); average VOCs pollution, values between the twenty-fifth and the seventy-fifthpercentile (yellow boxes) and high VOCs pollution, values over the seventy-fifth percentile (red boxes).

media/image13.jpeg

Figure 7.

Air quality matrix for the evaluation of the AQIVOC values in Anzio harbour

media/image14.jpeg

Figure 8.

Air quality matrix for the evaluation of the AQIVOC values in Formia harbour

media/image15.jpeg

Figure 9.

Air quality matrix for the evaluation of the AQIVOC values in Terracina harbour

media/image16.jpeg

Figure 10.

Air quality matrix for the evaluation of the AQIVOC values in Ventotene harbour

Before that, the statistical distribution of the data has been considered, highlighting unusual observations (outliers and extreme values) by means of boxplot analysis.

In particular, the box-plot method analyzes the distribution of data considering the median, the interval between interquartiles, the outliers values and the extreme values of individual variables. The length of the box was considered as the range of values between interquartiles, or rather between the twenty-fifth and seventy-fifth percentile. Consequently, the outliers values are those that are at a distance between 1.5 and 3 boxes from the top or the bottom edge of the box, between the twenty-fifth and seventy-fifth percentile; at the same way, the extreme values are distant more than 3 boxes from the top or bottom edge of the box. The purpose of the method is therefore to identify these values in order to get a distribution composed by values statistically attributable to the same population.

The box-plot application proceeds step by step in order to be able to select all the extreme and outliers values up to a statistically homogeneous distribution of the population.

In this way, the 4 unusual values have been pinpointed and removed assigning to them the maximum IQAcov value of one hundred (Figure 11).

media/image17_w.jpg

Figure 11.

Boxplot statistical methods: 1 outliers (star) and 3 extreme values detection trough SPSS software

It was therefore possible to elaborate the 100 standardization of the IQAcov value, considering a statistically homogeneous distribution (Table 4).

ValidMissingTotal
NPercentNPercentNPercent
VAR000015192,7%47,3%55100,0%

Table 4.

Statistical data analysis of the 55 IQAvoc indices of the four case study ports

Moreover, the results have been registered in a GIS (Geographic Information System) database that contains a comparative spatial analysis of IQAvoc values in order to produce thematic maps able to pinpoint areas where the VOCs pollution was higher (some examples of these maps will be reported in the following maps).

media/image18.jpeg

Figure 12.

IQAvoc values of the harbour of Anzio in each season and intended use area

media/image19.jpeg

Figure 13.

IQAvoc values of the harbour of Formia in each season and intended use area

media/image20.jpeg

Figure 14.

IQAvoc values of the harbour of Terracina in each season and intended use area

media/image21.jpeg

Figure 15.

IQAvoc values of the harbour of Ventotene in each season and intended use area

5. Best practices for air quality improvement in portal areas

Aim of this paragraph is to illustrate some BAT (Best Available Technologies) and best practices for mitigating VOCs concentrations and improving local air quality in those portal areas characterized by high concentrations of pollutants.

The obtained results show that the main sources of pollutant emissions in the four analyzed harbours are the Internal Combustion Engines (ICE) of Ro/Pax ferries and hydrofoils, pleasure boats, fishing boats as well as cars and trucks circulating in the ports.

Excluding fishing boats, these sources of emission are all highly dependent on tourism activities which involve an increase of vehicular traffic in the port areas, an enhanced number of daily trips of ferries and hydrofoils and, last but not least, a heavy pleasure boats traffic.

Nowadays, the best practices and technologies for mitigating air pollution in portal areas are:

  • SSE (Shore-Side Electricity) enables ships at port to use electricity from a local power grid through a substation at the port to power loading and unloading activities, electronic systems, fuel systems, discontinuing the use of their auxiliary engines. The emission reduction efficiency of this solution is about 94% for VOCs (De Jonge et al., 2005).

  • DWI (Direct Water Injection) is a technology which consists in introducing into the cylinder a mixture of water and pressurized fuel which allows lower consumption and emissions (Wahlström at al., 2006).

  • Use of low emission fuels: in particolar seaweeds hold a huge potential as a biofuel. Briefly, biofuels are used for fighting climate changes because the same amount of CO2 that is released from combusting biofuels has previously been taken up from the atmosphere as the plant grows, thus not leading to any net increase in the concentration of CO2 in the atmosphere (Opdal & Johannes, 2007).

  • Optimization of combustion processes in ship engines by means of particolar devices able to optimize combustion disaggregating hydrocarbons (gas emission reduction up to 75-80%).

6. Conclusion

The use of the IQAcov index and the implementation of the best practices and technologies described in the last paragraph could be considered useful tools for monitoring and improving air quality in portal areas for stakeholders and decision makers such as port/maritime authorities, licensed port company operators and local and governmental authorities involved in port jurisdiction.

Indeed, as recommended by the European Sea Port Organisation (ESPO, 2003), among the main environmental objectives which the EU port sector should aim to achieve there is the increase of environmental awareness, the implementation of environmental monitoring and the use of best practices and technologies on environmental issues.

These targets, together with the promotion of environmental monitoring in ports, are fully included among the ESPO top ten environmental objectives that the European port sector should pursue.

Acknowledgement

The authors wishes to thank all the members of this project for their active contribution to this research, in particular: Dr. Federica Barbanera, Dr. Daniele Bruschi, and Dr. Teresita Gravina.

We also wish to thank Dr. Sergio Fuselli, Dr. Marco De Felice and Dr. Roberta Morlino of the Istituto Superiore di Sanità (ISS) (Superior Health Institute) for their major contribution providing tools and analysis for VOCs concentration monitoring.

Moreover, a special thanks to the whole staff of Anzio, Formia and Terracina Coast Guards for supporting out team during the data gathering works in their portal areas.

Finally the whole research group wishes to thank the Regione Lazio, Dipartimento Istituzionale e Territorio, Direzione Regionale Trasporti – Area Porti - for the financial contribution given to this project.

References

1 - P. Bruno, M. Caselli, G. de Gennaro, L. Scolletta, L. Trizio, M. Tutino, 2008Assessment of the Impact Produced by the Traffic Source on VOC Level in the Urban Area of Canosa di Puglia (Italy). Water, Air, and Soil Pollution, DOIs11270-008-9666-3, 2008
2 - E. De Jonge, C. Hugi, D. Copper, 2005Service Contract on Ship Emissions: Assignment, Abatement and Market-based Instruments. Task 2a- Shore-Side Electricity. Final Report. European Commission Directorate General Environment. Entec UK Limited. August 2005.
3 - European Sea Port Organisation (ESPO),2003Environmental code of practice. September 2003
4 - IMO (International Maritime Organisation)2008Amendment MARPOL Annex IV; Reduction emissions from ships. Marine Environment Protection Committee (MEPC), 57° Session.
5 - T. Murrells, R. G. Derwent, 2007Climate Change Consequences of VOC Emission Controls. Report to The Department for Environment, Food and Rural Affairs, Welsh Assembly Government, the Scottish Executive and the Department of the Environment for Northern Ireland. ED48749102. AEAT/ENV/R/24753September 2007.
6 - O. A. Opdal, F. H. Johannes, 2007Biofuels in ships. ZERO Emission Resource Organisation-REPORT- December 2007
7 - J. Wahlström, N. Karvosenoja, P. Porvari, 2006Ship emissions and technical emission reduction potential in the Northern Baltic Sea. Reports of Finnish Environment Institute 8/2006. Helsinki, 2006. 9-52112-277-3